
2 

 

adaptive antenna arrays can dynamically maximize intended signal reception (main 

lobe) and/or minimize interference or null simultaneously. 

Precisely, Banerjee & Dwivedi (2013) stated that adaptive antenna arrays allow 

the beam to be continually steered to any direction to allow for the maximum signal to 

be received and/or minimum of nulls.   In this case, we can use adaptive beamforming 

techniques to obtain the desired antenna radiation pattern by adjusting the antenna 

parameters such as position, excitation current amplitude and excitation current phase 

weights of the antenna array elements.  Radiation pattern nulling optimization 

techniques are very important to suppress undesired interfering signals while preserving 

the desired main beam intensity. 

Overall, both switched−beam and adaptive antennas are able to provide the 

directivity.  Yet, for antenna designers and engineers, decisions need to be made against 

cost, complexity and the optimal performance requirements to decide which type should 

be used to cater the vastly demanding bandwidth, QoS and coverage of wireless 

communication systems. 

Smart antennas design has attracted a widespread interest for several decades 

due to their implementations in numerous applications (Godara, 2004) and their 

capabilities to increase system performance.   This becomes beneficial in urban and 

densely populated area where smart antennas can dynamically tuning out interference 

while focusing on the intended user signal via remarkable DSP advanced techniques 

(Balanis & Ioannides, 2007).  The first issue of IEEE Transactions of Antennas and 

Propagation published in 1964, was followed by special issues of various journals, 

books, a selected bibliography, and a vast number of specialized research papers 

(Godara, 2004).  Some of the selected papers examples related to smart antenna design 

include adaptive antenna systems (Widrow et al., 1967), adaptive arrays (Applebaum, 
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1976), and recently, smart antenna for cellular mobile communications (Stevanović, 

Skrivervik & Mosig, 2003 and Jain, Katiyar & Agrawal, 2011). 

Selected control algorithms with predefined criteria provide adaptive antenna 

arrays with a unique capability to alter radiation pattern characteristics, e.g. interferers, 

side lobe level (SLL), main beam direction, and beamwidth.  These control algorithms 

originate from several disciplines and aim for various applications, e.g.  underwater, 

aerospace, and more recently cellular mobile communications.  The commercialization 

of smart antennas has increased the wireless communications system performance in 

terms of capacity, signal quality or spectral efficiency, and coverage (Balanis & 

Ioannides, 2007). 

 

1.2 Research Motivation 

Antenna array pattern synthesis primarily deals in finding an appropriate 

complex weighting vector or matrix to produce the anticipated radiation pattern 

characteristics.  The characteristics include the desired SLL, the beamwidth of antenna 

pattern, and the specific position of the prescribed nulls.  Generally, there are three 

categories of antenna array pattern synthesis (Banerjee & Dwivedi, 2013): 

i. The antenna pattern synthesis to generate narrow beams and low SLL, which 

guarantees the radiating or receiving energy to be more focused in specific 

directions using various computational techniques, e.g. the binomial method, 

Dolph−Chebyshev method, and Taylor line source method. 

ii. The antenna pattern synthesis to mitigate nulls in desired directions in where 

smart antenna reduces interferences using effective mathematical techniques, 

e.g.  Schelkunoff polynomial method. 
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iii. The antenna pattern synthesis to exhibit a desired distribution in the entire 

visible region referred as beam shaping where the antenna array can obtain a 

wider angular coverage using few scientific techniques, e.g. the Fourier 

transform technique and Woodward–Lawson sampling method. 

Since mid–1960s, many researchers and engineers have studied on antenna array 

optimization techniques.  The main purpose is to generate the desired radiation pattern 

specifications by properly initializing the element length, element spacing, feed current 

amplitude and feed current phase.   The specifications include directivity, maximum 

antenna gain in the desired direction, and minimum antenna gain (e.g. nulls) in the 

undesired direction.  The proposed and verified optimization techniques are ranging 

from “analytical approach”, e.g. Dolph−Chebyshev, Taylor line source, and 

Orchard−Elliott methods (Balanis, 2005) to “numerical technique”, e.g. 

Fletcher−Powell method, Legendre functions, and conjugate gradient method (CGM).   

Recently, due to the higher versatility, flexibility and capability than existing 

analytical and numerical techniques in complex multidimensional optimization, modern 

evolutionary algorithm (EA) or evolutionary computation (EC) methods including 

genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization 

(PSO) are applied for antenna array beam design to determine the physical layout of the 

array that produces the radiation pattern closest to the desired pattern.    

In this case, EA/EC techniques provide better results relatively than the original 

gradient and conventional numerical methods.  Besides, EA/EC techniques capable to 

deal with large number of optimization parameters, avoiding getting stuck in local 

minima, and relatively easy to simulate on computers (Khodier et. al, 2009).  For an 

example, GA is more accurate than conventional analytical method in null locating and 

maintaining the required null depths (Sattari & Hejazi, 2008).  Hence, GA becomes as a 
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robust random search method, which can solve complicated, multidimensional, and 

nonlinear problems. 

In this research, cuckoo search (CS) metaheuristic algorithm is extensively 

applied, enhanced, and hybridized to become as an alternative modern EA/EC method 

in linear antenna array synthesis.   There are three reasons of using the newly evolved 

CS algorithm: 

i. CS algorithm is a simple stochastic searching method, which has fewer internal 

parameters to be fine-tuned (Yang & Deb, 2009). 

ii. CS algorithm is more generic and robust than the PSO and GA in optimizing 

multimodal objective functions model (Yang & Deb, 2009).  

iii. CS algorithm is still at the infancy stage and has a lot of potentials to be 

enhanced and hybridized specifically for electromagnetic single objective (SO) 

and multiobjective (MO) optimization problem, e.g. antenna array geometry 

synthesis. 

 

1.3 Problem Statement 

Precisely, despite producing successful side lobes suppression and/or nulls 

mitigation for antenna array synthesis, there are some limitations occur in some 

well−known conventional techniques.  Firstly, let us analyze the amplitude tapering 

technique used in different window functions such as Kaiser or Dolph−Chebyshev 

(Balanis, 2005).  In tapering process, the main task is to calculate appropriate weights 

vector, which execute the narrow beam with minimum SLL.  Even so, a drawback of 

amplitude tapering is beamwidth expanding.  It means that wider beamwidth occurs 

spontaneously whilst achieving smaller SLL (Banerjee & Dwivedi, 2013).  Moreover, 

the Dolph−Chebyshev array has inefficiency by suffering directivity saturation when the 
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number of radiating elements becomes large.  Furthermore, the synthesis for the 

Dolph−Chebyshev array is also complex because we need new complicated polynomial 

series for every radiation pattern (Alexopoulos, 2006). 

Secondly, analytical optimization methods have a drawback where we can use 

the methods for a specific radiation pattern synthesis, which subjects to one restriction 

only.   Ideally, there should be many possibilities to find the fittest solution.  However, 

this becomes impossible since exhaustive checking of all possible phase−amplitude 

excitation is impractical as these methods search for a single point or parameter via 

deterministic rules (Banerjee & Dwivedi, 2013). 

Thirdly, the trade−off between the SLL and the half−power beam width 

(HPBW) stimulus is performed through obtaining the narrowest possible beam width 

for a given SLL or the smallest SLL for a given beamwidth (Dolph, 1946).  This can be 

done via the orthogonal functions of Chebyshev (Greenberg, 1998) to design an 

optimum radiation pattern.   Positively, the use of modern EA/EC has solved the 

deficiency and burdensome of matching the array factor (AF) expression with an 

appropriate Chebyshev function that appears for large number of antenna array elements 

(Balanis, 2005).   

In addition to that, there are also some limitations of some well−known EA/EC 

techniques, such as PSO and GA in N−dimensional problem including array geometry 

synthesis.  It has been stated that the original PSO algorithm has difficulties in striking a 

balance between exploration and exploitation accelerators.  In this case, the global 

search ability of PSO algorithm is restricted due to the drawbacks of particle 

(population) velocity and position updating mechanism (Ho et al., 2005).   

Precisely, the original PSO algorithm updates its velocity of particle based on its 

own and its companion’s flying experiences.  The particle moves stochastically based 
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on a weighted average of the previous best points of its own and its neighborhood (Ho 

et al., 2005).  Since there are two weighting parameters independently and randomly 

generated, two possible cases may occur either two random parameters are too large or 

too small.  If the random parameters are too large, both the personal and social 

experiences accumulated so far are overused and the particle is driven too far away from 

the local optimum.  However if the random parameters are too small, both the personal 

and social experiences are not maximum utilized, and the convergence performance of 

the algorithm is undermined (Liet et al., 2008).  These two cases lead to the lack of 

control in balancing both global and local searches, hence, reduce the optimal solution 

diversity of the particles in the search space (Ho et al., 2006).  This predicament restricts 

the antenna array synthesis to find the optimal solutions. 

Moreover, the standard GA has its own limitations, such as the premature 

convergence, a tendency to converge towards local optima or even arbitrary points 

rather than the global optimum of the multi−peak function optimization problem, low 

speed of convergence, and in some cases, unable to reach the global optimal 

convergence state.  These shortages are primarily due to the restriction of static 

crossover and mutation operators in the standard GA itself (Shan, 2010).   Furthermore, 

the number of elements which are exposed to mutation is large with an exponential 

increase in search space size.  The further destructive mutation makes the original GA is 

extremely difficult to be deployed particularly on complex problems, such as 

optimization of antenna array excitation components to suppress a low SLL and/or 

mitigate prescribed nulls whilst preserving the main beam.  

Perhaps, the newly CS algorithm through certain modification and hybridization 

processes may overcome the conventional amplitude tapering and analytical 

optimization methods drawbacks.  In other words, the enhanced and hybrid CS 
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algorithms can be as the alternative of modern EA/EC techniques for antenna array 

beam design due to its high versatility, flexibility, diversity, and capability to optimize 

complex multidimensional problems.  Precisely, the enhanced and hybrid CS algorithms 

can directly manipulate the antenna array elements configuration arranged in space, and 

produce adaptive uniform directional beamform.  In some cases, the modified and 

hybrid CS algorithms are better than existing metaheuristic algorithms to suppress side 

lobes and/or mitigate nulls in the Dolph−Chebyshev window by optimizing the gradient 

of cost function(s). 

 

1.4 Research Objectives 

In general, there are four main objectives in this research: 

i. To analyze the imperative effects of five internal parameters of original 

CS algorithm in SO optimization to find optimal elements location, 

which preserves main lobe, suppresses SLL and/or mitigates nulls. 

ii. To introduce the Roulette wheel selection operator, dynamic inertia 

weight (w), and dynamic discovery rate or fraction probability (Pa) in SO 

optimization of the modified CS (MCS) algorithm to find optimal 

elements location, which preserves main lobe, suppresses SLL and/or 

mitigates nulls. 

iii. To propose the hybridization of MCS algorithm with two well−known 

metaheuristics, which are PSO and GA, in SO optimization to find 

optimal elements location, and weighted−sum MO optimization of three 

objective functions to find optimal elements location, excitation 

amplitude, and excitation phase with three aims: (a) to generate a 

radiation pattern with small HPBW and high directivity of preserved 
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main beam; (b) to suppress minimum SLL and/or mitigate prescribed 

nulls; (c) to attain a high absolute dynamic range ratio (DRR) between 

maximum and minimum excitation amplitudes.  

iv. To propose the hybridization of MCS algorithm with strength Pareto 

evolutionary algorithm (SPEA) defined as MCSSPEA, MCS algorithm 

with SPEA and hill climbing (HC) methods known as MCSHCSPEA, 

and MCS algorithm with SPEA and PSO methods referred as 

MCSPSOSPEA to find the Pareto fronts via trade−offs of three objective 

functions, which include non−dominated elements location, excitation 

amplitude, and excitation phase with three aims as mentioned in 

objective (iii) above. 

 

1.5 Research Scope 

In the initial stage of this research, the effects of five internal parameters of CS 

optimizer are studied systematically.  These internal parameters are α value, distribution 

type, step size factor, number of nest (population), and discovery rate or fraction 

probability, Pa in linear array geometry synthesis specifically for the broadside case 

where main beam steered to the direction of 90°.  It is important to identify the 

imperative characteristic of all the tested parameters and fine–tune them with a 

sufficient maximum number of iterations to achieve the utmost convergence.   Besides 

that, an investigation on the CS application for antenna with main beam steered to the 

desired direction other than 90° (non–broadside case) and/or prescribed interferers is 

also conducted. 

