MICROSTRUCTURE AND PROPERTIES OF SINTERED Co-Cr-Mo ALLOY POWDER UNDER DIFFERENT PROCESSING CONDITIONS

ZURAIDAWANI BINTI CHE DAUD

UNIVERSITI MALAYSIA PERLIS

Microstructure and Properties of Sintered Co-Cr-Mo Alloy Powder under Different Processing Conditions By oitend 04319 FR85-M37 Zuraidawani Binti Che Daud

043195

FR857 12796

(0640410125) itemisp

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy (C)

5

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS

Author's full name	:	Zuraidawani Binti Che Daud
Date of birth	:	27 August 1980
Title	;	Microstructure and Properties of Sintered Co-Cr-Mo Alloy
		Powder under Different Processing Conditions
Academic Session		2010/2011
I hereby declare that be placed at the librar	the thesis ry of UniN	s becomes the property of University Malaysia Perlis (UniMAP) and to IAP. This thesis is classified as
		,01
CONFIDENT	IAL	(Contains confidentia) information under the Official Secret Act 1972)
/ RESTRICTE	D	(Contains restricted information as specified by the organization where research was done)
	SS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
I, the author, give per purpose of research requested above).	ermission or acade	to the UniMAP to reproduce this thesis in whole or in part for the emic exchange only (except during a period of years, if so
		Certified by:
	-R3 D	
(SIG	NATURE	(SIGNATURE OF SUPERVISOR)
8008	2703540	00 PROF.DR. SHAMSUL BAHARIN JAMALUDIN
(NEW IC NO.	/ PASSF	PORT NO.) (NAME OF SUPERVISOR)
Date : 27.	7.20	Date : 27.7.201

i

ACKNOWLEDGEMENT

With the name of Allah and praise to Allah as our God and our Prophet, Nabi Muhammad s.a.w. Alhamdulillah, with His will has allowed me to complete this research.

First and foremost, I would like to thank Prof. Dr. Shamsul Baharin Jamaludin, my supervisor, for his support throughout this project. His advices on both content and presentation have been superb, and quite simply, this project would not have been possible without his help. Thank also goes to Dr. Fazlul Bari, my co-supervisor for his expect assistance in completing this research.

I am also indebted to Universiti Malaysia Perfis (UniMAP) and Ministry of Higher Education, Malaysia for funding my PhD study. A special note of gratitude goes to Dean of School of Materials Engineering, Dr. Khairel Rafezi Ahmad and all lecturers and staffs of School of Materials Engineering, especially Mr Mohd Nasir, Mr Ahmad Hadzrul Iqwan, Mr Norzaidi, Mr Azmi Aziz, Mr Rosmawadi and Mr Ku Hasrin for their help and friendship

I would also like to thank my friends, especially Juyana, Raudhah, Murmaizatulshima, Rohaya, Norazimah, Mohd Radzi and Mohd Hasharin who are always with me during this semester for their kind support and for everything they taught me. It is impossible to list the many friends and colleagues who ever the years have assisted the development of ideas that have resulted in this research. To each of these people, I express my sincere appreciation.

Finally, very special thank and appreciation to my parent for their unconditional loving support, understanding and encouragement for all I needed during my study. I wish to express special thank to my husband, Mr Mohd Nazree and my son,

ii

Mohammad Naufal. Thank you for understanding, caring and supports for my PhD study.

Thank you.

