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Pengenalan Emosi Dalam Penyakit Parkinson Berdasarkan Kaedah Bukan Linear 

Menggunakan Electroencephalogram 

Abstrak 

Selain tanda-tanda dan gejala motor klasik, individu dengan penyakit Parkinson (PD) 

dipercirikan dengan kemerosotan emosi. Isyarat electroencephalogram (EEG), yang 

menjadi suatu aktiviti system saraf pusat, mencerminkan keadaan emosi tersirat sebenar 

seseorang individu. Kajian ini menumpukan pada penganalisaan algoritma bukan linear 

yang berbeza untuk mengenalpasti keadaan emosi dalam pesakit Parkinson (PD) 

berbanding dengan peserta subjek sihat (HC) menggunakan isyarat EEG. Dua puluh 

penyakit PD yang bukan gila dan 20 subjek sihat yang sepadan secara umur-, jantina-, 

dan taraf pendidikan menonjolkan kebahagiaan, kesedihan, ketakutan, kemarahan, 

kejutan dan kejijikan menggunakan stimuli pelbagai modal (kombinasi bunyi dan 

visual) sambil isyarat EEG 14-saluran tanpa wayar direkod. Tambahan pula, peserta 

telah diminta untuk melaporkan pengaruh subjektif yang dialami. Isyarat EEG yang 

direkod telah di pra-proses menggunakan kaedah ‘threshold’ untuk menyingkirkan 

artifak kelipan/pergerakan mata dan penuras laluan lulus Butterworth perintah ke-enam 

telah digunakan untuk mengekstrak julat frekuensi EEG yang berikut: delta (1-4 Hz), 

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), dan gamma (30-49 Hz). Untuk 

mengklasifikasi keadaan emosi dan menggambarkan perubahan keadaan emosi dengan 

masa, kami telah membanding empat kaedah mengekstrak ciri (spektrum perintah tinggi 

(HOS), analisis dinamik bukan linear, transformasi rancak Fourier dan transformasi 

paket ombak), dan mencadang suatu pendekatan untuk menggambarkan trajektori emosi 

menggunakan pembelajaran ‘manifold’. Tiga indeks penghubungan, termasuk korelasi, 

kepaduan, dan indeks penyegerakan fasa (PSI), telah diekstrak dengan memfokus pada 

pasangan elektrod untuk menganggar penghubungan berfungsi otak dalam isyarat EEG. 

Ciri terbaru yang bernama indeks penyegerakan fasa yang berdasarkan dwi-spektrum 

(bPSI) telah dicadang untuk menghitung corak penghubungan berfungsi EEG bersama 

kaedah tradisional. Pengertian statistik untuk semua ciri yang dihitung telah dikira 

menggunakan ujian penganalisaan varians (ANOVA). Empat pengelas yang berbeza 

iaitu K-jiran terdekat kabur (FKNN), K-jiran terdekat (KNN), pokok regressi (RT), dan 

mesin sokongan vector (SVM) telah digunakan untuk mengkaji prestasi ciri-ciri yang 

diekstrak. Kaedah pengesahan silang 10-lipat telah digunakan untuk menguji 

kebolehpercayaan keputusan pengelas. Ciri-ciri yang diekstrak melalui keempat-empat 

kaedah didapati bererti secara statistik (p < 0.05). Ciri HOS dari gabungan kelima-lima 

julat frequensi menyampaikan prestasi yang baik dalam mengenal pasti keadaan emosi 

pesakit PD dan peserta HC dengan kadar pengenalpastian purata 77.43% ± 1.59% dan 

83.04% ± 1.87%. Pesakit PD menunjukkan kemerosotan emosi berbanding dengan 

peserta HC, yang ditonjolkan oleh kadar pengelasan yang rendah, khasnya untuk emosi 

negatif (kesedihan, ketakutan, kemarahan dan kejijikan). Secara umumnya ciri spesifik-

emosi didapati berhubung kuat dengan julat frekuensi tinggi (alpha, beta dan gamma) 

berbanding julat berfrekuensi rendah (delta dan theta). Perubahan trajektori emosi boleh 

digambarkan melalui megurangkan ciri subjek-berdikari dengan pembelajaran 

‘manifold’. Selain itu, indeks penyegerakan fasa yang berdasarkan dwi-spektrum 

menyumbang prestasi yang lebih baik dengan kadar purata pengalpastian 51.66% ± 

1.02% dan 71.79% ± 1.01% untuk pesakit PD dan HC. 
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Electroencephalogram Based Emotion Recognition in Parkinson’s Disease Using 