On top of that, the newly MCS algorithm will also be proposed to optimize 

antenna array elements location, which generates a radiation pattern with minimum side 
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SLL suppression and/or prescribed nulls mitigation.  In this experiment, Roulette wheel 

selection operator, dynamic w, and dynamic Pa are introduced in the CS optimizer. 

Continuing from that, the hybridization of MCS with PSO (MCSPSO) and GA 

(MCSGA) algorithms in both SO and weighted–sum MO optimization are postulated 

towards synthesizing antenna array.   The basic idea of the MCSPSO hybrid algorithm 

presented here has two major operations: firstly, running MCS algorithm and obtaining 

a global optimum solution, and secondly, improving the result with PSO.  On the other 

hand, the MCSGA hybrid algorithm involves an initial search with MCS and refining 

solution with GA.  Both PSO and GA are stochastic algorithms used to produce a better 

diversity of optimal solution(s).    

In the later stage, the proposed MCS algorithm is combined with the strength 

Pareto evolutionary algorithm (SPEA) denoted as MCSSPEA to find for the Pareto 

optimum solutions.  There is also the combination of the proposed MCS with the SPEA 

and the hill climbing (HC) technique or simply known as MCSHCSPEA.   Moreover, 

there is the amalgamation of the proposed MCS with the SPEA and the PSO algorithm 

referred as MCSPSOSPEA.  Each of the MCSSPEA, MCSHCSPEA, and 

MCSPSOSPEA algorithms has the Pareto front represents the trade−off among three 

fitness functions. The solutions include antenna array optimal position, excitation 

amplitude, and excitation phase, which generate a radiation pattern with minimum SLL, 

high antenna directivity, small HPBW, and/or prescribed nulls significant mitigation 

while preserving the main lobe radiation. 

 

1.6 Research Significance and Contribution 

The primary contribution of this research is the proposed MCS hybrid algorithm 

in SO approach, hybrid MCSGA and MCSPSO hybrid algorithms in both SO and 
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weighted–sum MO methods, and MCSSPEA, MCSHCSPEA, and MCSPSOSPEA 

hybrid algorithms in Pareto front MO approaches for linear antenna array synthesis.   

Precisely, the newly proposed MCS, MCSGA, and MCSPSO hybrid algorithms 

performs SO optimization approach to find optimal elements location, which preserves 

main lobe, suppresses SLL and/or mitigates nulls.  On the other hand, the newly 

proposed MCS, MCSGA, and MCSPSO hybrid algorithms perform normalized 

weighted–sum MO optimization approach on three objective functions to find optimal 

elements location, excitation amplitude, and excitation phase with aims of obtaining 

small HPBW, high directivity of preserved main lobe, minimum SLL suppression, 

significant prescribed nulls mitigation, and high absolute DRR between maximum and 

minimum excitation amplitudes.  Similarly, the newly proposed MCSSPEA, 

MCSHCSPEA, and MCSPSOSPEA hybrid algorithms perform Pareto front MO 

approach on three objective functions to find non–dominated elements location, 

excitation amplitude, and excitation phase with the same aims of the weighted–sum 

approach mentioned above. 

 

1.7 Thesis Organization 

This thesis mainly consists of seven chapters: 

Chapter 1 briefly introduces the research background of two general smart 

antenna categories: switched−beam antenna, and adaptive antenna.  Besides, the 

research motivation that highlights three categories of antenna array pattern synthesis, 

and three general optimization techniques deployed in antenna array synthesis are also 

explained.  Then, problem statement is defined where the limitations of conventional 

analysis approaches and numerical techniques, and the strength of modern evolutionary 

algorithms (EA) or evolutionary computation (EC) techniques are highlighted.  
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Moreover, four research objectives and research scope are stated clearly.  Finally, 

research significance and contribution along with level of improvements achieved are 

also elaborated. 

Chapter 2 briefly reviews the theory of radiation pattern and linear antenna 

array.  Besides, there is discussions regarding well−known approaches in linear antenna 

array synthesis, e.g. analytical techniques, numerical methods and EA/EC−based 

techniques comprise genetic algorithm (GA), and particle swarm optimization (PSO). 

The successful implementations via various approaches are then summarized briefly 

based on previous published literatures. 

Chapter 3 explains the methodology applied in this research along with a general 

block diagram.  Precisely, there is a theoretical description on the linear antenna array 

configuration used throughout this study. This covers the array factor (AF) definition, 

which becomes the main component of objective function primarily for SLL 

suppression and/or nulls mitigation.    There is also an explanation about linear antenna 

design specification in terms of required SLL and nulls normalized measurements in 

decibel (dB).   Besides, there is a description of the input data (solutions) to be 

optimized in SO approach, which is elements location whereas in both weighted−sum 

and Pareto front MO approaches, which are elements location, excitation amplitude, and 

excitation phase.  There is also the definition of an objective function minimized in SO 

approach, and three objective functions minimized in weighted−sum and trade−offs in 

Pareto front MO optimization approaches.  The aims of doing both SO and MO 

optimization approaches are also included.  The related flowcharts, pseudo−codes, and 

differences of standard CS algorithm and all the proposed versions of modified and 

hybrid CS algorithms are emphasized.  There is also an explanation on the digital signal 

processing (DSP) circuit, which is the specific component of antenna design where the 
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all the proposed versions of modified and hybrid CS algorithm will do iterative 

optimization in finding optimal array elements location in SO approach and elements 

location, excitation amplitude, and excitation phase in MO approach to be multiplied 

with complex weight, wi during beamforming process.  There is also a discussion on 

design benchmarking where all the proposed versions of modified and hybrid CS 

algorithms are compared relatively with few other existing EA/EC techniques used in 

linear antenna array synthesis.  In the last part, there is a brief description in terms of 

implementations on both software, which is MATLAB and hardware, which is 

notebook used to develop and validate all the proposed versions of modified and hybrid 

CS algorithms throughout this research.   

Chapter 4 describes the imperative effects of five internal parameters of standard 

CS algorithm in linear antenna array synthesis.  There is also an analysis on the 

postulation of MCS algorithm through the introduction of Roulette wheel selection 

operator, dynamic w, and dynamic Pa towards designing a smart antenna radiation 

pattern with low SLL suppression and/or significant predefined nulls mitigation.  

Furthermore, there is a detail description on the postulated hybridization of MCS 

algorithm with two well−known EA/EC methods, which are PSO forming MCSPSO 

and GA forming MCSGA in SO optimization to find the optimal location of linear 

antenna array elements.  The results obtained in this study will also be compared with 

other corresponding existing EA/EC SO optimization methods used for linear antenna 

array synthesis.    

Chapter 5 discusses various simulation tests on the proposed MCSPSO and 

MCSGA in the normalized weighted−sum MO optimization on three objective 

functions to find the optimal location, excitation amplitude, and excitation phase of 

linear antenna array elements, respectively.  Then, there is a description on the MCS 
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algorithm performing MO optimization via Pareto front technique.  In this case, 

MCSSPEA, MCSHCSPEA, and MCSPSOSPEA algorithms are proposed to obtain 

trade−offs between three objective functions in determining the non−dominated set of 

optimal solutions, which are linear antenna array elements location, excitation 

amplitude, and excitation phase.   Both weighted−sum and Pareto front MO approaches 

are deployed to generate radiation pattern with small HPBW, high directivity, low SLL 

suppression and/or significant predefined nulls mitigation, respectively.   The results 

obtained in this study will also be compared with other respective existing EA/EC MO 

optimization methods used for linear antenna array synthesis. 

Chapter 6 discusses and concludes all the findings found through various 

simulation tests performed in the previous Chapter 4 and 5, respectively. 

Chapter 7 summarize the general conclusions, limitations and recommended 

future works. 

Then there are lists of all the related references used and academic publications 

originated from this study.  
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CHAPTER TWO 

2 LITERATURE REVIEW 

2.1 Introduction 

This chapter introduces the concept of antenna and its enhanced version called 

smart antenna.  According to Balanis, C. A. (2005), Webster’s Dictionary defines an 

antenna as “a usually metallic device (as a rod or wire) for radiating or receiving radio 

waves”.  Furthermore, the Institute of Electrical and Electronics Engineers Standard 

Definitions of Terms for Antennas (IEEE Standard 145−1983) defines the antenna or 

aerial or electromagnetic radiator as “a means for radiating or receiving radio waves”.   

Balanis, C. A. (2005) then precisely states the antenna as the transitional 

structure between free−space (unbounded medium) and a guiding device.  The guiding 

device or transmission line can be a coaxial line or a hollow pipe (waveguide), which is 

applied to transport electromagnetic energy from the transmitting source to the antenna 

or from the antenna to the receiver.  In short, the antenna main purpose is to convert the 

energy of a guided wave into the energy of a free−space wave (or vice versa) as 

efficiently as possible, while at the same time the radiated power has a certain desired 

pattern of distribution in space. 

The smart antenna has become as an emerging technology since firstly appeared 

around 1950s, which can be deployed to cater the capacity, quality of service (QoS), 

and coverage problems faced by wireless communication under heavy traffic or bigger 

bandwidth (Yilmazer, Burintramart, & Sarkar, 2008).  It evolves in various fields such 

as military, commercial, and medical.  Smart antenna systems use a weighted average of 

the received signals to automatically adjust the beam towards the signal of interest 

under a dynamically changing environment to radiate or receive desired signals while 
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nulling the interferers.  In a wireless communications system, antenna is essentially used 

to distribute data to surrounding space or collect data from surrounding space.  Thus, by 

using the components in a “smart” or an “intelligent” fashion, antenna designers can 

exploit the limited spectrum and increase the quality of the communication network. 

Smart antenna technology requires the expertise of multidisciplinary areas, such 

as antenna design, electronic communications, adaptive digital signal processing (DSP), 

and recently, evolutionary algorithm (EA) techniques.  The antenna is referred as “smart 

antenna” because it can steer its beam electronically under dynamically changing 

environments towards the signal of interest.  Furthermore, it can also mitigate the 

interferers by using the DSP techniques in an intelligent way through a weighted 

average of the received signals (Yilmazer et al., 2008). 

Smart antennas can be implemented using two different methods, which are 

“switched−beam array” and “adaptive array”.  In the switched−beam array system, a 

number of predetermined fixed−beam patterns are generated to cover the range of 

interest.  The switching algorithm selects the fixed−beam along the direction of 

maximum signal strength as demand changes throughout the sector.  Based on         

Figure 2.1(a), instead of shaping the directional antenna pattern with the metallic 

properties and physical design of a single element (like a sectored antenna), 

switched−beam systems combine the outputs of multiple antennas in such a way as to 

form finely sectored (directional) beams with more spatial selectivity than it can be 

achieved with a conventional single element approach (Stevanović, Skrivervik & 

Mosig, 2003). 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



17 

 

 

Figure 2.1: (a) Switched−beam system coverage patterns, and (b) Adaptive array 

coverage (Stevanović, Skrivervik and Mosig, 2003). 

 

The switched−beam array system is easier to implement as compared to the 

adaptive array system.  In the case of strong interferers or nulls, the method is not 

efficient since the beam pattern is limited by the main beamwidth, so interferers may 

not be mitigated (Litva, 1996, Liberti, 1999 and Ho, 1998).  The most common 

technique to implement the switched−beam algorithm is done by using the Butler matrix 

array (Butler, 1961). 

In the adaptive array system, the main beam is steered electronically towards the 

signal of interest, and interferers are nulled at the same time by changing the phase of 

the voltages at the transmitter and/or receiver antenna array.  In this case, a theoretically 

infinite number of predefined patterns or beams are adjusted in real−time 

(scenario−based) according to the spatial changes of signal of interest and signal not of 

interest.  This is accomplished by taking a weighted−average of the received signals.  

Using a variety of new signal processing algorithms, the adaptive array system takes 
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advantage of its ability to effectively locate and track various types of signals to 

dynamically minimize interference and maximize intended signal reception as in   

Figure 2.1(b). 

 

Figure 2.2: Beamforming in an adaptive array system (Yilmazer et al., 2008). 

A basic diagram of the adaptive array system is shown Figure 2.2. In 

beamforming process, each antenna element output is multiplied by a complex      

weight, wi.  Multiplying with these weights, the amplitude and phase are changed, so 

that the beam is steered.  The antenna array pattern is changed dynamically to mitigate 

multipath effects and interferences while increasing range and reducing power 

consumption of the system.   