O This item is protected by original copyright ZURAIDAWANI CHE DAUD

TABLE OF CONTENTS

		PAGE
THES	SIS DECLARATION	i
ACK	NOWLEDGMENT	ii
TABL	LE OF CONTENTS	× iv
LIST	OF FIGURES	ix
LIST	OF TABLES	xiv
LIST	OF ABBREVIATIONS	xvi
LIST	OF SYMBOLS	xix
ABST	TRAK	xx
ABST	TRACT	xxi
	xec	
СНА	PTER 1: INTRODUCTION	
1.1	Introduction	1
1.2	Problem Statement	4
1.3	Research Objectives	6
1.4	Scope of study	6
СНА	APTER 2: LITERATURE REVIEW	
2.1	Introduction to Biomaterials	8
	2.1.1 Historical background	11
	2.1.2 Requirements of Biomaterial	14

	2.1.3	Introduction to Biocompatibility	16
	2.1.4	Classification of Biomaterials	17
2.2	Metallio	c Biomaterials	20
	2.2.1	Stainless steels	21
	2.2.2	Cobalt based alloys	23
	2.2.3	Titanium based alloys	25
2.3	Method	Is of Producing Co based alloy	27
2.4	Powder	r Metallurgy	28
	2.4.1	Process of PM	29
		2.4.1.1 Mixing/ Blending	29
		2.4.1.2 Compression	31
		2.4.1.3 Sintering	31
2.5	Cobalt	-Chromium-Molybdenum (Co-Cr-Mo) Alloys	33
	2.5.1	The Physical and Mechanical Properties of Co-Cr-Mo alloy	36
	2.5.2	The Corrosion Behaviour of Co-Cr-Mo alloy	41
2.6	The Si	ntering Mechanisms and Activation Energy of PM Co-Cr-Mo	
	alloy	nis	46
	2.6	Surface Transport Mechanisms	48
	2.6.2	Bulk Transport Mechanisms	48
	2.6.3	Grain Growth Kinetics of Co-Cr-Mo alloy	49

CHAPTER 3: METHODOLOGY

31	Introduction
2.1	muouuction

3.2	Materia	ls	54
	3.2.1	Co-Cr-Mo powder	54
	3.2.2	Binder (Stearic Acid)	54
3.3	Charact	terization of Co-Cr-Mo powder	55
	3.3.1	Morphology study	55
	3.3.2	Particle size analysis	56
3.4	Phase 1	I: Fabrication of PM Co-Cr-Mo Products	57
	3.4.1	Optimisation percentages of binder	57
	3.4.2	Blending	57
	3.4.3	Compression	58
	3.4.4	Sintering	59
3.5	Phase	2: Microstructure analysis	60
	3.5.1	Metallographic sample preparation	61
	3.5.2	Optical Microscope observation	61
	3.5.3	Grain size determination	62
	3.5.4	Energy Dispersive X-Ray Spectroscopy (EDS)	62
	3.5.5	Grain growth kinetics	63
3.6	Phase	3: Physical and Mechanical Properties Testing	64
	3.6.1	Linear shrinkage	64
	3.6.2	Bulk density and apparent porosity	64
	3.6.3	Vickers microhardness	65
	3.6.4	Compression test	67
		3.6.4.1 Fracture mode after compression test	6

3.7 Phase 4: Corrosion test

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Introduction		70
4.2	Phase 1	: Fabrication of Co-Cr-Mo products	71
	4.2.1	Determination of the optimum amount of binder content	71
4.3	Phase 2	: Microstructure Analysis	75
	4.3.1	Microstructure	76
	4.3.2	Grain size analysis	85
	4.3.3	Grain growth kinetics	86
4.4	Phase 3:	Physical and Mechanical Properties Testing	93
	4.4.1	Bulk density and apparent porosity	93
	4.4.2	Vickers microhardness	97
	4.4.3	Compressive strength analysis	99
		4.4.3.1 Fracture mode after compression test	101
4.5	Corros	ion behaviour of PM Co-Cr-Mo alloy	107
	~	nis	
CHA	PTERS	CONCLUSION	
5.1	Concl	usions	116
5.2	Future	work	118
REF	ERENC	ES	119
GLO	OSSARY		132

