

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

2014

	DECLARATION OF THESIS
Author's full name	: Mohammed Khalid Salam Fadhil
Date of birth	: 13/2/1964
Title	: Enhance Radio Resource Allocation Techniques for Fractional Frequency Reuse Base Station in Mobile WiMAX Cellular Network
Academic Sessior	n: 2013/2014
I hereby declare t	hat the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to
be placed at the lil	brary of UniMAP. This thesis is classified as:
CONFIDEN	ITIAL (Contains confidential information under the Official Secret Act 1972)*
	ED (Contains restricted information as specified by the organization where research was done)*
	CESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
purpose of resear	ch or academic exchange only (except during a period of vears, if so
requested above).	this item is pleased, the grant g
SIGNATU	RE SIGNATURE OF SUPERVISOR
<u>G17</u> (PASSPOR	82037Prof Dr. R. Badlishah AhmadXT No.)NAME OF SUPERVISOR
Date:	Date:

ACKNOWLEDGMENT

بسم الله الرحمن الرحيم

I would like to express my deep gratitude and thanks to Professor Dr. R. Badlishah Ahmad for his support, guidance, encouragement, and the time that he spent with me to prepare my thesis during my PhD journey. Without his help, I would not have been able to achieve what I have achieved. I would also like to thank the staff of the University of Malaysia (UniMAP) for their cooperation and support and good treatment for foreign students. I would like to express my thanks to Dr Abid Yahya for his support and advices during my research. I am also thankful all my friends in the laboratories, I enjoyed the moments I shared with them.

Uncountable thanks go to my mother and the soul of my father for their love and blessings. They always provide me the strength to live and progress in this life. I am forever grateful to them and my brothers for their continuous moral support. The deepest thanks from my heart go to my precious wife and my children who really change my life for the best during my study. I deeply thank to my family for their patience and for bearing the absence of their father for several years. It was impossible to stay this far from them and do this work without their support and believe in me.

Mohammed Khalid Salam Fadhil Al-Naimi

University Malaysia Perlis (UniMAP)

TABLE OF CONTENTS

DECLARATION OF THESIS	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xx
ABSTRAK	xxvi
ABSTRACT	xxvii
CHAPTER 1: INTRODUCTION	
1.1 Background	1
1.2 Problem Statement	4
1.3 Research Objectives	6
1.4 Research Scope	7
1.5 Thesis Outlines	7
\bigcirc	
CHAPTER 2: LITERATURE REVIEW	
2.1 Introduction	9
2.2 Cellular Network Systems	10
2.3 Inter-Cell Interference (ICI) Mitigation	12
2.4 Base Station Deployment in OFDMA-based Cellular Network	13

2.4.1 Frequency Planning Technique 14

	2.4.2	Fractional Frequency Reuse (FFR)	15
2.5	FFR D	eployment Classification	17
	2.5.1	Dynamic FFR and Static FFR	18
2.6	FFR R	esource Assignment Challenges in OFDMA Network	21
	2.6.1	Resource Allocation Based on Distance	22
	2.6.2	Resource Allocation Based on SINR	23
	2.6.3	Resource Allocation Based on Optimization Analysis	26
	2.6.4	Resource Allocation Based on Load Balance	28
	2.6.5	Resource Allocation Based on Quality of Service (QoS)	30
	2.6.6	Resource Allocation Based on Frame Partitioning	31
2.7	Resour	ce Enhancement in FFR Technique	33
2.8	summa	ury	35
СНА	PTER 3	: FRACTIONAL FREQUENCY REUSE (FFR) IN WIMAX	
3.1	Introdu	iction	36
3.2	OFDM	and OFDMA in WiMAX	37
3.3	WiMA	X Frame Structure	40
3.4	Subcar	rier Permutation Types	42
	3.4.1	Adjacent Subcarrier Permutation	43
	3.4.2	Distributed Subcarriers Permutation	44
3.5	Zones	Concept in WiMAX Frame	46
3.6	Modula	ation and Coding in Mobile WiMAX	47
3.7	Schedu	lling and types of Services over WiMAX	49
3.8	WiMA	X Base Station Deployment Using FFR Technique	54