 

Figure 2.3: Beamforming lobes and nulls that switched−beam (red), and 

Adaptive array (blue) systems with identical user signals (green line) and co−channel 

interferers (yellow lines) (Stevanović, Skrivervik and Mosig, 2003). 
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Figure 2.3 illustrates the beam patterns that each system might choose in the face 

of a signal of interest and two co−channel interferers in the positions shown. The 

switched−beam system is shown in red on the left while the adaptive system is shown in 

blue on the right.  The green lines depict the signal of interest while the yellow lines 

represent the direction of the co−channel interfering signals.  Both systems direct the 

main lobe with the most gain in the general direction of the signal of interest, although 

the adaptive system chooses a more accurate placement, providing a greater signal 

enhancement.   Similarly, the interfering signals or nulls arrive at places of lower gain 

outside the main lobe, but again the adaptive system has placed these signals at the 

lowest possible gain points and ideally, the main signal received maximum 

enhancement while the interfering signals receive maximum suppression (Stevanović, 

Skrivervik and Mosig, 2003). 

In summary, fixed beam system uses multiple fixed beams with narrow 

beamwidth. The phase shifts can be implemented by using the Butler matrix so that 

multiple beams are generated in a simple way.    Multipath signals and interferers might 

be enhanced since the system cannot differentiate between signal of interest and 

interferers, thus, the co−channel interference reduction will be less than in the adaptive 

system since there is no null steering (Tsoulos, 2001).  In other words, the adaptive 

array system has a better interference rejection performance as compared to the 

switched−beam array system, hence has a better coverage and capacity. 

 

2.2 Radiation Pattern Theory 

Various parts of a radiation pattern are referred as lobes, which are 

sub−classified into major or main, minor, side, and back lobes (Balanis, 1997).  A 
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radiation lobe is a portion of the radiation pattern bounded by regions of relatively weak 

radiation intensity or strength.   

 

Figure 2.4: Radiation lobes of a three−dimensional (3D) antenna pattern. 

 

Figure 2.5: Linear plot of power pattern and its associated lobes and beamwidths. 

0 20 40 60 80 100 120 140 160 180
-40

-35

-30

-25

-20

-15

-10

-5

0

The Direction Angles in Degrees

R
a
d
ia

ti
o
n
 I

n
te

n
s
it
y
 i
n
 d

B

 

 

Major Lobe 

Average Side Lobes 

Back Lobe 

HPBW at 3 dB 

FNBW 

Peak Side Lobe 

Major Lobe 

Minor Lobes 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



21 

 

Figure 2.4 depicts a symmetrical three−dimensional (3D) polar pattern with a 

major and various minor lobes in various sizes.  The bigger the lobe the greater 

radiation intensity it portrays.  Moreover, Figure 2.5 illustrates a linear two−dimensional 

(2D) of normalized radiation pattern where the half−power beamwidth (HPBW) and 

first null beamwidth (FNBW) are indicated. 

A major lobe or main beam is defined as the radiation lobe containing the 

direction of maximum radiation.  In Figure 2.5, the major lobe is pointing in the θ = 90° 

direction.  In this case, all the lobes with the exception of the major can be categorized 

as minor lobes.  A peak side lobe, average side lobes, and a back lobe are radiation 

lobes in any direction other than the intended major lobe.    Usually, a side lobe is 

adjacent to the main lobe and occupies the hemisphere in the direction of the main 

beam.  A back lobe is a radiation lobe whose axis makes an angle of approximately 

180° with respect to the beam of an antenna.  Normally, it refers as a minor lobe, which 

occupies the hemisphere in a direction opposite to that of the major or main lobe 

(Balanis, 2005).  The HPBW is defined as the angle between the points on the main lobe 

that are 3 dB lower in gain compared to the maximum.  In addition to that, FNBW is 

referred as the angular span between the first pattern nulls adjacent to the main lobe. 

Minor lobes typically represent radiation in undesired directions and should be 

minimized.  Side lobes are normally the largest of the minor lobes.  The level of minor 

lobes is typically expressed as a ratio of the power density in the minor lobe to the 

major lobe.  This ratio is often termed as the side lobe ratio or commonly known as side 

lobe level (SLL).  A SLL of −20dB or smaller is usually desirable in most applications.  

Achieving a SLL of −30dB or smaller technically requires a very careful design and 

development approaches.  In radar systems, low SLL is critical to minimize the false 

target indications through side lobes (Balanis, 2005).   
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2.3 Linear Antenna Array Theory 

An antenna can have one or more element (radiator) to emit electromagnetic 

wave.  Usually the radiation pattern of single−element antenna is relatively wide, thus, it 

has relatively low directivity (gain).  In long distance communications, antenna with 

high directivity is often required.  Such antenna is possible to construct by enlarging the 

dimensions of the radiating aperture (maximum size much larger than wavelength, λ). 

This approach however may lead to the appearance of multiple side lobes.  Besides, the 

antenna is usually large and difficult to fabricate (Nikolova, 2012). 

Another way to increase the electrical size of an antenna is to construct it as an 

assembly or aggregate of radiating elements in a proper electrical and geometrical 

configuration known as antenna array.  Usually, the elements of the array are identical.  

This is not necessary but it is practical and simpler for design and fabrication.  The 

arrangement of the array adds up the radiation from individual elements to provide a 

maximum intensity in a particular direction (Balanis, 2005).  The individual element can 

be wire dipoles, loops, apertures, etc. 

The array of elements can reduce power consumption and enhance spectral 

efficiency for the antenna to perform a high power transmission (Shihab, Najjar, Dib & 

Khodier, 2008).  The fields from the array elements must add constructively in the 

desired direction, and cancel each other in the remaining spaces to provide a directive 

pattern.  This can reduce interference from the side lobes of the antenna.   There are five 

basic methods to control the overall antenna pattern (Nikolova, 2012 and Banerjee & 

Dwivedi, 2013): 

i. The geometrical configuration of the overall array e.g. linear, circular, spherical, 

rectangular, etc. 

ii. The relative placement or position of the individual elements. 
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iii. The excitation amplitude of the individual elements. 

iv. The excitation phase of each element. 

v. The individual pattern of each element. 

In designing a smart antenna, various synthesis techniques are performed to 

determine the physical layout or geometry of the array that produces the radiation 

pattern closest to the desired pattern.  Some of these techniques also focus on the null 

control to reduce the effects of undesired interference and jamming.  This can be 

achieved by controlling some of the parameters of the array elements, such as the 

position, amplitude, phase, and complex weights for both the amplitude and phase 

(Banerjee & Dwivedi, 2013). 

Briefly, the shape of the desired pattern can vary widely depending on the 

application (Pal, Basak, Das & Abraham, 2009).  Moreover, the array pattern ideally 

should possess a high power gain, low side lobes, a controllable beamwidth (Zaharis et 

al., 2006), and a good azimuthal symmetry. 

 

2.4 Justification of Synthesizing Antenna Array 

In this study, the symmetric linear array was the chosen antenna geometry to be 

synthesized.  This is because the geometry assembles a group radiating multi−elements, 

which enlarge the electrical size of an antenna to gain a high directivity or gain with a 

narrow main beam.  This is necessary to fulfil the existing high bandwidth and quality 

of service (QoS) demands for long distance wireless communications.  The individual 

elements of the linear array can be of any form of wires, and apertures (Balanis, 2005). 

Besides to that, cuckoo search (CS) algorithm is modified (enhanced) in this research 

because it has a significant advantage of being a generic optimizer model regardless 

types of antenna arrays geometries, such as linear, rectangular, and circular. 
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2.5 Analytical Techniques in Smart Antenna Design 

Two well−known analytical array synthesis methods used are Fourier technique 

(FT), and Dolph−Chebyshev methods.  Keizer (2009), applied the iterative Fourier 

technique (IFT) for the synthesis of linear arrays with uniform element spacing.  In this 

case, an IFT relationship existed between the array factor (AF) and the element 

excitations.  This relationship was examined iteratively to derive the array element 

excitations from the prescribed AF.  The IFT was found suitable for the large arrays 

with periodic spacing of the array elements, and capable to handle various design 

constraints related to both the radiation and aperture domains. 

The far−field F(u) of a linear array with M elements arranged along a periodic 

grid at distance d apart, can be written as the product of the embedded element pattern 

EF and AF: 

𝐹(𝑢) = 𝐸𝐹(𝑢)𝐴𝐹(𝑢) 

(2.1) 

𝐴𝐹(𝑢) = ∑ 𝐴𝑚𝑒
𝑗𝑘𝑚𝑑𝑢

𝑀−1

𝑚=0

 

(2.2) 

where Am is the complex excitation amplitude of the mth element, k = 2π ⁄ λ is the 

wavenumber, λ is the wavelength, u = sin θ, and θ is the angular coordinate measured 

between the far−field direction and the array normal. 

Equation (2.2) forms a finite Fourier series that relates the element excitation 

coefficients Am of the array to its AF through a discrete IFT.  AF is periodic in 

u−dimension over the interval d/λ.  The discrete IFT applied on AF over the period λ ⁄d 

will yield the element excitations Am.  These Fourier transform relationships are used 
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iteratively to synthesize a periodic element arrangement of linear array with a low side 

lobe level (SLL). 

Implementation of the IFT algorithm for linear antenna array synthesis using 

amplitude−only element weighting operates as follows (Keizer, 2009): 

1. Start the synthesis using a uniform excitation for M elements in case of the sum 

pattern and an odd linear taper when the synthesis involves the different pattern.  

2. Compute AF from {Am} using a K−point inverse FFT with K > M.  

3. Adapt AF to the prescribed side lobe constraints.  

4. Compute {Am} for the adapted AF using a K−point direct FFT.  

5. Truncate {Am} from K samples to M samples by making zero all samples outside 

the array.  

6. Make the phase of the M samples of {Am} equal to the phase of initial excitation 

at Step 1.  

7. Set the magnitude of the excitations violating the amplitude dynamic range 

constraint to the lowest permissible value.  

8. Enforce the optional defective element constraint and take element failures into 

account by setting their excitation values to zero.  

9. Repeat Steps 2−9 until the prescribed side lobe requirements for AF are satisfied 

or the allowed number of iterations is reached.  

In order to apply phase−only synthesis the present Step 6 has to be replaced by: 

"Make the amplitude of the M samples of {Am} equal to one”. When Step 6 is deleted, 

the synthesis is of the complex weight type. Any low SLL AF consisting of K samples 

can be realized with K element excitations.  The objective of the IFT low SLL synthesis 

method is to arrange that the M elements of the array took completely over the 

contribution to AF of the excitations of the (K − M) elements located outside the 
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aperture.  This means that the synthesis is successful when the excitations of (K − M) 

elements outside the aperture become zero.  

The first experiment was performed on a linear antenna array consisting of 80 

elements spaced 0.5 wavelength, λ apart and characterized by an isotropic embedded 

element pattern.  For this experiment, a sum and different patterns were synthesized 

where both featuring a −45 dB maximum peak SLL. 

 

Figure 2.6: Amplitude taper (Keizer, 2009). 
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Figure 2.7: Normalized radiation pattern for amplitude−only synthesis (Keizer, 2009). 

 

 

Figure 2.8: Maximum peak SLL vs. Number of iterations (Keizer, 2009). 
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Figure 2.9: Number of far−field directions violating the −45 dB SLL requirement, and 

number of far−field directions vs. Number of iterations (Keizer, 2009). 

 

Based on Figure 2.6, as the dynamic amplitude range of the element excitations 

was set 24 dB for the taper, the linear antenna array revealed the sum pattern with a 

uniform −45 dB peak SLL as depicted in Figure 2.7.  The maximum peak SLL 

suppression curve throughout 50 iterations is shown in Figure 2.8.  Besides, the number 

of far−field directions contained in the main lobe region, which is its direct width 

measurement is depicted in Figure 2.9.  Keizer (2009), also found that the 3 dB larger 

dynamic range for the different taper produced only a marginal effect on the different 

normalized pattern, such as generated equal level peak side lobes to the AF. 

Another recognized analytical method used in antenna array synthesis is the 

Dolph−Chebyshev method, which has been originally proposed since 1946 (Dolph, 

1946).  Since then, many studies have been done to extend the classic 

Dolph−Chebyshev method to provide new possibilities and choices of communications 
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and radar systems applications with a low SLL, adjustable beamwidth of main lobe, and 

high directivity.  Alexopoulus (2006) analyzed a phased array design using conventional 

Dolph−Chebyshev side lobe tapering technique whereas Abreau and Kohno (2002) 

studied uniform linear array (ULA) and uniform circular array (UCA) designs with low 

Dolph−Chebyshev like side lobe beam patterns, an adjustable main lobe beamwidth and 

steering−invariance.  Lynch (1997), analysed a simple digital filter based on the 

Dolph−Chebyshev window, which has properties similar to an optimal low−pass filter 

(LPF) for a numerical prediction.  