Non-linear Methods 

Abstract 

In addition to classic motor signs and symptoms, individuals with Parkinson's disease 

(PD) are characterized by emotional impairments. Electroencephalogram (EEG) signals, 

being an activity of the central nervous system, reflect the underlying true emotional 

state of a person. This research focuses on analyzing different non-linear algorithms to 

recognize emotional states in Parkinson’s disease (PD) patients compared to healthy 

controls (HC) participants using EEG signals. Twenty non-demented PD patients and 20 

healthy age-, gender-, and education level-matched controls viewed happiness, sadness, 

fear, anger, surprise, and disgust using multimodal stimulus (combination of audio and 

visual) while 14-channel wireless EEG was being recorded. In addition, participants 

were asked to report their subjective affect. The acquired EEG signals were 

preprocessed using thresholding method to remove eye blinks/movement artifacts. A 

Butterworth 6
th

 order bandpass filter was used to extract the following EEG frequency 

bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma 

(30–49 Hz). To classify the emotional states and visualize the changes of emotional 

states over time at single-electrode level, four kinds of feature extraction methods 

(namely higher order spectra (HOS), non-linear analysis, fast Fourier transform and 

wavelet packet transform) were compared, and proposed an approach to visualize the 

trajectory of emotion changes with manifold learning. Three connectivity indices, 

including correlation, coherence, and phase synchronization index (PSI) were extracted 

by focusing on electrode pairs to estimate brain functional connectivity in EEG signals. 

New feature, namely, bispectrum based phase synchronization index (bPSI) was 

proposed for computing EEG functional connectivity patterns with the traditional 

methods. The statistical significance of all the computed features was studied using 

Analysis of Variance (ANOVA) test. Four different classifiers namely Fuzzy K- Nearest 

Neighbor (FKNN), K-Nearest Neighbor (KNN), Regression Tree (RT), and Support 

Vector Machine (SVM) were used to investigate the performance of the extracted 

features. Ten-fold cross-validation method was used for testing the reliability of the 

classifier results. The features extracted in all the methods were found to be statically 

significant (p < 0.05). The HOS based feature across ALL frequency bands 

(combination of five bands) performed well in recognizing emotional states of PD 

patients and HC participants with an averaged recognition rate of 77.43% ± 1.59% and 

83.04% ± 1.87% respectively. The PD patients showed emotional impairments as 

demonstrated by a lower classification performance, particularly for negative emotions 

(sadness, fear, anger and disgust). The emotion-specific feature was mainly related to 

high frequency band (alpha, beta and gamma) than low frequency band (delta and 

theta). The trajectory of emotion changes was drawn by a manifold learning model. 

Also, bPSI functional connectivity index performed better with an averaged recognition 

rate of 51.66% ± 1.02% and 71.79% ± 1.01% for PD patients and HC respectively. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Emotion is always a very fascinating field for discussing and researching. From 

the dawn of humanity, human being have been very interested in understanding our 

feelings, fears, sorrow or happiness, in finding out the roots of our emotions. Emotion 

plays a vital role in our daily life as it influences our intelligence, behaviour and social 

communication. The ability to infer other people‟s emotional state is crucial for normal 

social interaction. Numerous studies on engineering approaches to automatic emotion 

recognition in healthy control (HC) participants have been performed in the past few 

decades. Most of the approaches developed till now are based on the audio-visual 

channels of emotion expression such as facial action, speech or gestures (Cohen, Garg, 

& Huang, 2000; Kessous, Castellano, & Caridakis, 2010; Kim, 2007).  

