
DESIGN AND DEVELOPMENT OF SCHEDULING ALGORITHMS FOR DOWNLINK TRANSMISSION SYSTEM OF LONG TERM EVOLUTION (LTE) NETWORK

NORMALIZA BINTI OMAR NORMALIZA BINTI OMAR

> UNIVERSITI MALAYSIA PERLIS 2015

UMAP

NORMALIZA BINTI OMAR (1130810640)

sitem

By

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Communication Engineering

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS 2015

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS		
Author's full name : NO	RMALIZA BINTI OMAR	
Date of birth : 04/2	10/1986	
Title : DE	SIGN AND DEVELOPMENT OF SCHEDULING	
AL	GORITHMS FOR DOWNLINK TRANSMISSION	
SYS	STEM OF LONG TERM EVOLUTION (LTE)	
NE	TWORK	
Academic Session : 201	4/2015	
	thesis becomes the property of Universiti Malaysia Perlis at the library of UniMAP. This thesis is classified as :	
	0	
	(Contains confidential information under the Official Secret Act 1972)*	
RESTICTED	(Contains restricted information as specified by the organization where research was done)*	
✓ OPEN ACCESS →	agree that my thesis is to be made immediately available	
	as hard copy or on-line open access (full text)	
	n to the UniMAP to reproduce this thesis in whole or in part for	
if so requested above).	cademic exchange only (except during a period of years,	
\bigcirc	Certified by:	
SIGNATURE	SIGNATURE OF SUPERVISOR	
	DR. MOHAMMAD SHAHRAZEL BIN	
	RAZALI	
(NEW IC NO. / PAS	SPORT NO.) NAME OF SUPERVISOR	
Date :	Date :	

NOTES : *If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious and Most Merciful. I would like to precise my utmost gratefulness to ALLAH the Almighty, for His help and support during the course of life and the moment of truth. Alhamdulillah.

While undertaking this project I have had much encouragement from many people. I would like to express my sincere thankfulness. First of all I am particularly indebted to Dr. Mohammad Shahrazel bin Razalli, my daily supervisor and Professor Dr. R. Badlishah bin Ahmad, my co-supervisor. He was been a great support when I had unexpected problems during my project and for the patience and flexibility.

Secondly, I would also like to thank my friends who helped me and gave me suggestions. They also contributed to the improvement of the sphere of the laboratory practice where we worked. Further I would like to thank everybody who has helped me by proof reading my thesis and to all who have contributed in various ways to the success of this work.

Finally, I want to thank my family, my parents Omar bin Ab Rahman and Norsidah binti Abdul Wahab, my sisters and brother, Normayuni, Norasmidar and Mohd Ihsan.

Thanks for their unwavering support.

TABLE OF CONTENT

		PAGE
DECLAR	ATION OF THESIS	i
ACKNOV	WLEDGEMENT	ii
TABLE (DF CONTENT	iii
LIST OF	DF CONTENT TABLES FIGURES ABBREVIATIONS SYMBOLS K CT R 1 UCTION	vii
LIST OF	FIGURES	viii
LIST OF	ABBREVIATIONS	X
LIST OF	SYMBOLS	XV
ABSTRA	K	xvii
ABSTRA	ст	xviii
СНАРТЕ	R 1	1
INTROD	UCTION	1
1.0	Introduction	1
1.1	Background of Study	1
1.2	Motivation	4
1.3	Problem Statement	6
1.4	Objectives	7
1.5	Scope of Research	8
1.6	Thesis Organization	9
СНАРТЕ	R 2	11
LITERA	ΓURE REVIEW	11
2.0	Introduction	11