CHAPTER 4: DESIGN AND MODELING OF RESOURCE
UTILIZATION IN FRACTIONAL FREQUENCY
REUSE

4.1	Introdu	Introduction		
4.2	System Model Design			
	4.2.1	Network Design and System Parameters	64	
	4.2.2	Proposed DL Sub-frame Structure	72	
4.3	Static R	Resource Assignment (SRA) FFR Model	74	
	4.3.1	Resource Assignment Scenario in SRA FFR Model	74	
	4.3.2	SRA FFR Algorithm Design	76	
4.4	Dynam	ic Resource Assignment (DRA) FFR Model	83	
	4.4.1	Resource Assignment Scenario in DRA FFR Model	84	
	4.4.2	DRA FFR Algorithm Design	86	
4.5	Analyz	ing and Modeling Performance Metrics	96	
	4.5.1	Signal to Interference plus Noise Ratio (SINR) Modelling	96	
	4.5.2	WiMAX Data Rate Modelling and Calculation	102	
	4.5.3	Subcarrier Efficiency Modelling	107	
(4.5.4	Spectral Efficiency Modelling	108	
	4.5.5	FFR DL Sub-frame Capacity Modelling	110	
		4.5.5.1 Slot Utilization Modelling	110	
		4.5.5.2 Active User Modelling	112	
	4.5.6	Channel Capacity Modelling	114	
4.6	Perform	nance Evaluation of FFR Models versus Traditional FFR	116	
	4.6.1	Evaluation by Metrics	117	

	4.6.2	Evaluation by Different Configuration	118
4.7	Perform Related	nance Evaluation of Proposed FFR Models versus Other d Works	119
4.8	Summa	ary	119

CHAPTER 5: RESULTS AND DISCUSSIONS

5.1	Introduc	ction		121
5.2	Perform	ance Anal	ysis and Evaluation of SRA FFR algorithm	122
	5.2.1	Performa	nce Analysis per Cases	123
		5.2.1.1	Based on Active Users	123
		5.2.1.2	Based on Subcarrier Efficiency	124
		5.2.1.3	Based on Data Rate	125
	5.2.2	Performa SRA FFR	nce Comparison between Traditional FFR and	129
		5.2.2.1	Comparison Based on Active Users	129
		5.2.2.2	Comparison Based on Resource Utilization	130
		5.2.2.3	Comparison Based on Subcarrier Efficiency	131
	•	5.2.2.4	Comparison Based on Data Rate	133
	nis	5.2.2.5	Comparison Based on Spectral Efficiency	135
	O	5.2.2.6	Performance Comparison of Traditional FFR and SRA FFR	136
5.3	Perform	ance Anal	ysis and Evaluation of DRA FFR algorithm	139
	5.3.1	DRA-I FI	FR Algorithm Employing Mobility Pattern I	139
		5.3.1.1	Per Layers in Mobility Pattern I	140
		5.3.1.2	Performance Comparison between Traditional FFR and DRA-I FFR in Mobility Pattern I	146

5.3.2 DRA-II FFR Algorithm Employing Mobility Pattern II 150

		5.3.2.1	Per Layers in Mobility Pattern II	151
		5.3.2.2	Performance Comparison between Traditional FFR and DRA-II FFR in Mobility Pattern II	156
5.4	Traditio	nal FFR v	versus SRA FFR and DRA FFR	160
5.5	System	Stability	Evaluation per SRA FFR and DRA FFR Algorithms	163
	5.5.1	SRA and MHz	d DRA FFRs Systems Stability Evaluation Using 5	163
		5.5.1.1	SRA Stability Evaluation using 5 MHz System Bandwidth	164
		5.5.1.2	DRA Stability Evaluation using 5 MHz System Bandwidth	166
	5.5.2	SRA and MHz	d DRA FFRs Systems Stability Evaluation Using 20	169
		5.5.2.1	SRA Stability Evaluation using 20 MHz System Bandwidth	170
		5.5.2.2	DRA Stability Evaluation using 20 MHZ System Bandwidth	172
	5.5.3	System S Algorith	Stability Comparison in SRA and DRA FFRs ms	175
	5.5.4	Channel Bandwic	Capacity Evaluation using 5, 10, 20 MHz lth	179
5.6	Results	for SRA a	and DRA algorithms	184
5.7	© Summ	ary		188

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1	Conclusion	190
6.2	Contributions of This Research	194
6.3	Recommendations for Future Work	196