Though numerous engineering based research studies in HC participants have 

been published on these behavior-based models, they rely on the explicit expression of 

emotions by the participant. While facial actions tend to be the most visible form of 

emotion expression, they are the most easily controlled with large dependence on social 

situations (Picard, Vyzas, & Healey, 2001). Similarly, voice and other external modes 

of expression can be easily controlled or suppressed depending on the external 

circumstances. Such unexpressed emotions, socially masked emotions and emotions 

expressed differently (e.g. an angry person may smile) cannot be tracked by these 

behaviour-based modalities. The true emotional changes remain internal and are not 

detected by the audio-visual recording system (Kim & Andre, 2008). Furthermore, 
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recognition of emotions using these modalities is influenced by a number of external 

factors such as lighting conditions, auditory noise and accessories like glasses (Apolloni 

et al., 2007). 

While Parkinson‟s disease (PD) has traditionally been defined as a movement 

disorder, there is a growing evidence of cognitive and social impairments associated 

with this disease, and particularly, in emotion processing. Moreover, for patients 

suffering from PD could not be able to express their emotions by facial expressions. 

Over the last decade, there has been increasing attention to the role played by emotional 

processes in PD patients. Psychologist and neuroscientists have made important 

progress in understanding how PD impairs specific components of emotional processes 

(e.g., expressive, cognitive, subjective) and have also formulated interesting hypotheses 

about the underlying neurological mechanism which could explain the emotional 

impairments observed in PD patients (Gray & Tickle-Degnen, 2010; Peron, Dondaine, 

Jeune, Grandjean, & Verin, 2012).  

Indeed, a huge number of studies have been conducted in the last few years with 

the goal to understand if PD patients dealing with different disease stages are still able 

to correctly identify, discriminate, and rate the emotional content of the stimuli (e.g., 

pictures, prerecorded speech samples, written sentences). Unfortunately, the 

experimental results so far are inconsistent and quite difficult to interpret. Some 

researchers reported that PD patients perform worse than HC participants in a number 

of recognition tasks, there is also evidence that the two groups do not differ in the same 

tasks (Gray & Tickle-Degnen, 2010; Peron et al., 2012; Schroder, Nikolova, & Dengler, 

2010). Much of the research in this area dealt with executive abilities or behavioral 

response, which are known to be impaired in PD (Pillon, Dubois, & Agid, 1996). May 

be this overall executive impairment causes impaired performances in evaluative 
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emotion recognition and rating tasks. Furthermore, the statistical tools were commonly 

used to analyze the obtained behavioral responses.         

Machine learning algorithms are increasingly becoming popular in psychology 

and psychophysiology research and they indeed might be useful as an addition to 

traditional statistical methods. The expression of an emotion occurs as a result of 

physiological changes in the central nervous system (CNS) and/or autonomic nervous 

system (ANS). For instance, the muscle tension in the face gives rise to facial actions 

(Picard et al., 2001). Researchers have showed significant differences between the 

emotional states using different biosignals such as electroencephalogram (EEG), 

electrocardiogram (ECG), electromyogram (EMG), skin conductance (SC), respiration 

rate (RR) and blood volume pulse (BVP) (Valenza, Lanata, & Scilingo, 2012; Verma & 

Tiwary, 2014). These biosignals, being an activity of the CNS and/or ANS reveals the 

inherent state of the person which makes the suppression of emotions or social masking 

impossible. It is also a natural means of emotion recognition providing an opportunity to 

track minute emotional changes that are unseen by the natural eye (Rani & Sarkar, 

2006).   

Biosignal based emotion recognition is challenging because of the complex 

nature of biosignals and subjective nature of emotional states. Some of the challenges in 

physiological signals based emotion recognition are: 

i) Biological sensing is invasive as it involves physical contact with the person. 

However with the rapid advancement in technology such as conductive rubber 

electrodes, fabric electrodes and wearable computers, biological sensing can be 

made easier without any visible or awkward sensing systems (Picard et al., 

2001). 
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ii) Biosignals cannot be manipulated. Hence the different emotional states have to 

be elicited internally in the participant for proper data acquisition. Furthermore, 

emotions are subjective in nature. All the participants may not have the same 

emotional experience for the given emotional stimulus. Also, the same 

participant might experience a different emotion for the same emotional stimulus 

at a different instant of time. Hence, estimating the human emotional states is 

purely a subjective factor and finding a generalized solution for assessing the 

emotional states is quite challenging.  

iii) Annotation of biosignals in emotion research is difficult. Modalities such as 

speech or image (facial actions and gestures) signals can be heard or seen 

respectively to understand the underlying emotional states by any person. 