LIST OF PUBLICATIONS

OTHIS HEMIS Protected by original copyright

LIST OF FIGURES

	PAGE
Illustration of biomaterials for human application (Geetha et al., 2010)	10
Schematic representation of implant materials requirements (Hoeppner	
& Chandrasekaran, 1994)	15
Requirement of implants (Hoeppner & Chandrasekaran, 1994)	16
The basic process of PM (Budinski & Budinski, 1999)	29
The three modes of powder mixing (German, 1994)	31
The two sphere sintering model with the development of the	
interparticle bond during sintering, starting with a point contact	
(German, 1994)	33
Fractional density as a function of sintering temperatures in argon	
atmosphere for fine powder and coarse powder (Dourandish et al.,	
2008)	40
Schematic diagram of electrochemical cell (Park & Bronzino, 2003)	43
Schematic diagram of reaction steps during the corrosion of a metal in	
aqueous environments (Sun, 2009e)	44
Two classes of sintering mechanisms. Surface transport mechanism	
(E-C, evaporation-condensation; SD, surface diffusion; VD, volume	
diffusion). Bulk transport processes (PF, plastic flow; GB, grain	
boundary diffusion; VD, volume diffusion) (German, 1996)	49
Flow Chart of the Experimental Design	53
	 Illustration of biomaterials for human application (Geetha et al., 2010) Schematic representation of implant materials requirements (Hoeppner & Chandrasekaran, 1994) Requirement of implants (Hoeppner & Chandrasekaran, 1994) The basic process of PM (Budinski & Budinski, 1999) The three modes of powder mixing (German, 1994) The two sphere sintering model with the development of the interparticle bond during sintering, starting with a point contact (German, 1994) The two sphere sintering model with the development of the interparticle bond during sintering starting with a point contact (German, 1994) That the process of fine powder and coarse powder (Dourandish et al., 2008) Schematic diagram of electrochemical cell (Park & Bronzino, 2003) Schematic diagram of reaction steps during the corrosion of a metal in approximation (Sun, 2009e) Two classes of sintering mechanisms. Surface transport mechanisms (E-c, evaporation-condensation; SD, surface diffusion; VD, volume diffusion). Bulk transport processes (PF, plastic flow; GB, grain boundary diffusion; VD, volume diffusion) (German, 1996) Flow Chart of the Experimental Design

3.2	SEM micrograph of Co-Cr-Mo powder	55
3.3	The particle size distribution of Co-Cr-Mo powder	56
3.4	Schematic diagram of the tool steel die	58
3.5	The tool steel die	59
3.6	The WEBB 84 furnace	60
3.7	Profile of sintering	60
3.8	The test tube placed into water bath	69
4.1	The linear shrinkage of the PM Co-Cr-Mo sample with different	
	composition(wt. %) of stearic acid	72
4.2	The bulk density of the PM Co-Cr-Mo sample with different	
	composition (wt. %) of stearic acid	73
4.3	The apparent porosity of the PM Coor-Mo sample with different	
	composition (wt. %) of stearic acid	74
4.4	The effect of varying weight percentage of stearic acid on the Vickers	
	microhardness	75
4.5	Optical micrographs of the samples sintered at 1250°C for five sintering	
	times (a) 30 minutes, (b) 60 minutes, (c) 90 minutes, (d) 120 minutes	
	and (d) 150 minutes	78
4.6	Optical micrographs of the samples sintered at 1300°C for five sintering	
	times, (a) 30 minutes, (b) 60 minutes, (c) 90 minutes, (d) 120 minutes	
	and (d) 150 minutes	79
4.7	Optical micrographs of the samples sintered at 1350°C for five sintering	
	times, (a) 30 minutes, (b) 60 minutes, (c) 90 minutes, (d) 120 minutes	