Precisely, in 2006, Alexopoulus studied the antenna synthesis characteristics of 

linear phased rays for both broadside and end fire cases.  The modified Chebyshev 

(MC) side lobe tapering technique is proposed to analyse array parameters, such as the 

number of elements N, the phase factor, side lobe level (SLL), directivity, radiation 

pattern, element separation, and impact upon signal−to−noise ratio (SNR).  The MC 

method is developed to overcome two inefficiencies of conventional Dolph−Chebyshev 

arrays: firstly, suffering from directivity saturation when the number of radiating 

elements becomes large, and secondly, for every radiation pattern a new complicated 

polynomial series needs to be found.   

Theoretically, the MC method is based on the synthesis of arrays using the 

zeroes of conventional Chebyshev arrays repeatedly.  The idea behind the MC 

formulation is it makes no direct use of Chebyshev polynomials.  The array factor (AF) 

is calculated in terms of cosine and hyperbolic cosine functions respectively, while a 

system of equations for the excitation amplitudes is obtained from the zeroes of the AF.  

The solution of the system of equations for the excitation amplitudes is done by 

allowing one of those excitation amplitudes to be as an independent variable. 
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For an even and odd number of linear antenna array elements, the AF is defined 

as below: 

𝑓(𝜓) = 2 ∑ 𝑎𝑚 cos [(𝑚 −
1

2
)𝜓] ;𝑁 = 2𝑛

𝑛

𝑚=1

 

(2.3) 

𝑓(𝜓) = 𝑎0 + 2∑ 𝑎𝑚 cos[𝑚𝜓]; 𝑁 = 2𝑛 + 1

𝑛

𝑚=1

 

(2.4) 

where (ψ = βd cos (θ) + α, β = 2π ⁄ λ); λ is the wavelength, d is the element spacing, α is 

the phase factor, θ is the angle measured from the line of the array, am is the magnitude 

of the amplitude for the 𝑚th element on either side of the array midpoint, and a0 denotes 

the amplitude of the centre element when N is odd.  Given the fact that Chebyshev 

polynomials satisfy the relationships Tn (cos x) = cos (nx) for |Tn| < 1 and      Tn cos (hx) 

= cosh (nx) for Tn ≥ 1, the AF expressed in (2.3) and (2.4) is defined as: 

|𝑓(𝜓)| = |𝑓(�̅�)| = {
𝐶 |cos [(

(𝑁−1)

2
�̅�)]| ; |𝑓(𝜓)| ≤ 𝐶

𝐶 cosh [(
(𝑁−1)

2
�̅�)] ; |𝑓(𝜓)| ≥ 𝐶

, 

(2.5) 

where C is a positive constant coefficient, and 𝜓 is related to �̅� by: 

𝛾 cos (
𝜓

2
) =

{
 
 

 
 cos (

�̅�

2
) ; |𝑓(𝜓)| ≤ 𝐶

cosh (
�̅�

2
) ; |𝑓(𝜓)| ≥ 𝐶

 

(2.6) 

Through profound investigation of (2.5), f(ψ) gains its maximum value when �̅� = 0, 

which corresponds to �̅� ≡ �̅�0 = 2 cosh
−1(𝛾).  The maximum SLL ratio, R can be 

expressed as: 
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𝑅 = cosh [(
(𝑁 − 1)

2
�̅�0)] = cosh[(𝑁 − 1) cosh

−1(𝛾)] 

(2.7) 

The SLL here is assumed as −20 log10 (R) in dB.  By rearranging  

(2.7), γ then can be stated as: 

𝛾 = cosh [
1

(𝑁 − 1)
log𝑒 (𝑅 + √𝑅2 − 1)] 

(2.8) 

In this case, Alexopoulus (2006) has claimed that we can calculate γ if we know 

N and the half−power beamwidth (HPBW) or if we know R and the HPBW.  The AF 

can be normalized to unity through determining the coefficient C = 1/R.  A system of 

equations that governs the magnitude of the radiating elements can be constructed from 

the zeroes of the AF in terms of matrices. The zeroes are now obtained using the 

equation: 

�̅�𝑚 =
(2𝑚 − 1)𝜋

𝑁 − 1
 

(2.9) 

For m = 1, 2, 3…M, while M = (N − 2) / 2 for 𝑁 even and M = (N − 1) / 2 for N odd 

number of radiating elements, respectively.  The zeroes in terms of ψ is calculated 

explicitly as: 

𝜓𝑚 = 2 cos−1 [
1

𝛾
cos (

(2𝑚 − 1)𝜋

2(𝑁 − 1)
)] 

(2.10) 

where m = 1, 2, 3…M. 

The ψm’s of f(ψ) in (2.3) and (2.4) are zeroes stated as below: 

𝑓(𝜓𝑚) = 0,𝑚 = 1,2,3, … ,𝑀 

(2.11) 
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From (2.11), Alexopoulus (2006) has stated that we can obtain a system of M 

equations with M + 1 unknown amplitude of the radiating elements aM, one of which is 

chosen as the independent variable.  In the case of an even number of elements, the 

independent variable is chosen to be aM+1. We can form matrices that allow us to solve 

for any number of array elements N.  The solutions for am satisfy the AF as in (2.3) and 

(2.4).  The ratio of the SLL, R is used to define variable z0: 

𝑧0 =
1

2
[(𝑅 + √𝑅2 − 1)

1

(𝑀−1)
+ (𝑅 − √𝑅2 − 1)

1

(𝑀−1)
] 

(2.12) 

For an even number of elements, M = N ⁄ 2, the amplitude defined as: 

𝑎𝑛 = ∑
(2𝑀 − 1)(𝑞 + 𝑀 − 2)!

(𝑞 − 𝑛)! (𝑞 + 𝑛 − 1)! (𝑀 − 𝑞)!
(−1)𝑀−𝑞𝑧0

2𝑞−1

𝑀

𝑞=𝑛

 

(2.13) 

For an odd number of elements, M = (N − 1) ⁄ 2, the amplitude by the series expansion 

explicitly yields: 

𝑎𝑛 = ∑
2𝑀(𝑞 +𝑀 − 2)!

휀𝑛(𝑞 − 𝑛)! (𝑞 + 𝑛 − 2)! (𝑀 − 𝑞 + 1)!
(−1)𝑀−𝑞+1𝑧0

2(𝑞−1)

𝑀−1

𝑞=𝑛

 

(2.14) 

such that the additional condition, εn is stated as: 

휀𝑛 = {
2, 𝑛 = 1
1, 𝑛 ≠ 1

 

(2.15) 

where n = 1, 2, 3,…. 

The even and odd solutions of AF then can be expanded as: 

𝐴𝐹(𝑒𝑣𝑒𝑛) = ∑𝑎𝑛 cos[(2𝑛 − 1)𝑢]

𝑀

𝑛=1

 

(2.16) 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



33 

 

and 

𝐴𝐹(𝑜𝑑𝑑) = ∑ 𝑎𝑛 cos[(2𝑛 − 1)𝑢]

𝑀+1

𝑛=1

 

(2.17) 

 

Figure 2.10: (i) Normalizing all other amplitudes by the edge element an(ii) The 

symmetry with amplitude a0 at a distance of d from a1 (Alexopoulus, 2006). 

 

In the proposed equally spaced MC arrays, the amplitudes of the edge elements 

are always unity and all other amplitudes are normalized by the former. Based on Figure 

2.10, as examples, for N = 3 (odd) and, |SLL| = −10 dB the a0 is 1.0390 whereas 

a2,…,an-1, an equal to 1; for N = 4 (even) and |SLL| = −10 dB, the a1is 0.8794 whereas 

a2,…,an-1, an equal to 1; for N = 5 (odd) and |SLL| = −30 dB, the a0 is 3.1397 or 2.4123 

whereas a2,…,an-1, an equal to 1; for N = 6 (even) and |SLL| = −30 dB, the a1is 3.3828 or 

2.3129 whereas a2,…,an-1, an equal to 1. 
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Figure 2.11: AF as a function of u for |SLL| = 10 dB with N = 11 (red) odd elements, 

and N = 10 (blue) even elements (Alexopoulus, 2006). 

 

Figure 2.12: Polar plot for AF as a function of u for |SLL| = 10 dB with N = 11 (red) 

odd elements, and N = 10 (blue) even elements (Alexopoulus, 2006). 
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Figure 2.13: AF as a function of u for |SLL| = −13 dB with N = 17 (red) odd elements, 

and N = 20 (blue) even elements (Alexopoulus, 2006). 

 

 

 

Figure 2.14: Polar plot for AF as a function of u for |SLL| = −13 dB with N = 17 (red) 

odd elements, and N = 20 (blue) even elements (Alexopoulus, 2006). 

 

Figure 2.11 depicts the modified Chebyshev (MC) arrays radiation pattern with 

N = 10 and N = 11 elements using (2.16) and (2.17), respectively with the SLL 
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equiripple at −10 dB.  Figure 2.12 on the other hand, shows the respective polar plot.  

Furthermore, Figure 2.13 depicts the MC arrays radiation pattern with N = 17 and          

N = 20 elements, respectively with the SLL equiripple at −13 dB whereas Figure 2.14 

shows the respective polar plot.  Finally, Alexopoulus (2006) has concluded that both 

the gain (directivity) of main lobe, and number of SLL increase as the number of even 

or odd elements is increased leading to smaller inter−element spacing. 

 

2.6 Numerical Methods in Smart Antenna Design 

Gomez and Covarrubias (2009) have postulated a unified mathematical 

approach known as “Legendre functions” to nonlinear optimization of multidimensional 

array geometries. Precisely, the method determines the optimal excitation and spacing 

as a polynomial problem.  In this case, the unified mathematical approach performs the 

synthesis of the radiation pattern with characteristics of high directivity, minimum SLL, 

and good adaptability to the radio channel. 

In order to establish the AF in terms of Legendre polynomials, Gomez and 

Covarrubias (2009) have deployed the second−order ordinary differential equation (2
nd 

ODE), which yields solutions called Legendre functions: 

(1 − 𝑥2)
𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 𝑛(𝑛 + 1)𝑦 = 0; 𝑛 = 0,1,2,3, … ,∞ 

(2.18) 

If n is zero or positive integer, these functions denominate Legendre polynomials.  A 

compact expression of Pn(x) is given by the following expression: 

𝑃𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
[(𝑥2 − 1)𝑛]; 𝑛 = 0,1,2,3, … ,∞ 

(2.19) 
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The Legendre polynomials have a property of using a recurrence relation to define a 

recurrent sequence as stated: 

(𝑛 + 1)𝑃𝑛+1(𝑥) + 𝑛𝑃𝑛−1(𝑥) = (2𝑛 + 1)𝑥𝑃𝑛(𝑥); 𝑛 = 1,2,3, … ,∞ 

(2.20) 

The Legendre function is a generic model, which can be implemented to diverse types 

of antenna arrays geometries.  Nomenclatures used are enlisted as: 

k = 2π ⁄ λ: Free space wavenumber;  

dn: Element position; 

In: Element excitation;  

εn: Element position perturbation; 

Δ𝑢: Sampling interval; 

𝑀: Sampled points;  

αp, βn: Transformation vectors; 

P(m−1⁄2) (cos α): Legendre functions of fractional order; 

φ: Progressive phase; 

θd: Direction of main lobe. 

Gomez and Covarrubias (2009) have applied a Legendre function of fractional 

order, P(m−1⁄2) (cos α) in which, a recurrence relation from (2.20) is manipulated for the 

values of m ≥2, and n ≥ 3, such as: 

(𝑛1 + 0.5)𝑃𝑛(𝑥) = 2𝑛1𝑥𝑃𝑛−1(𝑥) − (𝑛1 = 0.5)𝑃𝑛−2(𝑥) 

(2.21) 

Using (2.21), Gomez and Covarrubias (2009) have obtained the following values of the 

Legendre polynomials: 

𝑃𝑛(cos 𝛼) = 𝑃𝑚−1 2⁄ (cos 𝛼) =
2𝑛1(cos 𝛼)𝑃𝑛−1(cos 𝛼) − (𝑛1 − 0.5)𝑃𝑛−2(cos 𝛼)

(𝑛1 + 0.5)
 

(2.22) 
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where n1 = n − 2. 