2.1 Overview of LTE	11
2.1.1 LTE Architecture	14
2.1.2 LTE Requirements	16
2.1.3 LTE Frame Structure	17
2.2 Current Issues in LTE	19
2.2.1 Resource Allocation	20
2.2.1.1 Downlink Physical Resource	21
2.2.1.2 Downlink Reference Signal	22
 2.2.1.1 Downlink Physical Resource 2.2.1.2 Downlink Reference Signal 2.2.2 Scheduling 2.2.2.1 Round Robin (RR) Scheduling 	23
2.2.2.1 Round Robin (RR) Scheduling	24
2.2.2.2 Best CQI scheduling	25
2.2.2.3 Proportional Fair (PF) Scheduling	27
2.2.3 QoS	29
2.3 Review on Scheduling Algorithm and Resource Allocation	30
2.4 Table summary on Throughput Performance	44
2.5 Table of summary on Fairness Performance	45
2.6 Summary	46
CHAPTER 3	47
RESEARCH METHODOLOGY	47
3.0 Introduction	47
3.1 Simulation Tool	47
3.1.1 MATLAB based LTE System Level Simulator	48
3.2 Winner II Channel Model	50
3.3 Scheduling in LTE	51
3.4 Simulation Scenarios	52

	3.5	Er	nhanced Scheduling Algorithms	57
	3.5	.1	Resource Allocation	57
	3.5	.2	RF scheduling Algorithm	58
	3.5	.3	Max TP scheduling Algorithm	60
	3.6	Su	ummary	62
СН	APTE	R 4		64
RE	SULTS	S AN	ND DISCUSSION	64
	4.0	In	troduction	64
	4.1	Si	ND DISCUSSION troduction mulation Parameter apesso Pathlossmaps Average Cell Throughput	65
	4.2	Ca	apesso Pathlossmaps	66
	4.2	.1	Average Cell Throughput	67
	4.2	2	Average UE Throughput	68
	4.2	.3	Peak UE Throughput	69
	4.2	.4	Fairness	70
	4.2	.5	Spectral Efficiency	71
	4.3	Tr	i Sector plus Femtocell	72
	4.3	J.S	Average Cell Throughput	73
	4.3	.2	Average UE Throughput	74
	4.3	.3	Peak UE Throughput	75
	4.3	.4	Fairness	76
	4.3	.5	Spectral Efficiency	77
	4.4	Tr	i Sector Tilted	78
	4.4	.1	Average Cell Throughput	79
	4.4	.2	Average UE Throughput	80
	4.4	.3	Peak UE Throughput	81

4.4.4	Fairness	82	
4.4.5	Spectral Efficiency	83	
4.5 O	verall Analysis Results	84	
4.5.1	Average Cell Throughput	85	
4.5.2	Average UE Throughput	86	
4.5.3	Peak UE Throughput	87	
4.5.4	Fairness	88	
4.5.5	Spectral Efficiency	89	
4.6 Su	Fairness Spectral Efficiency ummary ON AND FUTURE WORK onclusion uture Work ES Sector Scentific technologies and the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of	90	
CHAPTER 5		93	
CONCLUSIC	ON AND FUTURE WORK	93	
5.1 Co	onclusion	93	
5.2 Fu	iture Work	95	
REFERENCE	ES CO	96	
APPENDIX A		102	
APPENDIX B			
APPENDIX C 111			
LIST OF PUI	LIST OF PUBLICATIONS 119		

LIST OF TABLES

NO		PAGE
2.1	Downlink LTE Parameters	18
2.2	Bandwidth and RB specifications	21
3.1	Table of CQI value	52
4.1	Simulation Parameters	65
4.2	Summary of Analysis Results	84
C	Bandwidth and RB specifications Table of CQI value Simulation Parameters Summary of Analysis Results Summary of Analysis Results Histernis protected by original conviction	