and (d) 150 minutes

4.8	Optical micrographs of the samples sintered at lower and higher	
	temperature. The pore morphology changes from irregular to spherical	
	shape after sintered at (a) low temperature (1250°C) and (b) high	
	temperature (1350°C)	81
4.9	(a)-(e) SEM micrographs and (f)-(j) EDS analysis of the samples	
	sintered at 1250°C for five sintering times, (a) 30 minutes (b) 60	
	minutes (c) 90 minutes (d) 120 minutes (d) 150 minutes	82
4.10	(a)-(e) SEM micrographs and (f)-(j) EDS analysis of the samples	
	sintered at 1300°C for five sintering times, (a) 30 minutes (b) 60	
	minutes (c) 90 minutes (d) 120 minutes (d) 150 minutes	83
4.11	(a)-(e) SEM micrographs and (f)-(j)EDS analysis of the samples	
	sintered at 1350°C for five sintering times, (a) 30 minutes (b) 60	
	minutes (c) 90 minutes (d) 120 minutes (d) 150 minutes	84
4.12	The grain size of the samples sintered at three different sintering	
	temperatures and five sintering times	86
4.13	G ² versus time at 1300°C and 1350°C	88
4.14	Gersus time at 1250°C	88
4.15	In G versus In t for the three sintering temperatures	89
4.16	In K versus $\frac{1}{T}(10^{-4})$	90
4.17	The bulk density value of the samples sintered at three sintering	
	temperatures and five sintering times	94

4.18 The apparent porosity of the samples sintered at three sintering

xi

temperatures and five sintering times

4.19 The Vickers microhardness of samples sintered at different sintering temperatures and sintering times 95

98

100

102

104

105

106

- 4.20 The relationship between compressive strength and sintering times for samples sintered at different sintering temperatures
- 4.21 Photographs of the compressed samples; (a) 1250°C, (b) 1300°C, and (c) 1350°C
- 4.22 Fracture surfaces of the samples sintered at 1250°C with five sintering times; (a) 30 minutes, (b) 60 minutes, (c) 90 minutes, (d) 120 minutes, and (e) 150 minutes
- 4.23 Fracture surfaces of the samples sintered at 1300°C with five sintering times; (a) 30 minutes, (b) 60 minutes, (c) 90 minutes, (d) 120 minutes, and (e) 150 minutes
- 4.24 Fracture surfaces of the samples sintered at 1350°C with five sintering times; (a) 30 minutes, (b) 60 minutes, (c) 90 minutes, (d) 120 minutes, and (e) 150 minutes
- 4.25 The weight loss over time plot for samples sintered at three sintering temperatures with 120 minutes of sintering time.
- 4.26 Samples sintered at temperature 1250°C; (a) The optical micrograph of sample before immersion test, (b) The optical micrograph of sample after completed 90 days of immersion, (c)-(d) The SEM micrograph of sample after 90 days of immersion, and (e) The EDS after immersion. 112
 4.27 Samples sintered at temperature 1300°C; (a) The optical micrograph of

sample before immersion test, (b) The optical micrograph of sample after completed 90 days of immersion, (c)-(d) The SEM micrograph of sample after 90 days of immersion, and (e) The EDS after immersion. 4.28 Samples sintered at temperature 1350°C; (a) The optical micrograph of sample before immersion test, (b) The optical micrograph of sample after completed 90 days of immersion, (c)-(d) The SEM micrograph of sample after 90 days of immersion, and (e) The EDS after immersion. O This item is protected by original Schematic illustrated the common pit shape of through pits group and 4.29

115

114

LIST OF TABLES

NO.		PAGE
2.1	Application of Biomaterials (Park & Bronzino, 2003)	9
2.2	The application of biomaterials in organs (Park & Bronzino, 2003)	9
2.3	Historical developments of biomaterials (Park & Bronzino, 2003; Bhat,	
	2005)	12
2.4	Classification of biomaterials (Teoh, 2004)	18
2.5	The advantages and disadvantages of four types of sonthetic materials	
	(Park & Bronzino, 2003).	19
2.6	Metals used for orthopaedic implant applications (Pilliar, 2009).	21
2.7	Composition of austenitic stainless steels in weight percent, wt. %	
	(balance Fe) (Bhat, 2005)	22
2.8	The compositions of CoCr alloys used in dentistry and surgery (Bhat,	
	2005)	24
2.9	Standard related to Co-Cr alloys for surgical implant (Sumita & Teoh,	
	2004)	24
2.10	Mechanical properties of Cobalt-based alloys (Bhat, 2005)	25
2.11	Standard related to titanium and titanium alloys for surgical implants	
	(Sumita & Teoh, 2004)	26
2.12	Mechanical properties of titanium alloys (Geetha et al., 2009)	26
3.1	The characteristics of Co-Cr-Mo powder (Sandvik Osprey Ltd, UK)	54