The antenna geometry considered in this study is a symmetric linear array of    

2N + 1 element with AF given as (Gomez & Covarrubias, 2009): 

𝐴𝐹 = 𝐸(𝑢) = ∑ 휀𝑛𝐼𝑛 cos(𝑘𝑑𝑛𝑢)

𝑁

𝑛=0

 

(2.23) 

where, u = cos(θ) + φ in the limit 0 ≤ θ ≤ π radians.  In order to establish the AF in 

terms of Legendre polynomials, a desired array pattern is defined as: 

𝐸𝑑(𝑢), in the interval −1 ≤ u ≤ 1. 

(2.24) 

Since the AF is symmetric, e.g. E(−u) = E(u), the synthesis is performed in the interval  

0 ≤ u ≤ 1 to obtain: 

𝐸(𝑢𝑚) = ∑휀𝑛𝐼𝑛 cos(𝑚𝛽𝑛 − 𝜑𝑛)

𝑁

𝑛=0

; 𝑚 = 0,1,2, … ,𝑀 − 1 

(2.25) 

where Δ𝑢 = 1 (𝑀 − 1); 𝑢𝑚 = 𝑚Δ𝑢;𝜑𝑛 = 𝑘𝑑𝑛 cos(𝜃𝑑); ⁄ and 𝛽𝑛 = 𝑘𝑑𝑛Δ𝑢.  The 

following step the Legendre transformation F(αp) application to the AF to get a 

triangular set of equations with the final expression: 

𝐹(𝛼𝑃) = ∑ 휀𝑚𝐸𝑑(𝑢𝑚)𝑃𝑚−1 2⁄ (cos 𝛼𝑝); 𝑝 = 0,1,2,3, … , 𝑁

𝑀−1

𝑚=0

 

(2.26) 

where εm = 1, m = 0; εm = 2, m > 0. 

The Legendre transformation of the desired array pattern Ed(u) is motivated by the 

following limiting relation for the Legendre polynomial of fractional order: 

𝑓(𝛼, 𝛽) = ∑ 휀𝑚𝑃𝑚−1 2⁄ (cos 𝛼)

∞

𝑚=0

cos(𝑚𝛽) 
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𝑓(𝛼, 𝛽) = [2 (cos𝛽 − cos 𝛼)⁄ ]1 2⁄ , 0 ≤ 𝛽 < 𝛼 

𝑓(𝛼, 𝛽) = 0, 𝛼 < 𝛽 < 𝜋 

(2.27) 

The triangular system of equations can be expressed using (2.26) and (2.27) as: 

𝐹(𝛼𝑝) = ∑ 𝐼𝑛𝑓(𝛼𝑝, 𝛽𝑛)

𝑝

𝑛=0

 

(2.28) 

Based on (2.28), the triangular system becomes invertible to find the value of the first 

element current and the p−th element current as stated: 

𝐼0 = 𝐹(𝛼0) 𝑓(𝛼0, 𝛽0)⁄  

𝐼𝑝 =
𝐹(𝛼𝑝) − ∑ 𝐼𝑛𝑓(𝛼𝑝, 𝛽𝑛)

𝑝−1
𝑛=0

𝑓(𝛼𝑝, 𝛽𝑝)
; 𝑝 = 1,2,3, … ,𝑁 

(2.29) 

with the above parameter (I), it is possible to synthesize the radiation pattern of linear 

antenna arrays easily and quickly.  

In the first simulation, the number of the elements of the linear array was set to 

17 and the main lobe was steered to 90
o
, respectively. This was done to extend the 

previous unequally spaced arrays study presented by Kumar and Branner (1999).  
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Figure 2.15: Array pattern for the Legendre functions synthesis                              

(Gomez & Covarrubias, 2009). 

 

Figure 2.15 illustrates the results comparatives obtained for both uniform and 

non−uniform patterns in a linear array.  It was found that, a side lobe level (SLL) 

suppression improvement by about 6 dB for the non−uniform array (−20.13 dB) with 

respect to the uniform array (−13.89 dB).  Conversely, since the focus of the technique 

was the suppression of SLL, half−power beamwidth (HPBW) generated a slight 

increment of 3% (about 0.18
o
) in a non−uniform linear array. 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



41 

 

 

Figure 2.16: SLL when the main lobe steered in the range −60° ≤ θ0 ≤ 60° for different 

space broadening factors, Δ (Gomez & Covarrubias, 2009). 

 

 

 

Figure 2.17: HPBW when the main lobe steered in the range −60° ≤ θ0 ≤ 60°for different 

space broadening factors, Δ (Gomez & Covarrubias, 2009). 
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Figure 2.16 depicts the SLL when the main lobe was steered in the range      

−60° ≤ θ0 ≤ 60° using the non−uniform spacing. With the same procedure, the HPBW 

was also evaluated as shown in Figure 2.17.  This numerical technique could change the 

SLL through modifying the space broadening factor, Δ.  Both cases exhibited the 

performance of the Legendre functions with two different Δ values.  In the range           

of |θ0| ≤ 12.29°, there was a reduction in the SLL of 1.13 dB, and an increment of 0.16°, 

in HPBW for Δ = 0.345.  However, if the angular region was within |θ0| ≤ 15.80°, there 

was a bigger reduction of 5.7 dB in SLL, but a higher increment of maximum 0.29° in 

HPBW for Δ = 0.298. 

Gomez and Covarrubias (2009) have concluded that these results were having a 

downside in comparison with the differential evolution (DE) algorithm (Rocha et al., 

2007) due to the range of steering diminished 47.33% or 28.40°.  On the contrary, the 

Legendre function technique is better than the DE in terms of having a narrower 

beamwidth without affecting the SLL, and a better computation time, respectively. 

 

2.7 Evolutionary Computation or Evolutionary Algorithm Methods in Smart 

Antenna Design 

Evolutionary computation (EC) is the field of research that draws ideas from 

evolutionary biology in order to develop search and optimization techniques for solving 

complex problems (De Castro, 2006).  EC is also referred as evolutionary algorithm 

(EA).  More than 40 years ago, computer scientists and engineers began developing 

various EA/EC methods to generate solutions to problems, which were too difficult and 

complicated to tackle with other classic or conservative analytical methods.  EA/EC 

methods then rapidly have become major fields of machine learning and system 

optimization.  More recently, EA/EC methods spread into the area of hardware design 
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including reconfigurable electronic circuits, computer−assisted manufacturing (CAM), 

and robotics (Floreano & Mattiussi, 2008). 

EA/EC methods are examples of approximate algorithm basically try to combine 

basic heuristic methods in higher level frameworks aimed at efficiently and effectively 

exploring optimal solutions in a search space. These heuristic methods are nowadays 

commonly called “metaheuristics”.  The term metaheuristic, firstly introduced by 

Glover, F. (1986), derived from the composition of two Greek words. “Heuristic” comes 

from the verb “heuriskein”, which means “to find”, while the suffix “meta” means 

“beyond, in an upper level”.  Before this term was widely adopted, metaheuristics were 

often called modern heuristics (Reeves, 1993). 

Blum, C. & Roli, A. (2003) have classified two crucial attributes in the modern 

heuristics or metaheuristics, which are intensification, and diversification.  Precisely, 

intensification aims to search around the current best candidates or potential optimal 

solutions.  Through this accumulated search experience, the algorithm selects the best 

optimal solutions.  Meanwhile, diversification ensures the algorithm can explore the 

search space efficiently. The balance between intensification and diversification as 

mentioned above is important.  Firstly, the aim is to quickly identify regions in the 

search space with high quality solutions and secondly, not to waste too much time in 

regions of the search space, which are either already explored or do not provide high 

quality solutions. 

Nowadays, EA/EC methods, such as genetic algorithm or GA (Zhang, Li, Yuan 

& Yin, 2014; Laseetha & Sukanesh, 2011; Gómez, Melde, McNeill, & Rodriguez, 

2006; Panduro, Brizuela, Balderas & Acosta, 2009), simulated annealing or SA (Lee, 

2005), particle swarm optimization or PSO (Recioui, 2012; Ho, Liao & Chiu, 2010; Nik 

Abd Malik, Esa, Syed Yusof & Marimuthu, 2009; Khodier & Christodoulou, 2005; 
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Khodier & Al−Aqeel, 2009), tabu search or TS (Cengiz & Tokat, 2008), ant colony 

optimization or ACO (Karaboga, Guney & Akdagli, 2004), memetic algorithm or MA 

(Mandal, Zafar, Das & Vasilakos, 2012), artificial bee colony or ABC (Zaman, Md. 

Mushfiqul Alam, Mamun & Abdul Matin, 2011; Basu & Mahanti, 2011), firefly 

algorithm or FA (Zaman & Abdul Matin, 2012; Basu & Mahanti, 2011), invasive weed 

optimization or IWO (Pappula & Ghosh, 2014), and  big bang crunch algorithm or 

BBCA (Sharma & Cecil, 2014) have been extensively studied and applied for antenna 

array beam design or geometry synthesis. 

The reason for the use of these EA/EC methods or normally referred as 

metaheuristic algorithms, which imitate the best features in nature is mainly due to the 

high versatility, flexibility and capability to optimize complex multi−dimensional 

problems with a non−linear and non−convex dependence of design parameters 

(Panduro, Brizuela, Balderas & Acosta, 2009).  Moreover, through the stochastic search 

process, the EA/EC methods have the ability in dealing with large number of 

optimization parameters, avoiding getting stuck in local minima, and relatively easy to 

simulate on computers (Khodier & Al−Aqeel, 2009).  Besides, the wide deployment of 

the metaheuristic algorithms also lies in the computational drawbacks of existing 

numerical conventional methods.  For examples, classical derivative−based 

optimization techniques are prone to getting trapped in local optima as well as strongly 

sensitive to initialization, and the gradient based methods fail to obtain significant 

solution for complex optimization problems.  Due to these inherent weaknesses of the 

classical methods, modern metaheuristic algorithms are developed to achieve low SLL 

and/or null control from the designed arrays (Mandal, Zafar, Das & Vasilakos, 2012). 
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2.8 Genetic Algorithm 

Now let us discuss briefly, all the EA/EC techniques, which will be compared 

and manipulated (hybridized) in this study.  Firstly, we start with the GA technique.  

The GA is an EA/EC technique inspired by evolutionary biology phenomenon, which 

has been conceived since the end of the 1950s (Dreo, Petrowski, Siarry & Taillard, 

2006).  Precisely, GA simulates the natural selection and survival of the fittest concept 

among individuals over consecutive generation for solving a problem. Each generation 

consists of a population of bit strings, which are analogous to the deoxyribonucleic acid 

(DNA) genome or chromosome. Each individual represents a point in a search space 

and a possible solution.  

The individuals in the population then will go through a process of genetic 

evolution including inheritance, mutation, selection, and crossover (also called 

recombination). The new population is then used in the next generation for future 

reproduction.  Commonly, the algorithm terminates when a maximum number of 

generations has been produced, or a satisfactory fitness level has been reached for the 

whole population.  

At first the initial population is generated. A fitness function is then used to 

evaluate the solution performance. The aim of the genetic operators is to get a 

maximum or minimum fitness value. The reproduction operator performs a natural 

selection function mechanism, such as fitness proportional selection or Roulette wheel 

selection. Individuals are copied from one set to the next according to their fitness 

value. The individuals that give better results will be reselected for the next generation 

(Cengiz & Tokat, 2008). 
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Precisely, in Roulette wheel selection method, the probability of selecting a 

chromosome (individual of the population) is directly proportional to its fitness value.  

Each chromosome 𝐱𝑖 , 𝑖 = 1,… ,𝑁, of the population is assigned to a part of the wheel 

whose size is proportional to its fitness value.  The wheel is then tossed as many times 

as parents (N) are needed to create the next generation, and each winning individual is 

selected for reproduction.  This selection method allows an individual to be selected 

more than once and the deletion of some other individuals as well (De Castro, 2006).  

The crossover operator chooses pairs of individuals at random and produces new 

pairs.  Crossover is the primary operator that increases the exploratory power of GA. In 

order to successfully achieve the cross−fertilizing type of innovation, crossover operator 

must ideally inter−mix good sub solutions without any disruption of the partitions 

(Dreo, Petrowski, Siarry & Taillard, 2006). 