LIST OF FIGURES

NO	PA	GE
1.1	Evolution of Wireless Technology	3
1.2	User Growth Rate in broadband service from 2007 until 2014	5
1.3	Data traffic Growth in networks worldwide	6
1.4	Overall Research Flow and Scope	9
2.1	Flat AIPN of LTE	14
2.2	LTE architecture	15
2.3	Frame Structure Type 1	19
2.4	Overall Research Flow and Scope Flat AIPN of LTE LTE architecture Frame Structure Type 1 Frame Structure Type 2 Symbol Structure	19
2.5	Symbol Structure	19
2.6	Opportunistic Scheduler Classification.	20
2.7	Structure of Resource Block (RB) and Resource Element (RE) in a sub frame	21
2.8	LTE downlink reference signal assuming normal CP	22
2.9	Normal CP with 7 OFDM symbols	22
2.10	Extended CP with 6 OFDM symbols	22
2.11	Link Adaptation Illustration for Scheduling	23
2.12	RR scheduling Flowchart	24
2.13	Best CQI scheduling Flowchart	26
2.14	PF scheduling Flowchart	28
3.1	Outline of different simulated situations in the LTE simulator	49
3.2	Simulation Network Scenario	53
3.3	Flow chart of resource allocation	58
3.4	Flow chart of RF scheduling algorithm	59

3.5	Flow chart of Max TP scheduling algorithm	61
4.1	Simulation Scenario for Capesso Pathlossmaps	66
4.2	Total Average Cell Throughput for 30, 40 and 50 UEs	67
4.3	Total Average UE Throughput for 30, 40 and 50 UEs	68
4.4	Total Peak UE Throughput for 30, 40 and 50 UEs	69
4.5	Total Fairness Index for 30, 40 and 50 UEs	70
4.6	Total Average UE Spectral Efficiency for 30, 40 and 50 UEs	71
4.7	Simulation Scenario for Tri Sector plus Femtocell	73
4.8	Total Average Cell Throughput for 30, 40 and 50 UEs	73
4.9	Total Average UE Throughput for 30, 40 and 50 UEs	74
4.10	Total Peak UE Throughput for 30, 40 and 50 UEs	75
4.11	Total Fairness Index for 30, 40 and 50 UEs	76
4.12	Total Average UE Spectral Efficiency for 30, 40 and 50 UEs	77
4.13	Simulation Scenario for Tri Sector Tilted	79
4.14	Average Cell Throughput for 30 UEs	79
4.15	Average UE Throughput for 30 UEs	80
4.16	Peak UE Throughput for 30 UEs	81
4.17	Fairness Index for 30 UEs	82
4.18	Average UE Spectral Efficiency 30 UEs	83
4.19	Total Differences between Capesso, Femtocell and Trisector	85
4.20	Total Differences between Capesso, Femtocell and Trisector	86
4.21	Total Differences between Capesso, Femtocell and Trisector	87
4.22	Total Differences between Capesso, Femtocell and Trisector	88
4.23	Total Differences between Capesso, Femtocell and Trisector	89

LIST OF ABBREVIATIONS

1G	First Generation
2G	Second Generation
3G	Third Generation
3GPP	3 rd Generation Partnership Project
4G	Fourth Generation
AIPN	All IP network
AMC	Fourth Generation All IP network Adaptive Modulation and Coding Advanced Meter Infrastructures
AMIs	Advanced Meter Infrastructures
BLER	Block Error Rate
BS	Base Station
CCE	Control Channel Elements
CCI-A	Co-Channel Interference Avoidance
CDMA	Code Division Multiple Access
СР	Cyclic Prefix
CQI	Channel Quality Indicator
DwPTS	Downlink Pilot Transmission Slot
EDGE	Enhanced Data Rates for Global Evolution
ENodeB	E-UTRAN Node B
EPC	Evolved Packet Core
E-UTRAN	Evolved Universal Terrestrial Radio Access Network
EXP/PF	Exponential/Proportional Fair
FD RR	Frequency Domain Round Robin