4.1	The data of grain size at three sintering temperatures and four sintering	
	times	87
4.2	The activation energy, Q for PM Co-Cr-Mo alloy	90
4.3	The values of activation energies and mechanism sintering for cobalt	
	powder (Jernot et al., 1982; Paul et al., 2009)	90
4.4	The value of corrosion rate (mpy) after completed 90 days of	
	immersion test	109
	ren	
	OTHIS	

xv

LIST OF ABBREVIATIONS

AI	Aluminium
Al ₂ O ₃	Alumina
Ag	Silver
ASTM	American Standard Testing Method
Au	Gold
B ₄ C	Boron carbide
С	Carbon
CF	Carbon fiber
Ca10(PO4)6(OH)2	Hydroxylapatite
$Ca_2P_2O_7$	Calcium pyrophosphate
Со	Cobalt xe
Co-Cr	Cobalt
Co-Ni	Cobalt-Nickel
Co-Cr-Mo	Cobalt-Chromium-Molybdenum
Co-Ni-Cr-Mo	Cobalt-Nickel-Chromium-Molybdenum
Cr ©	Chromium
Cr ₂ O ₃	Chromium oxide
CuSO ₄	Copper (II) sulphate
Fe	Ferum (Iron)
H ⁺	Hydrogen ion
H ₂ O	Water

HCI	Hydrochloride
min	Minutes
Mn	Manganese
Мо	Molybdenum
Ni	Nickel
No	Rotation speed
O ₂	Oxygen
PEEK	polyethyletherketone
РМ	Powder Metallurgy
РММА	polymethymethacrylate
Pt	Platinum
PTFE	Polytetrafluoroethylene
PU	Polyurethan
RPM	Rotation Per Minute
SIT	Strain induced phase transformation
Si	Silicate
Si3N4 KIIS	Silicon nitride
SiC ©	Silicon carbide
Ti	Titanium
Ti-6Al-4V	Titanium-6Aluminum-4Vanadium
UHMWPE	Ultra High Molecular Weight Polyethylene
V	Vanadium
W	Tungsten

ZrO ₂	Zirconia
fcc	Face centred cubic
hcp	Hexagonal close packed
MS	Metalurgi Serbuk
PPM	Putaran Per Minit
75% H ₂ -25% N ₂	75% Hydrogen-25% Nitrogen
Thisite	misprotected

LIST OF SYMBOLS

°C	Degree Celsius
%	Percent
wt. %	Weight percent
cm ²	Centimetre square
HV	Hardness Vickers
g	Gram
g/cm ³	Gram per centimetre cube
GN/m ²	Gega Newton per metre square
J/mol-K	Joule per mol-Kelvin
KN	Kilo Newton
kJ/mol	Kilo joule per mol
mg/cm ²	Milligram per centimetre square
min	Minutes
mm/min	Millimetre per minutes
mpy this	Mil per year
MPa 🔘	Mega Pascal
Q	Activation energy
μm	Micrometer

Microstructure and Properties of Sintered Co-Cr-Mo Alloy Powder under Different Processing Conditions