The number of crossover operations is governed by a probability known as the 

crossover rate, pc.  Crossover is applied to the parents with a high pc, which has the 

typical value between 0.80 and 0.95.  The simplest single−point crossover operation is 

to cut the original parents at a randomly selected point and exchange their tails. 

Precisely, there are three steps of crossover process (De Castro, 2006): 

i. Two strings 𝐱 = 𝑥1𝑥2𝑥3…𝑥𝑙 and 𝐲 = 𝑦1𝑦2𝑦3…𝑦𝑙 are selected from the 

current population P. 

ii. A number r indicating the crossover point is randomly selected from       

{1,2,…,l−1}. 

iii. Two new strings are formed from 𝐱 and 𝐲 by exchanging the set of 

attributes to the right of position r, yielding 𝐱′ = 𝑥1…𝑥𝑖𝑦𝑖+1…𝑦𝑙 and 

𝐲′ = 𝑦1…𝑦𝑖𝑥𝑖+1…𝑥𝑙 where the two new chromosomes (strings), 𝐱′and 

𝐲′, are offspring of 𝐱 and 𝐲.   
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The mutation operator randomly mutates or reverses the values of bits in an 

individual. The number of mutation operations is determined by a probability known as 

the mutation rate, pm.  The process of flipping the bits of offspring is done with a small 

pm, which is between 0.100 and 0.001.The mutation of each bit string in the population 

P (with chromosomes represented by binary numbers) is operated as follows (De 

Castro, 2006): 

i. The numbers r,…,u indicating the positions to undergo mutation are 

determined by a random process where each position has a small 

probability pm of undergoing mutation, independently of the other 

positions. 

ii. A new string 𝐱′ = 𝑥1…𝑥𝑟 …𝑥𝑢…𝑥𝑙 is generated where 𝑥𝑟…𝑥𝑢 are 

drawn at random from the set of alleles for each chromosome where in the 

case of bit strings, if a position has an  allele ‘0’, then it becomes ‘1’, else 

if it is originally ‘1’, then it becomes ‘0’.   

 

2.9 Genetic Algorithm in Antenna Array Synthesis 

Goswami and Mandal (2012), analyzed and applied a real−coded genetic 

algorithm (RGA) to determine the optimum element current excitation weights, and 

inter−element spacing.  This should impose deeper nulls in the interference direction of 

uniform linear antenna arrays under the constraints of a reduced side lobe level (SLL) 

and a fixed first null beamwidth (FNBW). 

Considering a broadside linear antenna array of 2M isotropic radiators, each 

element is excited with a non−uniform current.  The array elements are assumed to be 

uncoupled and equally spaced along the z−axis, and the center of the array is located at 
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the origin.  Assume that the array is symmetric in both geometry and excitation with 

respect to the center. 

In this study, the array factor (AF) in the xy–plane with symmetric amplitude 

distributions is stated as: 

𝐴𝐹(𝐼, 𝜑, 𝑑) = 2∑ 𝐼𝑛 cos [(
2𝑛 − 1

2
) 𝑘𝑑 cos(𝜃) + 𝜑𝑛]

𝑀

𝑛=1

 

(2.30) 

where θ denotes the zenith angle measured from the broadside direction of the array, In 

is the current excitation amplitude, φn is the excitation phase, d is the spacing between 

two consecutive elements, and k = 2π ⁄ λ is the wave number.  In this experiment, φn is 

fixed at zero while the array elements are numbered from 1 to M from the origin in a 

symmetric array with the total number of elements equivalent to 2M. 

Goswami and Mandal (2012) included the objective function to be minimized 

with the RGA to obtain the low nulls and SLL as: 

𝑓 = 𝐶1 ×
|∏ 𝐴𝐹(𝑛𝑢𝑙𝑙𝑖)

𝑚
𝑖=1 |

|𝐴𝐹𝑚𝑎𝑥|
+ 𝐶2 ×∑𝐻(𝑘) × (𝑄𝑘 − 𝛿)

𝐾

𝑘=1

+ 𝐶3

× (𝐹𝑁𝐵𝑊𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 − 𝐹𝑁𝐵𝑊(𝐼𝑛 = 1)) 

(2.31) 

where m is the maximum number of positions wherever the null can be imposed with 

the value of either one or two.  AF(nulli) is the value of the AF at the particular null 

position, and AFmax is the maximum value of the AF, respectively.   

The second term in (2.31) is summed to reduce the SLL to a desired level. 

Besides, K denotes the number of side lobes in the original pattern, Qk is the SLL in dB 

generated by the individual population at some peak point θk, and δ is the desired value 

of the SLL in db. Furthermore, the H(k) is defined as: 
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𝐻(𝑘) = {
1, (𝑄𝑘 − 𝛿) > 0

0, (𝑄𝑘 − 𝛿) ≤ 0
 

(2.32) 

In this case, the side lobes whose peaks exceed the threshold, δ must be 

suppressed, so that H(k) can be adopted in the objective function. The first null 

beamwidth (FNBW) denotes the angular width between the first nulls on either side of 

the main beam. The third term in (2.31) is introduced to keep FNBW of the optimized 

pattern the same as in the initial pattern with In = 1, and d = λ ⁄ 2, respectively.  The two 

beamwidths FNBWcomputed, and FNBW(In = 1) refer to the computed first null 

beamwidth in radian for the non–uniform excitation for the optimal spacing case and for 

the uniform excitation (In = 1) with a uniform inter–element spacing (d = λ ⁄ 2). 

The actual value of FNBW for a uniform linear array can be calculated by: 

θn = 2λ ⁄ Nd            

(2.33)              

where N = 2M is the total number of elements in the array.  C1, C2, and C3 are weighting 

coefficients to control the relative importance of each term of (2.31).  The value of C1 is 

set to the highest one due to the primary aim is to achieve a deeper null. A smaller value 

of the objective function meant that the AF values at predefined positions are lower.  

Consequently, the RGA controls the amplitude excitations and the inter–element 

spacing to minimize the objective function. Precisely, the RGA applies floating–point 

number representations for the real variables, which is free of binary encoding and 

decoding.  Hence, the RGA is faster than the binary–coded GA (BGA). 

In this study, the chromosomes correspond to the current excitation weights and 

the inter–element spacing of the antenna elements. Because of symmetry, each 

chromosome consists of M + 1 number of genes, where M is the number of antenna 

elements on either side of the array center. Here, the 1
st
 to Mth genes represent the 
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current excitation weights of the antenna elements, and the (M + 1)
th

 gene represents the 

inter–element spacing.  For example, chromosome one, 𝑊1
̅̅ ̅̅  can be represented by: 

𝑊1
̅̅ ̅̅ = [𝑊11,𝑊12, … ,𝑊1𝑀,𝑊1(𝑀+1)] 

(2.34) 

where W11,W12,…,W1M are the antenna element weights or genes, and, W1(M+1)  is the 

inter–element spacing.  Each of these current excitation weights and the inter–element 

spacing has both the upper and lower limits.   

The random set of chromosomes can be generated using the following relation 

represented by: 

𝑊𝑛̅̅ ̅̅ = (𝑢1 − 𝑢2) × �̅� + 𝑢2, 𝑢2 < 𝑊𝑛̅̅ ̅̅ ≪ 𝑢1 

(2.35) 

where u1 and u2 are the maximum and minimum limit values of the weights or genes, 

respectively, and �̅� is a real random vector between zero and one. All of the current 

excitation weights or genes are restricted to be between 0 and 1, and the inter–element 

spacing or gene is restricted to lie between λ ⁄ 2 and λ. 

Linear antenna arrays composed of 12 isotropic radiating elements, with an 

inter–element spacing of λ ⁄ 2, is considered. The RGA is executed to obtain deeper 

nulls and to reduce the SLL through 500 iterations with the population size is fixed at 

120, the mutation probability is set to 0.05, and the uniform crossover is used.  The 

RGA algorithm is initialized using random values of the excitation (0 < In < 1) and the 

spacing between the elements (λ ⁄ 2 ≤ d < λ).  The nulling performances are improved 

for predefined nulls of the radiation pattern.  Besides, nulls are also imposed at 

predefined peak positions. 
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Figure 2.18: Best array pattern found by RGA for the 12–element array case with an 

improved null; i.e., h = 60° and h = 120° (Goswami and Mandal, 2012). 

 

Based on Figure 2.18, for a uniform excitation (In = 1) of 12–elements linear 

array sets with an inter–element spacing of λ ⁄ 2, the SLL is –13.06 dB, and FNBW is 

19.10°, respectively. The optimization In and d of the 12–element arrays significantly 

improve or deepen the nulls from –51.90 dB to –79.54 db. Lastly, the normalized d 

values with respect to the λ ⁄ 2 generated by the RGA are 0.84511, 0.6556, 0.8444, 

0.71671, 0.47139, 0.40992, and 1.1601. 

 

2.10 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population–based stochastic approach 

for solving continuous and discrete optimization problems.  In PSO, simple software 

agents, called particles, move in the search space of an optimization problem. The 

position of a particle represents a candidate solution to the optimization problem at 
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hand. Each particle searches for better positions in the search space by changing its 

velocity according to rules originally inspired by behavioural models of bird flocking.  

PSO belongs to the class of swarm intelligence (SI) technique that are used to solve 

optimization problems (“Particle Swarm Optimization”, 2011). 

PSO was introduced by Kennedy and Eberhart in 1995 (Kennedy & Eberhart, 

1995). It has roots in the simulation of social behaviours using tools and ideas taken 

from computer graphics and social psychology research. Since its introduction, the PSO 

has gained an increasing popularity as an efficient alternative to GA and simulated 

annealing (SA) in solving optimization design problems including antenna arrays 

(Khodier & Christodoulou, 2005). 

In (Eberhart & Shi, 2001), initial simulations are modified to incorporate 

nearest−neighbour velocity matching, eliminate auxiliary variables, and incorporate 

multi−dimensional search and acceleration by distance.  At some point in the evolution 

of the algorithm, it is realized that the conceptual model is, in fact, an optimizer.  

Through a process of trial and error, a number of parameters extraneous to optimization 

are eliminated from the algorithm, resulting in the very simple original implementation 

(Eberhart, Simpson & Dobbins, 1996).   

Similarly to GA, the PSO optimizer is initialized with a population of random 

solutions. Nonetheless, each PSO potential solution is also assigned a randomized 

velocity, and the potential solutions (particles) are then “flown” through the problem 

space or domain. 

In this case, each particle keeps track of its coordinates in the problem space 

which are associated with the best solution (fitness) it has achieved so far in which the 

fitness value is also stored.  This value is called personal best or pbest.  Another “best” 

value that is tracked by the global version of the particle swarm optimizer is the overall 
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best value, and its location obtained so far by any particle in the population.  The best 

value is called global best or gbest. 

The PSO concept changes the velocity of each particle toward its pbest and 

gbest locations at each time step. Acceleration is weighted by a random term, with 

separate random numbers being generated for acceleration toward pbest and gbest 

locations. There is also a local version of PSO in which, in addition to pbest, each 

particle keeps track of the best solution, called local best or lbest attained within a local 

topological neighbourhood of particles.  The standard process of the global version of 

PSO is as follows (Eberhart & Shi, 2001): 

i. Initialize a population (array) of particles with random positions and 

velocities in the d−dimensional problem space. 

ii. For each particle, evaluate the desired optimization fitness function in the 

d search space. 

iii. Compare particle's fitness evaluation with the particle's pbest where if 

current value is better than the pbest, then set the pbest value equal to the 

current value, and the pbest location equal to the current location in the d 

search space. 

iv. Compare fitness evaluation with the population's overall previous best 

where if current value is better than the gbest, then reset the gbest to the 

current particle's array index and value. 

v. Change the velocity and position of the particle according to equations: 

𝑣𝑖𝑑 = 𝑣𝑖𝑑 + 𝑐1 × rand() × (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 × rand() × (𝑝𝑔𝑑 − 𝑥𝑖𝑑) 

          (2.36) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 

          (2.37) 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



54 

 

vi. Loop to the step (ii) until the criterion is met, usually the sufficiently good 

fitness or the maximum number of iterations. 

Particles' velocities on each dimension are braced to the maximum velocity or 

Vmax.  If the sum of accelerations would cause the velocity on that dimension to exceed 

the Vmax, which is a parameter specified by the user, then the velocity on that dimension 

is limited to the Vmax. Thus, the Vmax is important because it determines the resolution or 

refinement with which regions between the present position and the target (best so far) 

position are searched.  If the Vmax is too high, particles might fly past good solutions.  