- FDD Frequency Division Duplexing
- FDS Frequency Time Scheduling
- FFT Fast Fourier Transform
- FTP File Transfer Protocol
- GBR **Guaranteed Bit Rate**
- GP **Guard Period**
- GPRS General Packet Radio Service
- alcopyright GSM Global System for Mobile Communication
- **HSPA** High Speed Packet Access
- HSS Home Subscriber Server
- High Speed Downlink Packet Access **HSPDA**
- IFFT Inverse Fast Fourier Transform
- ILLA Inner Loop Link Adaptation
- IP Internet Protocol
- ITU International Telecommunication Union
- Kilometer KM
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- MAC Media Access Control
- Max TP Maximum Throughput
- MC Mobile Cloud Computing
- Multi-Carrier Proportional Fairness MC-PF
- MCS Modulation and Coding Scheme
- MIMO Multiple-Input-Multiple-Output
- Minimum Aggregation Level Algorithm Min-AL

- Modified Largest Weighted Delay First M-LWDF
- Mobility Management Entity MME
- Messaging and Multimedia Message MMS
- OFDM **Orthogonal Frequency Division Multiplexing**
- **OFDMA Orthogonal Frequency Division Multiple Access**
- OLLA Outer Loop Link Adaptation
- Objective Modular Network Testbed in C++ OmNET++
- **OT-MRC** Output-Threshold Maximum Ratio Combining , cog
- PB **Priority Boosting**
- Physical Downlink Control Channels PDCCH
- Packet Data Serving Node **PDSN**
- PF **Proportional Fair**
- Proportional Fairness Packet Scheduling PFPS
- P-GW Packet Data Network Gateway
- PCRF Policy and Charging Rules Function
- PLR Packet Loss Ratio
- Power Measurement Units **PMUs**
- Physical Resource Block PRB
- QAM Quadrature Amplitude Modulation
- QCI Quality of Service Class Identifier
- QoE Quality of Experience
- QoS Quality of Service
- **OPSK** Quadrature Phase Shift Keying
- RAN Radio Access Network
- RB **Resource Block**

RE	Resource Element
RF	Resource Fairness
R-LDE	Revenue-Based Low-Delay and Efficient
ROI	Region of Interest
RR	Round Robin
RRM	Radio Resource Management
SAE	System Architecture Evolution
SBs	Scheduling Blocks
SC-FDMA	Single Carrier Frequency Division Multiple Access
SET	Switch and Examine Transmission
S-GW	Serving Gateway
SGSN	Service GPRS Support Node
SINR	Signal-to-Interference-plus-Noise Ratio
SISO	Single-Input-Single-Output
SMS	Short Message Services
SNR	Signal to Noise Ratio
TDRR	Time Domain Round Robin
TDD	Time Division Duplexing
TDS	Time Domain Scheduling
TF	Trade-Off Factor
TFDRR	Time and Frequency Domain Round Robin
TTI	Transmission Time Interval
UE	User Equipment
UMTS	Universal Mobile Telecommunications System
UpPTS	Uplink Pilot Transmission Slot

- VBR Variable Bit rate
- VoIP Voice over Internet Protocol

VS Video Streaming

- WCDMA Wideband Code Division Multiple Access
- Worldwide Interoperability for Microwave Access WiMAX
- WSPMin Weighted Sum Power Minimization

WSRMax

o This item is protected by original copyright

LIST OF SYMBOLS

$\Delta \mathbf{f}$	Sub carrier spacing
μs	Micro second
$A_n t_n$	Number of allocation unit scheduled to user n
b and c	fairness of the scheduler.
В	total amount of received bits
bit/cu	Bit per channel user
D	the historical average data rate of the station
dB	the historical average data rate of the station Decibel Fairness Index Sampling Rate
$F_{A}(t_{1},t_{2},,t_{N})$	Fairness Index
fs	Sampling Rate
GHz	Giga Hertz
interference	Interference Power
k*	Scheduled UEs set
Kbps	Kilobits per second
KHz KHz	Kilo Hertz
km 🔘	Kilometer
km/h	Kilometer per hour
L	Latency
Mbps	Megabits per second
Mcps	Megachip per second
MHz	Mega Hertz
ms	Millisecond
n	1,2,N user index