ABSTRACT

Co-Cr-Mo (ASTM F-75) alloy is one of the most important metallic biomaterials that are commonly used for surgical implant due to its mechanical properties, good wear resistance and biocompatibility. This study has focused on the effect of sintering time and sintering temperature on the microstructure development and properties of sintered Co-Cr-Mo alloy powder, sintering mechanism and activation energy, and corrosion behaviour. In the fabrication of PM Co-Cr-Mo alloy, five weight percentages (wt. %), 1.0, 65, 2.0, 2.5 and 3.0 of binder (stearic acid) were studied to determine the optimum amount of binder content based on the results of linear shrinkage, bulk density, apparent porosity and Vickers microhardness of the sintered samples. Then the Co-Cr-Mo alloopowder were blended with the selected amount of optimum binder (2wt. % of stearic acid) using a rotation mill at 165RPM for 30 minutes, uniaxially pressing at 500MPa and sintering in a furnace at three different sintering temperatures (1250°C, 1300°C and 1350°C) for five sintering times (30, 60, 90, 120 and 150 minutes) in argon atmosphere. The characterisation on sintered samples were carried out based on microstructure, grain size, bulk density and apparent porosity, Vickers microhardness test and followed by compressive strength. The study of sintering mechanism was carried out in order to determine the activation energy of Co-Cr-Mo alloy. The corrosion behaviour of selected samples was analysed based on the minimum value of compressive strength. For corrosion test, the selected samples were immersed in simulated body fluid, 0.9% sodium chloride (NaCl) solution at 37°C for 90 days. From this study, the values of bulk density and grain size increased with increasing sintering temperature and sintering time. The bulk density values are in the range 7.04g/cm3 to 7.21 g/cm³, 7.16 g/cm³ to 7.28 g/cm³ and 7.45 g/cm³ to 7.54 g/cm³ for sintering temperature of 1250°C, T300°C and 1350°C, respectively for five sintering times. Meanwhile, the grain sizes for five sintering times are 25.6µm to 37.7µm, 36.6µm to 44.5µm and 80.4µm to 89.9µm respectively for the three sintering temperatures. However, opposite results were obtained for apparent porosity, hardness and compressive strength. The samples sintered at 1350°C have the highest values of hardness (303HV-294HV) and compressive strength (329MPa-206MPa) for 30 to 150 minutes of sintering times. Based on the fracture mode, all samples show the fracture with a shear mode and occurred close to an angle of 45° from the compressive axis. The samples sintered at 1250°C and 1300°C exhibited smooth transgranular fracture mode. Meanwhile, the step-like transgranular fracture mode was observed in the samples sintered at 1350°C. The results of corrosion test showed that sample sintered at 1300°C gives the highest value of corrosion rate (0.075mpy) meanwhile sample sintered at 1350°C has the lowest corrosion rate (0.006mpy). From this study, the samples sintered at 1350°C with 120 minutes of sintering times showed the compressive strength close to the bone strength and better corrosion properties.

Mikrostruktur dan Sifat-Sifat bagi Serbuk Aloi Co-Cr-Mo Tersinter dibawah Keadaan Pemprosesan yang Berbeza