However, if the Vmax is too small, particles may not explore sufficiently beyond locally 

good regions. In fact, they could become trapped in local optima, unable to move far 

enough to reach a better position in the problem space (Eberhart & Shi, 2001). 

The acceleration constants c1and c2 in equation (2.36) represent the weighting of 

the stochastic acceleration terms that pull each particle toward both the pbest and gbest 

positions. Thus, adjustment of these constants changes the amount of “tension” in the 

system.   Low values allow particles to roam far from target regions before being tugged 

back, while high values result in abrupt movement toward or fly past target regions 

(Eberhart & Shi, 2001). 

The population size selected is problem−dependent. Population sizes of 20−50 

are probably most common. The small population are optimal for PSO in terms of 

minimizing the total number of evaluations (population size times the number of 

generations) needed to obtain a sufficient solution (Eberhart & Shi, 2001). 

The concept of an inertia weight is developed to better control exploration and 

exploitation. The motivation is to eliminate the need for the Vmax.  Equations (2.36) and 

(2.37) describe the velocity and position update equations with an inertia weight, w 

included. The use of the inertia weight, w has successfully improved performance in a 
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number of applications.  Precisely, w frequently decreases linearly from about 0.9 to 0.4 

during execution. Suitable selection of the w provides a balance between global and 

local exploration and exploitation, and requires less number of iteration to find a 

sufficient optimal solution (Eberhart & Shi, 2001). 

𝑣𝑖𝑑 = 𝑤 × 𝑣𝑖𝑑 + 𝑐1 × rand( ) × (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 × rand( ) × (𝑝𝑔𝑑 − 𝑥𝑖𝑑) 

          (2.38) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 

          (2.39) 

It has been demonstrated that the PSO algorithm can be also successfully applied 

to tracking and optimizing dynamic systems.  A slight adjustment is made to the w for 

this purpose. The w in equation (2.38) is set equal to [0.5 + rand/2.0].  This randomly 

produces a number varying between 0.50 and 1.00, with the mean of 0.75 (Eberhart & 

Shi, 2001). 

 

2.11 Particle Swarm Optimization in Antenna Array Synthesis 

Goudos et al. (2010) have postulated a design technique based on 

comprehensive learning particle swarm optimization (CLPSO) algorithm to establish 

unequally linear array synthesis with SLL suppression under constraints to beamwidth 

and null control.  The CLPSO algorithm applies a new learning strategy to accelerate 

the convergence of classical PSO.  In this array synthesis, the CLPSO algorithm is used 

to find the optimum element spacing between the antenna array elements. 

In the proposed CLPSO algorithm, each particle’s velocity vector is updated by 

using not only its own pbest but also any other particle’s pbest, which improves the 

diversity in the population. The velocity update equation in the CLPSO algorithm is: 

𝑉𝑖𝑛
𝑡 = 𝜔. 𝑉𝑖𝑛

𝑡−1 + 𝑐. 𝑟𝑎𝑛𝑑𝑖𝑛
𝑡 (𝑝𝑏𝑒𝑠𝑡𝑓𝑖(𝑛)𝑛

𝑡 − 𝑥𝑖𝑛
𝑡−1) 
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(2.40) 

where fi = [fi(1), fi(2),…, fi(n),…, fi(D)] states which particle’s pbest that the particle, i 

should follow, while 𝑝𝑏𝑒𝑠𝑡𝑓𝑖(𝑛)𝑛
𝑡  is the corresponding dimension of any particle’s pbest 

including its own pbest.  The decision on which pbest to be followed depends on the 

learning probability, Pc where it can take different values for different particles.  In this 

case, a random number is generated for each dimension to achieve the diversity.  The 

comparison of this number with the Pc decides whether the corresponding dimension 

will learn from its own pbest or from other particle’s pbest.  The particle will learn from 

its own pbest if the random number is larger than the Pc.  Otherwise, it would learn from 

another particle’s pbest.  In case a particle learns from another particle’s pbest, the 

following tournament selection procedure is used (Goudos et al., 2010): 

a. Two particles are chosen out of the population using a uniform random 

distribution, excluding the particle whose velocity is updated. 

b. The fitness values of these two particles’ pbest are compared, and the best one is 

selected. 

c. The particle’s pbest selected in the previous step will be used as the exemplar to 

be learned from for that dimension where if all exemplars of a particle are its 

own pbest, then randomly one dimension is chosen, so as to learn from another 

particle’s pbest for that dimension. 

The updating strategy used above will let the CLPSO algorithm to do more 

exploration in the search space than the original PSO, hence, will increase the diversity.  

In other words, the CLPSO algorithm can exploit a wider search domain in finding the 

global optimum. 

However, the CLPSO algorithm is found more complex than the two most 

common PSO algorithms, which are the classical inertia weight PSO (IWPSO) and 
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constriction factor PSO (CFPSO), respectively (Clerc, 1999). Consequently, the 

computation load of CLPSO is found slightly higher than the two counterparts. 

The synthesis is done on the 2N−element linear array symmetrically placed 

along the x−axis.  The AF used in this study is stated as: 

𝐴𝐹(𝜃) = 2∑ 𝐼𝑛𝑒
𝑗(
2𝜋

𝜆
𝑥𝑛 sin𝜃+𝜙𝑛)

𝑁

𝑛=1

 

(2.41) 

where λ is the wavelength, whereas In, xn, ϕn are the excitation amplitude, position, and 

phase of the nth element, respectively.  The primary optimization goal is the SLL 

suppression, while setting the main lobe to a desired beamwidth within ±1° by finding 

the optimum element positions through minimizing the objective function below: 

𝐹(�̅�) = max
𝜃𝜖𝑆

{𝐴𝐹𝑑𝐵
�̅� (𝜃)} + Ξ.max{0, |𝐵𝑊𝑐 − 𝐵𝑊𝑑| − 1} 

(2.42) 

where �̅� is the vector of the element position, S is the space spanned by the angle, θ 

excluding the main lobe, BWc is the calculated beamwidth, BWd is the desired 

beamwidth, and Ξ is a very large number. 

Through this optimization approach, the feasible region is expanded, but a large 

cost or “penalty” is added to the original objective function for solutions that lie outside 

of the original feasible region. Therefore, Ξ is chosen large enough to ensure that 

solutions can fulfill constraints in case of large fitness values. 

Furthermore, in order to perform the SLL suppression whenever there are 

predefined nulls, the below objective function is expressed: 

𝐹𝑁(�̅�) = 𝐹(�̅�) + Ξ. [∑max{0, 𝐴𝐹𝑑𝐵
�̅� (𝜃𝑘) − 𝐶𝑑𝐵}

𝐾

𝑘=1

] 

(2.43) 
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where K is the number of the predefined null, CdB is the desired null level in dB, and θk 

is the direction of the kth null.   

Goudos et al. (2010) simulated all the tested algorithms with the population size 

set to 40 and number of generations fixed to 1000.  For CLPSO, c in (2.40) was set to 

1.0 whereas Ξ in (2.43) was set to 10
6
.  The simulation was done on a 10−element linear 

array with the desired beamwidth was set to 23° with the tolerance of ±5%.   

 

Figure 2.19: Convergence rate plot for the 10−element array case (Goudos et al., 2010). 

 

Based on Figure 2.19, the proposed CLPSO algorithm clearly converged faster 

than the other two PSO algorithms where in this case, the CLPSO algorithm required 

less than 100 iterations to converge to its final value.  Even so, the real−coded GA was 

found converged a little bit faster than the CLPSO algorithm. 
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Figure 2.20: Array pattern for the 10−element array case with SLL suppression and 

desired beamwidth at 23° (Goudos et al., 2010). 

 

In addition, according to Figure 2.20, the postulated CLPSO optimizer achieved 

a lower SLL of −19.07 dB, while in (Khodier & Christodoulou, 2005), the SLL found 

was −17.44 dB.  In this case, the beamwidth found was close to the uniform array. In 

fact, the normalized symmetric 2N−element positions with respect to λ ⁄ 2 generated by 

the CLPSO algorithm were 0.443, 1.422, 2.416, 3.670, and 5.117, respectively. 

Finally, Goudos et al. (2010) prove that CLPSO outperforms both the common 

PSO algorithms and real−coded GA in terms of deeper average SLL suppression.  In 

sum, the CLPSO algorithm can be as an alternative EA/EC method for solving complex 

multimodal electromagnetic optimization problem using the proposed updating strategy, 

which leads to a bigger potential search space. 
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2.12 Summary of Optimization Methods in Array Geometry Synthesis 

As discussed earlier, there are various numerical, analytical, and EA/EC 

metaheuristic methods have been deployed by researchers and engineers in designing 

adaptive smart antenna.  Some of the recent publications regarding the optimization 

methods are shown in the table below: 

Table 2.1: Optimization Methods for Antenna Array Synthesis 

Author Optimization Method 

Keizer (2009) Linear antenna array synthesis using iterative Fourier 

analytical technique.  

Alexopoulus (2006)  Phased array design using conventional Dolph−Chebyshev 

side lobe tapering analytical technique. 

Abreau & Kohno 

(2002)  

Uniform linear array and uniform circular array designs 

with low Dolph−Chebyshev tapering analytical technique. 

Gomez & Covarrubias 

(2009)  

Multidimensional array geometries nonlinear optimization 

using a unified Legendre functions numerical method. 

Zhang et al. (2014) 

Walia et al. (2013) 

Laseetha & Sukanesh, 

(2011) 

Goswami & Mandal 

(2012)  

Panduro et al. (2009) 

Sattari & Hejazi (2008) 

Gómez et al. (2006) 

Array geometry synthesis using genetic algorithm method. 

Walia et al. (2013) 

Lee (2005) 

Array geometry synthesis using simulated annealing 

method. 

Recioui (2012) 

Ho et al. (2010) 

Goudos et al. (2010) 

Nik Abd Malik et al. 

(2009) 

Khodier & Al−Aqeel 

(2009) 

Khodier & 

Christodoulou (2005) 

Array geometry synthesis using particle swarm 

optimization method. 

Cengiz & Tokat (2008) Array geometry synthesis using tabu search method. 

Karaboga et al. (2004) Array geometry synthesis using ant colony optimization 

method. 

Mandal et al. (2012) Array geometry synthesis using memetic algorithm 

method. 

Rocha et al. (2007) Array geometry synthesis using differential evolution 

algorithms method. 

Pappula & Ghosh Array geometry synthesis using invasive weed 
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(2014) 

Pal et al. (2009) 

optimization method. 

Singh et al. (2010) Array geometry synthesis using biogeography based 

optimization method. 

Zaman et al. (2012) 

Basu et al. (2011)  

Array geometry synthesis using firefly algorithm method. 

Walia et al. (2013) 

Zaman et al. (2011) 

Basu et al. (2011) 

Array geometry synthesis using artificial bee colony 

algorithm method. 

Sharma & Cecil (2014) Array geometry synthesis using big bang crunch algorithm 

method. 

  

2.13 Hybrid Optimization Algorithm 

Wolpert and Macready (1997) have claimed that all algorithms that search for a 

maximum or minimum of a cost function perform exactly the same, when averaged over 

all possible cost functions.  According to the authors, if algorithm A outperforms 

algorithm B on some cost functions, then loosely speaking there must exist exactly as 

many other functions where B outperforms A.  

In other words, Wolpert and Macready (1997) have pointed out that from a 

problem solving perspective it is difficult to formulate a universal optimization 

algorithm that could solve all the problems.  In this case, hybridization may be the key 

to solve practical problems. 

 

2.14 Multiobjective Optimization: Weighted−Sum and Pareto Front Optimum 

Multiobjective (MO) optimization problems are common (Zitzler, 1999).  In 

addition to that, the majority of engineering design problems can also be categorized as 

MO problems, which requires optimizing multiple conflicting. For an example, 

designing a part made of composite materials needs simultaneous optimization of the 

structural performance and the manufacturing cost or time.  These objectives are often 
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conflicting and strongly coupled and thus, the corresponding MO problem does not 

have a single optimum solution, but a set of solutions, called “Pareto optimum”. 

In this case, the maximum structural performance is desired while the 

manufacturing cost or time of such composite materials design is to be minimized.  

These Pareto optimum solutions represent the trade−off among multiple objective 

functions, e.g. structural performance and manufacturing cost or time functions, 

respectively (Ghiasi, Pasini & Lessard, 2011). 