Ν	number of considered users
Noise	Noise Power
N _u	Number of users admitted
Р	Fixed packet size
Pi	Probability of specific SINR value
Pmax	Priority
R	Achievable data rate for the station in the current time slot
R _i	Average throughput based on SINR range
$\mathbf{R}_{k}\left(t ight)$	Rate the k-th UE got
Sc	Spectral Efficiency
SF	Average throughput based on SINR range Rate the k-th UE got Spectral Efficiency Size of the frame
Signal	Signal Power
t _c	Length of sub frame and the current time
T _{cp}	Normal CP Time
T _{cp-e}	Extended CP Time
T _{frame}	Frame size
T _k (t+1)	Average UE Throughput
t_1^a (k)	Arrival time of kth packet in connection l
T _P	Fixed interval between packets
T _s	Total Symbol Length
t _{sim}	Total simulation time
T _{slot}	Slot Time
T _{sub frame}	Sub Frame size
Tu	Useful Symbol Time

Reka Bentuk dan Pembangunan Algoritma Penjadualan untuk Sistem Penghantaran Pindah Turun daripada Rangkaian Evolusi Jangka Panjang (LTE)

ABSTRAK

Dalam pembangunan teknologi kini, rakyat perlu melayari internet di mana sahaja mereka berada, jadi jalur lebar mudah alih akan berkembang secara aktif. Oleh itu, pembekal perkhidmatan bersaing untuk menghasilkan kelajuan internet yang maksimum untuk kegunaan awam. Bagi menyediakan perkhidmatan data berkelajuan tinggi kepada pengguna telefon mudah alih, teknik penjadualan merupakan isu yang sangat dititikberatkan dalam rangkaian tanpa wayar. Penjadual yang bagus adalah penjadual yang boleh memberi peningkatan kendalian, kependaman sistem yang rendah dan boleh memberikan keuntungan perlindungan terbaik. Untuk membangunkan penjadualan terbaik, penjadual mestilah mengetahui kualiti saluran dan penjadual harus mempunyai sekutu kualiti saluran pembawa setiap sub dan setiap pengguna. Untuk mengeksploitasi kepelbagaian pengguna dan di samping memberi pematuhan peruntukan sumber, suatu algoritma dicadangkan dalam tesis ini di mana kependaman sistem adalah dianggap sebagai keutamaan dalam penjadualan dan diikuti dengan susunan pengguna mengikut Penjadual penunjuk saluran kualiti (CQI) untuk struktur rangkaian evolusi jangka panjang (LTE). Analisis dan perbandingan algoritma penjadualan telah disediakan melalui simulasi yang dijalankan menggunakan perisian MATLAB yang dihasilkan dari Universiti Vienna. Sasaran utama dalam tesis ini adalah untuk menghasilkan penjadualan baru bagi peruntukan sumber-sumber yang boleh bertoleransi antara kendalian dan keadilan untuk mengelakkan ruang yang dibazirkan dalam Penjadual. Ruang tidak berguna boleh menyebabkan kependaman yang boleh menyebabkan kelewatan dalam penghantaran. Penjadual pusingan Robin dan best CQI dititikberat dalam projek ini. Terdapat dua (2) algoritma penjadualan dicadangkan dalam penyelidikan ini iaitu algoritma penjadualan Resource Fairness (RF) dan Maximum Throughput (Max TP). Algoritma penjadualan dipertingkatkan telah dicadangkan berdasarkan penjadualan algoritma proportional fair (PF). PF adalah salah satu algoritma penjadualan yang mempunyai kompromi antara pemprosesan dan keadilan. Dari pemerhatian, ia menunjukkan bahawa algoritma penjadualan RF telah mencapai kira-kira 19% peningkatan dari segi indeks keadilan berbanding algoritma penjadualan lain untuk semua jenis rangkaian. Walau bagaimanapun, algoritma penjadualan Max TP mempunyai kira-kira 25% peningkatan dari segi pemprosesan untuk semua rangkaian. Memandangkan algoritma penjadualan RF mempunyai nilai pemprosesan kedua tertinggi iaitu kira-kira 11% peningkatan berbanding algoritma penjadualan lain, ia boleh dianggap bahawa algoritma penjadualan RF telah mencapai kompromi tinggi antara keadilan dan pemprosesan berbanding algoritma penjadualan PF.