REFERENCES	197
LIST OF PUBLICATION	205
LIST OF AWARDS	207

othis item is protected by original copyright

LIST OF TABLES

No.		PAGE
3.1	Fixed and Mobile WiMAX System Parameters	39
3.2	Design Parameters of PUSC, FUSC, and band-AMC	45
3.3	Recommended Modulation and Coding Types	48
4.1	Proposed Design Parameters	71
4.2	Resource Assignment Rules per Case	75
4.3	SINR Threshold for Different MCS Types (Stiakogiannakis et al., 2012)	76
4.4	Resource Assignment Rules per Layer	86
4.5	Propagation Model Parameters (Forum, 2008)	98
4.6	802.16e DL Sub-frame Data Rate Analysis	104
5.1	Performance Evaluation Summary per Case	128
5.2	Performance Comparison between Case 1 and Case 3	137
5.3	Performance Comparison between Traditional FFR, SRA-Case1 FFR, and SRA-Case3 FFR	137
5.4	Performance Comparison between DRA-I and Traditional FFRs in Mobility Pattern I	149
5.5	Performance Comparison between DRA-II and Traditional FFRs in Mobility Pattern II	159
5.6	Performance Comparison Summary of All Proposed Models with Traditional FFR	160
5.7	Analysis of the Aggregate Improvement of 19 Cells for One DL Sub-frame	162
5.8	Results Comparison of 5 MHz Bandwidth	176
5.9	Results Comparison of 10 MHz Bandwidth	176
5.10	Results Comparison of 20 MHz Bandwidth	176

5.11	Percentage Improvement in SRA and DRA Algorithms Using 5, 10, 20 MHz System Bandwidth	177
5.12	Performance Comparison of SRA and DRA Models with Stiakogiannakis	185
5.13	Performance Comparison of SRA and DRA Models with Zhou and Zein	186
5.14	Performance Comparison of SRA and DRA Models with Han	187

orthis item is protected by original copyright

LIST OF FIGURES

No.		PAGE
1.1	Interference Model in a Cellular System Using Universal Frequency	2
1.2	FFR Technique Example, (a) Cell Border Frequency Distribution, (b) Subcarriers Groping in Subchannels	3
2.1	Inter-cell Interference in Cellular Network Deployment	11
2.2	Three Types of Frequency Planning Schemes, (a) FRF of 1, (b) FRF of 3, (c) Sectoring	14
2.3	Deployment of Three FFR Base Stations, (a) DL Sub-frames Structure (b) Frequency Distributions	15
2.4	FFR Deployment Classification	17
3.1	OFDM Subcarriers Types in WiMAX	38
3.2	TDD WiMAX Frame Structure	40
3.3	Adjacent Subcarrier Permutation	43
3.4	Distributed Subcarriers Permutation	44
3.5	Zoning in TDD WiMAX Frame	47
3.6	WiMAX Base Station Scheduler Operation	52
3.7	WiMAX Base Stations Deployment Using FFR Technique, (a) DL- Sub-frames Structure, (b) Frequency Mapping per Cell	55
4.1	Flow of Research Works to Improve Performance of FFR WiMAX 802.16e Base Station in Cellular Network	62
4.2	Proposed Network Layout, (a) Cells Frequency Distribution, (b) DL Sub-frame Structures	65
4.3	SINR versus Distance from BS (when FFR 5 dB Threshold is used)	69
4.4	Proposed DL Sub-frame without Overhead	72
4.5	Proposed SRA Cell Layout	75
4.6	SRA FFR Flowchart to Allocate Resources in the DL Sub-frame	77
4.7	Four Cases of Resource Assignment Flowchart	80

4.8	Proposed DRA FFR Cell Layout		
4.9	DRA FFR Flowchart to Allocate Resources in the DL Sub-frame	87	
4.10	Crowded Layer Resource Allocation Flowchart	93	
4.11	Hexagon System, (a) One Cell Dimensions, (b) Cell Allocation Example	100	
4.12	Network Layout in the Cartesian Coordinate System	100	
5.1	Number of Active Users per Case	124	
5.2	Subcarrier Efficiency per Case	125	
5.3	Data Rate Response per Case	126	
5.4	Average Data Rate Response per Case	127	
5.5	Average Number of Active Users in Traditional FFR and SRA FFR Models	129	
5.6	Average Number of Slots Utilization in Traditional FFR and SRA FFR Models	131	
5.7	Subcarrier Efficiency Response of DL Sub-frame Parts in SRA FFR	132	
5.8	Average Subcarrier Efficiency per DL Sub-frame Parts	133	
5.9	Data Rate Response per Traditional FFR and SRA FFR Models	134	
5.10	Average Data Rate per Traditional FFR and SRA FFR Models	134	
5.11	Spectral Efficiency per Traditional FFR and SRA FFR Models	135	
5.12	Average Spectral Efficiency per Traditional FFR and SRA FFR Models	136	
5.13	Data Rate Response of DL Sub-frame Parts in DRA-I	140	
5.14	Subcarrier Efficiency Response of DL Sub-frame Parts in DRA-I	141	
5.15	Average Subcarrier Efficiency of DL Sub-frame Parts in DRA-I	142	
5.16	Winner Layer Mapping in DRA-I	143	
5.17	Statistical Comparison between the Area of Service and Users' Distribution, (a) Percentage Area of Each Layer, (b) Users' Distribution Percentage in Each Layer	144	