ABSTRAK

Co-Cr-Mo (ASTM F-75) aloi merupakan bahan bio logam yang sangat penting yang biasanya digunakan untuk implan disebabkan oleh sifat mekanik, ketahanan haus yang sangat baik dan keserasian bio. Kajian ini dijalankan dengan tumpuan kepada kesan suhu dan masa persinteran terhadap pertumbuhan mikrostruktur dan sifat-sifat serbuk aloi Co-Cr-Mo tersinter, mekanisme persinteran dan tenaga pengaktifan, dan kelakuan kakisan. Dalam fabrikasi MS Co-Cr-Mo aloi, lima peratusan berat (1.0, 1.5, 2.0, 2.5 dan 3.0) bahan pengikat (asid stearik) dikaji untuk menentukan kandungan bahan pengikat yang optimum berdasarkan beberapa ujian seperti ujian pengecutan linear, keturopatan pukal, peratus keliangan dan juga ujian kekerasan mikro. Kemudian, serbuk aloi Co-Cr-Mo diadun dengan 2 peratus berat asid stearik (peratusan optimum) dengan menggunakan mesin putaran pada 165PPM selama 30 minit, penekanan searah pada 500MPa dan disinter di dalam relau pada tiga suhu yang berbeza (1250°C, 13009C dan 1350°C) pada lima masa persinteran yang berbeza (30, 60, 90, 120 dan 150 minit) dalam atmosfera argon. Pencirian pada setiap sampel dijalankan berdasarkan mikrostruktur, saiz butiran, ketumpatan pukal, keliangan ketara, kekerasan dan kekuatan mampatan. Kajian mekanisme persinteran juga dijalankan untuk menentukan tenaga pengaktifan Co-Cr-Mo aloi. Kelakuan kakisan bagi sampel yang terpilih dianalisis berdasarkan fulai minimum kekuatan mampatan. Bagi ujian kakisan, sampel yang tertentu direndam di dalam bendalir badan tersimulasi, 0.9% natrium klorida (NaCl) pada suhu 37°C selama 90 hari. Daripada kajian ini, nilai ketumpatan pukal dan saiz butir meningkat dengan peningkatan suhu dan masa persinteran. Nilai ketumpatan pukal adalah dalam julat 7.04g/cm3 sehingga 7.21 g/cm3, 7.16 g/cm3 sehingga 7.28 g/cm3 dan 7.45 g/cm3 sehingga 7.54 g/cm3 untuk suhu persinteran 1250°C, 1300°C dan 1350°C masing-masing dengan lima masa persinteran. Manakala saiz butiran untuk lima jenis masa persinteran adalah dalam julat 25.6µm hingga 37.7µm, 36.6µm hingga 44.5µm dan 80.4µm hingga 89.9µm masing-masing untuk tiga suhu persinteran yang berlainan. Namun begitu, keputusan sebaliknya terhasil untuk ujian keliangan ketara, kekerasan dan kekuatan mampatan. Sampel yang disinter pada suhu 1350°C memiliki nilai kekerasan yang paling tinggi (303-294) dan kekuatan mampatan (329MPa-206MPa) bagi 30 hingga 150 minit masa persinteran. Berdasarkan mod patah, semua sampel mempamerkan mod ricih yang terjadi pada sudut 45° dari paksi mampatan. Sampel yang disinter pada suhu 1250°C dan 1300°C mempamerkan mod patah licin transgranular. Sementara sampel 1350°C menunjukkan mod patah transgranular bertingkat. Keputusan kakisan menunjukkan bahawa sampel yang disinter pada suhu 1300°C mempunyai kadar kakisan yang tinggi (0.075mpy) manakala sampel yang disinter pada suhu 1350°C mempunyai kadar kakisan yang paling rendah (0.006mpy). Daripada kajian ini, sampel yang disinter pada suhu 1350°C dengan masa persinteran 120 minit menunjukkan kekuatan mampatan yang hampir dengan kekuatan tulang dan sifat kakisan yang paling baik.

CHAPTER 1

INTRODUCTION

1.1 Introduction

For more then a generation, various materials so-called biomaterials are used in medicine and dentistry with a purpose to replace or repair and biody feature, tissue, organ or function. The performance of biomaterial in direct contact with living tissue is controlled by two sets of characteristics: biofunctionality and biocompatibility (Matković et al., 2004). Biomaterials is defined as materials of natural or manmade origin that used to direct, supplement, or replace the functions of living tissues of human body (Park & Lakes, 1992). Ramakrishna et al. (2001) have reported that the uses of biomaterials as artificial eyes, ears, teeth and noses were found since Egyptian mummies. The advancement of many fields of technology is conditioned by acquisition of materials with ever increasing performance. Therefore an effort to improve the properties of new and existing materials has been receiving attention across the globe for number of year. Current medical practice used a large number of devices and implants.

Biomaterials in term of implants (dental implants, orthopaedic implants, sutures, bone plates, joint replacement, ligaments, vascular graft, heart valve, etc.) and medical devices (pacemakers, biosensors, artificial heart, blood tubes, etc.) are widely used to replace or restore the function of traumatized or degenerated tissues or organ, to assists in healing, to improve function, to correct abnormalities, and thus improve the