However, the one dimensional waveform of biosignals (changes of signal of 

amplitude over time) does not convey any information to the user. Hence, data 

labeling should be done with great care (Kim & Andre, 2008; Picard et al., 

2001). 

iv) Though biosignal research has been an active area over the past two decades, so 

far there hasn‟t been any standardization in key areas such as emotional model, 

stimulus, biosignal measures, features, pattern recognition and classification. An 

agreement on some of the conventions and guided principles would facilitate the 

integration of knowledge and expertise in the research community (Arroyo-

Palacios & Romano, 2008). 

Despite the challenges involved, the ability to capture the underlying and true 

emotional state of the participant using biosignal makes more important. Researchers 

have worked either on only one biosignal (unimodal) or on a combination of biosignals 
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(multimodal) to capture the emotional information from HC participants (Daimi & 

Saha, 2014; Lin et al., 2010; Soleymani, Pantic, & Pun, 2012; Verma & Tiwary, 2014; 

Wang, Nie, & Lu, 2013). Most of the earlier works on HC participants have focused on 

analyzing EEG signal activities to assess the underlying emotional state of the person 

since the signal captured from the origin of the emotion genesis, (i.e., CNS), however, 

no study has yet been conducted in PD patients using EEG to investigate underlying 

true emotional state. The EEG signal is worked independently or in combination with 

other biosignals like ECG, EMG, SC and BVP (Verma & Tiwary, 2014; Wang et al., 

2013).  It should also be noted that some of the works on psychophysiology are user 

dependent and some others are user independent. Although, the performance of the 

emotion recognition systems developed so far depends on several factors such as the 

number of participants, number of emotions under consideration, the type of emotion 

elicitation stimuli, the number and location of placing the electrodes etc. The other 

factors concerned the PD patients themselves (motor disability, medication status, 

disease duration, illness severity). Hence more analysis is needed in order to develop a 

robust, reliable and automatic emotion recognition system for better clinical outcomes 

in patients with PD.   

The block diagram of the proposed automatic emotion recognition system for 

PD patients is shown in Figure 1.1. The methodology of this research starts with design 

of emotion elicitation protocol and data acquisition process. Preprocessing is required to 

improve the signal to noise ratio by removing low frequency and high frequency noise. 

Then, various linear and non-linear feature extraction methods are used to extract the 

significant emotional information from the recorded signals. Feature reduction methods 

helps to improve the system performance by reducing irrelevant emotional feature 

vectors. Classification plays an important role in categorizing the feature vectors into 
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emotional states and hence it is required to use suitable classification algorithms. The 

trajectory of emotion changes helps to reflect the trend of emotion changes during data 

collection experiment. The methodology used in this research work is explained briefly 

in the subsequent chapters of this thesis. 

 

Figure 1.1: Block diagram of emotion recognition system 

1.2 Problem Statement 

Non-motor symptoms including disruptions in emotional information processing 

(Dujardin et al., 2004), have been found in over 50% of newly diagnosed PD patients 

(Janvin, Aarsland, Larsen, & Hugdahl, 2003) and can appear in any stage of disease 

progression. Interestingly, social cognitive dysfunction has been found before the 

appearance of motor symptoms (Park & Stacy, 2009). Most of the research in this area 

dealt with PD patients behavioral measures i.e., PD patients were asked to categorize or 

to discriminate or to rate or to match the emotional stimuli and then statistical tools 

were used to analyse the obtained behavioral responses (Gray & Tickle-Degnen, 2010; 

Péron et al., 2012; Sprengelmeyer et al., 2003). Such tasks involve executive abilities, 

which are known to be impaired in PD. May be this overall executive deficit causes 

impaired performances in evaluative emotion recognition and tasks (Pillon et al., 1996; 
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