5.18	DL Sub-frame Capacity in DRA-I, (a) Average Users Number, (b) Average Slots Number	145
5.19	Average Number of Users and Slots per Traditional and DRA-I FFRs	146
5.20	Average Data Rate of Traditional and DRA-I FFRs	147
5.21	Spectral Efficiency of Traditional and DRA-I FFRs	148
5.22	Average Spectral Efficiency per Traditional and DRA-I FFRs	148
5.23	Users Distribution in DRA-II for 100 Trials	150
5.24	Data Rate Response of the DL Sub-frame Parts in DRA-II	152
5.25	Average Data Rate Response of the DL Sub-frame Parts in DRA-II	152
5.26	Subcarrier Efficiency Response of DL Sub-frame Parts in DRA-II	153
5.27	Average Subcarrier Efficiency per DL Sub-frame Parts in DRA-II	154
5.28	Number of Users per Layer in DRA-II	155
5.29	Average Number of Users and Slots per DL Sub-frame Parts in DRA- II	156
5.30	Average Number of Users and Slots in Traditional and DRA-II FFRs	157
5.31	Average Data Rate in Fraditional and DRA-II FFRs	157
5.32	Spectral Efficiency in Traditional and DRA-II FFRs	158
5.33	Average Spectral Efficiency of Traditional and DRA-II FFRs	159
5.34	Average Number of Users and Slots per Traditional FFR, SRA-Case1, SRA-Case3 at 5 MHz BW	164
5.35	Average Data Rate of Traditional FFR, SRA-Case1, and SRA-Case3 at 5 MHz BW	165
5.36	Average Spectral Efficiency per Traditional FFR, SRA-Case1, and SRA-Case3 at 5 MHz BW	166
5.37	Average Number of Users and Slots per Traditional FFR, DRA-I, and DRA-II FFRs at 5 MHz BW	167
5.38	Average Data Rate per Traditional FFR, DRA-I, and DRA-II FFRs at 5 MHz BW	168

5.39	Average Spectral Efficiency of Traditional, DRA-I, and DRA-II FFRs at 5 MHz BW	169
5.40	Average Number of Users and Slots per Traditional FFR, SRA-Case1, SRA-Case3 at 20 MHz BW	170
5.41	Average Data Rate per Traditional, SRA-Case1, and SRA-Case3 FFRs at 20 MHz BW	171
5.42	Average Spectral Efficiency in Traditional, SRA-Case1, SRA-Case3 FFRs at 20 MHz BW	172
5.43	Average Number of Users and Utilized Slots in Traditional, DRA-I, and DRA-II FFRs at 20 MHz BW	173
5.44	Average Data Rate in Traditional, DRA-I, and DRA-II FFRs at 20 MHz BW	174
5.45	Average Spectral Efficiency in Traditional, DRA-I, DRA-II FFRs at 20 MHz BW	175
5.46	Channel Capacity of Traditional FFR and Proposed FFRs at 10 MHz BW	180
5.47	Channel Capacity of Traditional FFR and Proposed FFR at 5 MHz BW	183
5.48	Channel Capacity of Traditional FFR and Proposed FFR at 20 MHz BW	183

LIST OF ABBREVIATIONS

I. Basic Units

Quantity	Unit	Symbol
Data Rate	Bit per second, Megabit per second	bps, Mbps
Frequency	Hertz, Kilohertz, Megahertz, Gigahertz	Hz, KHz, MHz, GHz
Distance	Meter, Kilometer	m, Km
Time	Second, Millisecond, Microsecond	s, ms, μs
Spectral Efficiency	Bit per second per hertz	bps/Hz
Subcarrier Efficiency	Bit per subcarrier per burst	b/subcarrier/burst
Channel Capacity	Bit per second	bps
Power	Watt, Milliwatt, Decibel, Decibel-Milliwatt	W, mW, dB, dBm
Antenna Gain	Decibel-isotropic	dBi
Thermal Noise Power	Decibel-Milliwatt per hertz	dBm/Hz

		uL	
orotecte			
II. Abbreviations			
3GPP	Third-Generation Partnership Project		
AAS (1)S	Adaptive Antenna System		
AFRE	Average Frequency Reuse Factor		
AMC	Adaptive Modulation and Coding		
AP	Access Point		
APA	Adaptive Power Allocation		
AT&T	American Telephone and Telegraph Company		
Band-AMC	Band Adaptive Modulation and Coding		
BE	Best Effort		