Design and Development of Scheduling Algorithms for Downlink Transmission System of Long Term Evolution (LTE) Network

ABSTRACT

In today's technology development, people need internet access wherever they are, mobile broadband will grow up actively. Therefore, service providers gradually compete to produce the maximum internet speed for public uses. To enable high-speed data services to mobile users, scheduling technique gained significant attention in wireless access networks. A feature of the wireless environment is that the quality of the different channels of the user population due to a conflict path loss and effect of the attenuation. The best scheduler should provide high throughput, low latency system and the best coverage gains. In order to develop the best scheduling, the scheduler must be aware of the channel quality and scheduler should have associate of the channel quality for each sub carrier and each user. In order to exploit the diversity of multiuser in addition to deliver further compliance in resource allocation, an algorithm is proposed in this work where system latency is considered as the first priority in scheduling steps and followed by arrangement of user equipments (UEs) according to the Channel Quality Indicator (CQI) scheduler for Long Term Evolution (LTE) structure. The analysis and the comparison of these scheduling algorithms were prepared over simulations done by a MATLAB-based downlink system level simulator from the Vienna University. The main target in this thesis is to propose a new scheduling for resources allocation that may be compromise between throughput and fairness to avoid useless space in a scheduler. Useless space may cause the latency that may cause of delay in transmission. The Round Robin (RR) scheduler and best CQI scheduler are considered in this research work. There are two (2) enhanced scheduling algorithms proposed in this research work which are Resource Fairness (RF) and Maximum Throughput (Max TP) scheduling algorithm. The enhanced scheduling algorithms have been proposed based on Proportional Fair (PF) scheduling algorithm. PF is one's of scheduling algorithm that have compromise between throughput and fairness. From the observation, it shows that RF scheduling algorithm has been achieved about 19% of improvement in term of fairness index compared to other scheduling algorithm for all type of network scenarios. While Max TP scheduling algorithm has provide about 25% of improvement in term of throughput for all network scenario. Since RF scheduling algorithm provide second highest throughput value which having about 11% of improvement compared to other scheduling algorithm, it may be considered that RF scheduling algorithm has achieved high compromise between fairness and throughput compared to PF scheduling algorithm.

CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter begins with background information and presented in Section 1.1. In Section 1.2, motivation is discussed. Section 1.3 discussed about the problem statement and section 1.4 stated the objectives of this research. Section 1.5 shows the flow of the project.

1.1 Background of Study

The idea of wireless technology known as First Generation (1G) is introduced in the 1980s which used analogue radio signal. A voice call gets transmitted among radio towers with the help of 1G and is modulated to a higher frequency which was at 150 MHz. The second generation (2G) wireless technologies was based on digital technologies which for voice communication only, except short message services (SMS) messaging, picture messaging and multimedia message (MMS). Global System for Mobile Communication (GSM) is 2G technologies which launched in 1991. GSM

allows users to do messaging to any mobile network at any time (Kaur, Birla, & Ahlawat, 2011).

International Telecommunication Union (ITU) defined Third Generation (3G) of wireless technology standard IMT- 2000 to enhance bandwidth, to assist evolution and support more varied application. 3G network allocate improved spectral efficiency packet switched data with high speed data rate. The 3rd Generation Partnership Project (3GPP) was established in 1998 to adopt improvement of the 3G network where 3GPP technologies developed as General Packet Radio Service (GPRS) organized in 2000 obtained 114 Kbps for data rate, followed by the Enhanced Data Rates for Global Evolution (EDGE) in 2003 with 384 Kbps of data rate, Universal Mobile Telecommunications System (UMTS) and Wideband Code Division Multiple Access (WCDMA) presented 1.92 Mbps of downlink data rate while High Speed Downlink Packet Access (HSPDA) provides 14 Mbps of the downlink data rate at the end of 2007 (Hadden, 2011).