BP	Burst Profiles
BS	Base Station
BW	Band Width
BWE	Bandwidth Efficiency
CC	Convolutional Code
CC-FFR	Client-Centric Fractional Frequency Reuse
CCI	Co-Channel Interference
CDMA	Code Division Multiple Access
COST	European Cooperative for Scientific and Technical
CQI	Channel Quality Indicator
CSI	Channel State Information
CTC	Convolutional Turbo Codes
DC	Direct Current
DIUC	Downlink Interval Usage Code
DL	Down Link
DL-MAP	Down link MAP
DRA	Dynamic Resource Assignment
DSA	Dynamic Subcarriers Assignment
DSL	Digital Subscriber Line
Е	Electronic
EBW	Effective Bandwidth
ertPS	Extended Real-Time Polling Service
FCH	Frame Control Header
FDD	Frequency Division Duplexing
FEC	Forward Error Correction

FFR	Fractional Frequency Reuse
FFT	Fast Fourier Transform
FRF	Frequency Reuse Factor
FTP	File Transfer Protocol
FUSC	Full Usage of SubChannels
GSM	Global System for Mobile
Н	High
HS	Highest
НТТР	Hyper Text Transfer Protocol
ICI	Inter-cell Interference
IE	Information Element
IEEE	Institute of Electrical and Electronics Engineers
IFCO	Interference Coordination
ISD	Intercell Spatial Demultiplexing
ISI	Inter Symbol Interference
L	Low
LAN	Local Area Network
LMSC	LAN MAN Standards Committee
LOS	Line-of-Sight
LS	Lowest
LTE	Long Term Evolution
MAC	Media Access Control
MAN	Metropolitan Area Network
MCS	Modulation and Coding Scheme
MPEG	Moving Pictures Experts Group

MS Mobile Station

MSINR Maximum SINR

NLOS Non-Line-of-Sight

Non-Real-Time Polling Service nrtPS

OFDM Orthogonal Frequency-division Multiplexing

OFDMA Orthogonal Frequency-Division Multiple Access jinal copyright

Partial Usage of SubChannels

PHY Physical Layer

PL Path Loss

PUSC

Point-to-MultiPoint PMP

Quadrature Amplitude Modulation QAM

QoS Quality of Service

Quadrature phase-shift keying QPSK

RD Radio Distance

Report Request REP-REQ

REP-RSP Report Response

RNC Radio Network Controller

RR Round Robin

RRA Radio Resource Agent

RRC Radio Resource Controller

RSSI **Received Signal Strength Indicator**

RTG **Receive Transition Gap**

rtPS Real-Time Polling Service

SE Spectral Efficiency

Segment B and segment C in R3 zone Segments BC

SINR Signal-to-Interference-plus-Noise Ratio

Signal to Noise Ratio SNR

SRA Static Resource Assignment

TDD Time Division Duplexing

TLPC Two Level Power Control

TTG Transmit Transition Gap

U User

Unsolicited Grant Service UGS

original copyright UIUC Uplink Interval Usage Code

UL Up Link

Up link MAP UL-MAP

Voice over Internet Protocol VOIP

Worldwide Interoperability for Microwave Access WiMAX othisitemisprot

LIST OF SYMBOLS

R1 zone	First part in the DL sub-frame
R3 zone	Second part in the DL sub-frame
F1	Frequency band of segment A
F2	Frequency band of segment B
F3	Frequency band of segment C
N _{FFT}	Number of subcarriers
Δf	Subcarrier frequency spacing
Tb	Useful symbol time
Tg	Guard time (or cyclic prefix time)
G	Ratio of cyclic prefix time to useful symbol time
Ts	OFDMA symbol duration time
n	Sampling factor
N _{bin}	Number of bins per slot
M _{OFDM}	Number of OFDM symbols per slot
ті . Кор	Operational time of R1 zone
T2	Operational time of R3 zone
N _{MS}	Number of users require services
SINR _{TH}	Threshold SINR
SINR(MS)	Mobile station SINR value
r	Cell centre radius
R	Cell radius
No	Thermal noise power
l	Number of interfered base stations in the grid