Fourth Generation (4G) is new technology in the network system. 4G Systems provides Internet protocol (IP) based and comprehensive mobile wireless network for laptops, smart phones and other mobile devices. Figure 1.1 illustrates the evolutions of the wireless technology since 1980s (Erfanian, 2011). 4G technologies such as Worldwide Interoperability for Microwave Access (WiMAX) and Long Term Evolution (LTE) has grown respectively from 2006 and 2009. LTE and WiMAX are the new network system which is able to provide 4G services. In LTE, downlink peak rate is 100 Mbps, while uplink is 50 Mbps as well as round trip time of Radio Access Network (RAN) is fewer than 10millisecond (ms). LTE has scalable broadband carrier, from 1.4 MHz to 20 MHz is also based on Time Division Duplexing (TDD) as well as Frequency Division Duplexing (FDD).

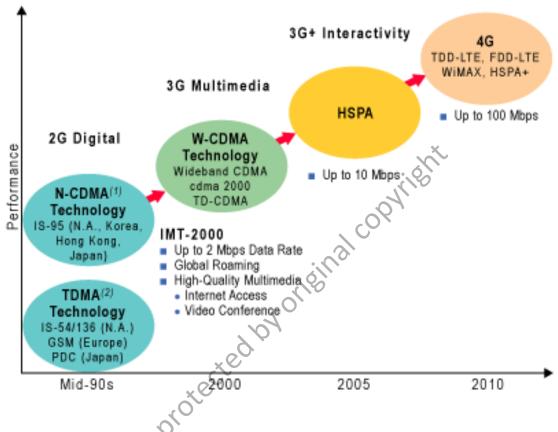


Figure 1.1: Evolution of Wireless Technology (Erfanian, 2011)

LTE is designed to provide better services for users, delivering new mobile services and remain as established system of wireless technology in the future. It is also designed to help service provider to deliver higher performance, ease of mass-market mobile communication, and provide high bit rate and throughput of the system with low latency for downlink and uplink transmission. LTE delivers high data rate and provide extending bandwidths from 1.4 MHz up to 20 MHz.

Scheduling is a significant element in network system which is intend to provide high speed data services to user equipments (UEs) (Izmailov & Wei, 2004). The channel

quality fluctuates through the user is an important characteristic in wireless configurations because of variances in fading, such as path loss. Every user's channel quality may be highly concern while choosing scheduling method. Channel dependent scheduling in the network system manages to serve among diverse radio resources and UEs in existing structures to obtain effective resource utilization (Erik Dahlman, Stefan Parkvall, 2008). In downlink transmission system, the packet transmission process is from E-UTRAN Node B (eNodeB) to UEs.

To achieve greater performance in the downlink scheduling of LTE, scheduler must concern on resource allocation of multi UEs (Kwan, Leung, & Zhang, 2008). In order to exploit the diversity of multiuser as well as to provide additional compliance in resource allocation, algorithms for scheduling are proposed in this research where system latency is considered as the first priority in new scheduling algorithms and trailed by allocation of UEs according to the Channel Quality Indicator (CQI). Round Robin (RR) scheduler and Best CQI scheduler are also considered in this project. The technique employs using an adaptive scheduling approach by designing the scheduler to allocate the packet to a UE with the highest CQI value and setting a fair allocation of remaining packet to the two others UE's in a fraction that's depends on a preset priority measurement.

1.2 Motivation

The motivation of this research work is from the statistic, it shows that in future LTE will serve more than 80% of all broadband user in the world since users start using internet application as their daily routine to communicate each other. Figure 1.2 shows