М	Target zone or segment name
τ	Operational time of a given OFDM symbols in the DL sub-frame
Trd. FFR	Traditional Fractional Frequency Reuse
Pro. FFR	Propose Fractional Frequency Reuse
Seg. BC	Segments BC
S _{frame}	Number of OFDM symbols in WiMAX frame
Tf	Frame duration time
γ	Number of slots per two successive OFDM symbols
Kr _{slot}	Number of subcarriers per slot
N ^{UL} _{Smb}	Number of OFDM symbols in the UL sub-frame
DL/UL	Down link to up link OFDM traffic ratio
N ^{Gen} _{MS}	Number of generated users
$N_{MS_{R1}}^{max}$	Maximum number of users in R1 zone
N _{MSR1}	Number of users in R1 zone
N _{MS_{R3}}	Maximum number of users in R3 zone
N _{MSR3}	Number of users in R3 zone
N _{MS} ^{Extra}	Number of extra users require services
MS _x	User location in X-axis
MS _y	User location in Y-axis
ic1, ic2, ic3, and ic4	Users counter of Case 1, Case 2, Case 3, and Case 4
ic1 ^{max} , ic2 ^{max} ic3 ^{max} , ic4 ^{max}	Maximum number of users that can be served in Case 1, Case 2, Case 3, and Case 4, respectively
N_{R1}	Users counter of R1 zone
$N_{MS}^{LA}, N_{MS}^{LB}, N_{MS}^{LC}, N_{MS}^{LD}$	Number of users per layer A, B, C, and D, respectively

MSF	User index flag
N ^{ABCD}	Total number of users in all layers (A, B, C, and D)
N _{MS} ^{max}	Hold the most crowded layer name (A, B, C, or D)
ia,ib,ic,id	Users counter of layer A, B, C, and D, respectively
ia ^{max} ,ib ^{max} , ic ^{max} ,id ^{max}	Maximum number of users in layer A, B, C, and D, respectively
Pr	Received power
Pt	Transmitted power
Gr	Receiver antenna gain
Gt	Transmitter antenna gain
f	Operating carrier frequency
h _{BS}	Base station antenna height
h _{MS}	Mobile station antenna height
$A(h_{MS})$	Mobile station antenna correction factor
d	Distance between base station and user (or mobile station)
C _F	Environment correction factor
x xell	Shadowing
BS _x	Base station location in X-axis
BS_y	Base station location in Y-axis
K	Boltzmann's constant
Т	Kelvin temperature
Fs	Sampling frequency
Kr _{ofdm}	Number of Subcarriers per OFDM symbol
В	Number of data bits per subcarrier
Dr _{PHY}	Physical layer data rate

Dr _{MAC}	MAC layer data rate
N ^{DL} _{OFDM}	Number of OFDM symbols in the DL sub-frame
N ^{OH} N ^{OFDM}	Number of OFDM symbols reserved for overhead (control messages) in the DL sub-frame
Cr	Code rate type
Q	Number of points in the constellation for particular modulation type
β	Number of slots reserved for user data load
α	Number of active users in the target zone or segment
P(u)	Binary expression (0 or 1)
$P_{SINR}^{min}(M)$ and $P_{SINR}^{max}(M)$	SINR thresholds for target zone or segment
R3 _A	Segment A in R3 zone
R3 _{BC}	Segment BC in R3 zone
Dr_{MAC}^{Trd}	MAC data rate in traditional FFR
Dr_{MAC}^{Pro}	MAC data rate in proposed FFRs
Z	Number of trials
$\overline{Dr}_{MAC}^{Trd}$	Average MAC data rate in traditional FFR
$\overline{Dr}_{MAC}^{Pro}$	Average MAC data rate in proposed FFRs
$Kr_E(\mathbf{M})$	Normalized subcarrier efficiency per zone or segment
ω	Total number of subcarriers reserved for specific user load
$\overline{Kr_E}(M)$	Average normalized subcarrier efficiency per zone or segment
Kr_E^{Trd}	Arithmetic mean of traditional FFR subcarrier efficiency
Kr_E^{Pro}	Arithmetic mean of proposed FFRs subcarrier efficiency
DL _{SE}	Down link spectral efficiency
FRF _{R3}	Frequency reuse factor in R3 zone