Zitzler (1999) defines a general MO problem consists of a set of n parameters 

(decision variables), a set of k objective functions, and a set of m constraints. Objective 

functions and constraints are functions of the decision variables. Generally, the 

optimization goal is to: 

maximize or minimize y = f(x) = (f1(x), f2(x),…, fk(x)) 

subject to e(x) = (e1(x), e2(x),…, em(x)) ≤ or  ≥ 0 

where x = (x1, x2,…, xn ) ∈ X 

y = (y1, y2,…,yk ) ∈ Y                     

(2.44) 

and x is the decision vector, y is the objective vector, X is denoted as the decision space, 

and Y is called the objective space.  The constraints e(x) ≤ or ≥ 0 determine the set of 

feasible solutions. 

The feasible set Xf is defined as the set of decision variables x that satisfy the constraint: 

e(x):  Xf = {x ∈ X| e(x) ≤ or ≥ 0} 

(2.45) 

The image of Xf, e.g. the feasible region in the objective space is denoted as: 

𝑌𝑓 = 𝑓(𝑋𝑓) =∪𝑥∈𝑋𝑓 {𝑓(𝑥)} 

(2.46) 
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Assume that there are two objectives (structural) performance (f1) and (inverse 

of manufacturing) cost (f2), which will be maximized under size constraints (e1).  Then, 

an optimal design might be an architecture, which achieves maximum performance at 

minimal cost and does not violate the size limitations. 

However, what makes MO problems difficult is the common situation when the 

individual optima corresponding to the distinct objective functions are sufficiently 

different.  Then, the objectives are conflicting and cannot be optimized simultaneously.  

Instead, a satisfactory “trade−off” has to be found.  In the abovementioned MO problem 

example, (structural) performance and (inverse of manufacturing) cost are generally 

competing where high−performance architectures substantially increase the cost, while 

inexpensive architectures usually provide a low performance.  Depending on the market 

requirements, an intermediate solution (medium performance, medium cost) might be 

an appropriate trade−off. To sum up, there is a requirement for a new notion of 

optimality in MO problems (Zitzler, 1999). 

 

 

Figure 2.21: Left: Pareto optimality in objective space, and Right: Possible relations of 

solutions in objective space (Zitzler, 1999). 
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In the stated MO maximization problem, the feasible set is arranged in a 

particular order entirely based on two objective functionsf1 and f2 for two solutions        

a, b ∈ Xf, either (f1(a) > f1(b)) || (f2(a) > f2(b)) or (f1(b) > f1(a)) || (f2(b) > f2(a)).  The goal 

is to find the solution (or solutions), which provides the maximum value of f1 and f2.  

Nevertheless, since the optimization involves with two objectives, Xf is arranged 

partially in order as depicted in Figure 2.21 on the left side. 

It is preferably to have both objectives improved (maximized) as in the case for 

Band C.  In this case, the solution represented by point B is better than the solution 

represented by point C where it provides a higher performance at a lower cost.  There is 

also a possibility where one of two objectives is improved (maximized) as in the case 

for C and D.  Despite equal cost, C achieves better performance than D.  In order to 

express this situation mathematically, the relations =, ≥, and > are extended to objective 

vectors by analogy to the MO case. 

In defining a Pareto maximization dominance, let us assume for any two 

decision vectors a and b, 

a ≻ b (a dominates b) iff (f1(a) > f1(b))  || (f2(a) > f2(b)) 

a ≽b (a weakly dominates b)  iff (f1(a) ≥ f1(b))  || (f2(a) ≥ f2(b)) 

a ∼ b (a is indifferent to b)  iff (f1(a) = f1(b))  && (f2(a) = f2(b)) 

            (2.47) 

On the other hand, the definitions for Pareto minimization dominance (≺,≼, ∼) 

are analogical.  In Figure 2.21 on the right, the light gray rectangle encapsulates the 

region in objective space that is dominated by the decision vector represented by B.  The 

dark gray rectangle contains the objective vectors whose corresponding decision vectors 
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dominate the solution associated with B.  All solutions for which the resulting objective 

vector is in neither rectangle are indifferent to the solution represented by B. 

Based on the concept of “Pareto dominance”, the optimality criterion can be 

introduced for MO problems.  In this case, A is unique among B, C, D, and E where its 

corresponding decision vector a is not dominated by any other decision vector.  That 

means, a is optimal in the sense that it cannot be improved in any objective without 

causing a degradation in at least one other objective.  Such solutions are denoted as 

“Pareto optimal” or “Pareto front” solutions (Zitzler, 1999). 

The most widely used approach for MO optimization is the weighted−sum 

method.  The method transforms multiple objectives into an aggregated objective 

function by multiplying each objective function with a weighting factor and summing 

up all weighted objective functions (Kim & De Weck, 2004): 

f(weighted−sum) = w1.f1 +w2.f2 +⋯+ wm.fm 

           (2.48) 

where wi (i = 1,…,m) is a weighting factor for the ith objective function.  The weighting 

factor is generated through dividing each objective by a scaling factor.  The    

weighted−sum is classified to be a convex combination of objectives if  ∑ 𝑤𝑖 = 1𝑚
𝑖=1  

and 0 ≤ wi ≤ 1.  Under certain conditions, the solution to f(weighted−sum) optimization is a 

Pareto optimal point, and by appropriately changing the weight vector wi (i = 1,…,m)  

one can approximate the “Pareto front” (Ryu, Kim & Wan, 2009). 

In this case, each SO optimization determines one particular optimal solution 

point on the Pareto front. The weighted−sum method then changes weights 

systemically, and each different SO optimization determines a different optimal 

solution.  The solutions obtained approximate the Pareto front (Kim & De Weck, 2004). 
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Studies have found some of the major drawbacks of the standard weighted−sum 

method, such as the optimal solutions distribution is not uniform, optimal solutions in 

non−convex regions are not detected, and possibility of solutions duplication with 

different weight combinations (Ryu, Kim & Wan, 2009).  The conventional 

weighted−sum method is unable to generate the non−convex part of the Pareto front is 

shown in Figure 2.22. 

 

Figure 2.22: Non−convex part of the Pareto front (Ryu, Kim & Wan, 2009). 

 

As a result, the adaptive weighted−sum method is developed to address these 

two drawbacks.  By imposing additional inequality constraints in the usual weighted 

sum method, the optimization is performed only in a newly−defined feasible region 

where more exploration is needed.  The adaptive weighted−sum method successfully 

solves MO optimization problems through producing well−distributed solutions, finding 
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Pareto optimal solutions in non−convex regions, and disregarding non−Pareto optimal 

solutions (Kim & De Weck, 2004). 

The notion of “optimum” changes when several objective functions are 

involved.  In MO optimization problems, the aim is to find good compromises or 

“trade−offs” rather than a single solution as in global optimization.  The notion of 

“optimum” most commonly adopted is that originally proposed by Francis Ysidro 

Edgeworth and later generalized by Vilfredo Pareto.  Although some authors call this 

notion the Edgeworth−Pareto optimum, the most commonly accepted term is “Pareto 

optimum”. In some situations, the global Pareto front approach, which approximates the 

Pareto optimum in MO optimization through trade–offs is more practical than the 

weighted–sum method.  This is because the weighted–sum method may possibly have a 

biased optimal solution influenced by big differences among relative weighting factors 

in the MO functions. 
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CHAPTER THREE 

 

3                   RESEARCH METHODOLOGY 

3.1 System Description 

In this study, various modified and hybrid CS algorithms are proposed and 

validated in both SO and MO optimizations for symmetric linear antenna array 

synthesis.  The general overview of the methodology applied in this research is shown 

in Figure 3.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Block Diagram of Research Methodology 

Based on Figure 3.1, the research is performed in five stages comprising both 

SO and MO optimization approaches.  Precisely, the optimal solution for SO 
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optimization is the antenna array elements location whereas the optimal solutions for 

both weighted−sum and Pareto front MO optimization approaches are the antenna array 

elements location, current amplitude, and current phase.  Figure 3.2 below shows the 

nth elements of the symmetric linear antenna array configuration in the xy−plane.    

 

 

Figure 3.2: Geometry of the 2N−element symmetric linear array 

 

It is assumed throughout the experiment that the 2N−isotropic radiators are 

placed symmetrically along the x−axis as depicted in Figure 4.2.  The array factor (AF) 

in the azimuth plane can be defined as (Khodier & Christodoulou, 2005): 

 

𝐴𝐹(𝜃) = 2∑ 𝐼𝑛𝑐𝑜𝑠[𝑘𝑥𝑛𝑐𝑜𝑠(𝜃 + ∅𝑛)]

𝑁

𝑛=1

 

          (3.1) 

where k = 2π ⁄ λ is the wave number, and In, ∅n, and xn are the excitation amplitude, 

phase, and location of the nth element, respectively.  Based on the equation (3.1), the 

newly developed modified and hybrid CS algorithms are tested to find the optimal xn, In, 

and ∅n of linear antenna array elements.   

In SO optimization, for a uniform excitation amplitude and excitation phase, the 

In is assumed to be 1.0 whereas the ∅n is set to 0
o
 for all elements.   Hence, the AF of the 
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linear antenna array can be simplified as (Khodier & Christodoulou, 2005): 

𝐴𝐹(𝜃) = 2∑ 𝐼𝑛𝑐𝑜𝑠[𝑘𝑥𝑛𝑐𝑜𝑠(𝜃)]

𝑁

𝑛=1

 

(3.2) 

Through the above simplification as in (3.2), the newly developed modified and 

hybrid CS algorithms are specifically used in SO optimization to find the linear array 

elements optimal location, xn only. 

Throughout this research, all the proposed modified and hybrid CS algorithm 

source codes are written and debugged using the MATLAB 7.0 (R14) and MATLAB 

7.14 (R2012a) scientific software editions.  In this case, all the MATLAB iterative 

simulations are executed via a notebook deploying the Intel® Core ™ i5−3210M 

(X64−based processor) operated on 64−bit operating system (OS) at 2.50 GHz 

processing cycle with 4.00 GB of random access memory (RAM) capacity. 

 

3.2 Cuckoo Search Algorithm 

This study primarily enhances and hybridizes the newly evolved CS 

metaheuristic algorithm developed recently by Xin−She Yang and Suash Deb in 2009.  

The original CS algorithm is based on the interesting breeding behaviour known as 

brood parasitism of certain species of cuckoos (Yang & Deb, 2009).  Now, let us look 

on the interesting concept behind the nature−inspired CS algorithm. 

Cuckoos are fascinating birds, not only because of the beautiful sounds they can 

make, but also because of their aggressive reproduction strategy.  Some species such as 

the Ani and Guira cuckoos lay their eggs in communal nests, though they may remove 

others’ eggs to increase the hatching probability of their own eggs (Payne, 2005).  Quite 

a number of species engage the obligate brood parasitism by laying their eggs in the 
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nests of other host birds (often other species). There are three basic types of brood 

parasitism behaviour, which are intraspecific brood parasitism, cooperative breeding, 

and nest takeover. 

Some host birds can engage direct conflict with the intruding cuckoos.  For an 

example, if a host bird discovers the eggs are not their own, it will either throw these 

alien eggs away or simply abandon its nest and build a new nest elsewhere.   Some 

cuckoo species such as the new world brood−parasitic Tapera have evolved in such a 

way that female parasitic cuckoos are often very specialized in the mimicry in colours 

and pattern of the eggs of a few chosen host species, thus having a greater chance for 

the cuckoo’s eggs hatch successfully (Payne, 2005).   

Many studies have shown that flight behaviour of many animals and insects has 

demonstrated the typical characteristics of Lévy flights (Brown, Liebovitch & Glendon, 

2007, Pavlyukevich, 2007a, Pavlyukevich, 2007b and Reynolds & Frye, 2007).  Lévy 

flight is defined as a random walk with the step−lengths based on a heavy−tailed 

probability distribution.  When defined as a walk in a space of dimension greater than 

one, the steps made are in isotropic random directions.  The “Lévy” in “Lévy flight” is a 

reference to the French mathematician Paul Pierre Lévy (“Lévy Flight”, 2013).   

Benoít Mandelbrot coined the term “Lévy flight” as one specific definition of 

the distribution of step sizes in 1982.  He used the term “Cauchy flight” for the case 

where the distribution of step sizes is a Cauchy distribution, and “Rayleigh flight” for 

when the distribution is a normal distribution, which is not an example of a heavy–tailed 

probability distribution.  Later researchers have extended the use of the term “Lévy 

flight” to include cases where the random walk takes place on a discrete grid rather than 

on a continuous space (“Lévy Flight”, 2013).  Consequently, such behavior has been 
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emulated to optimization and global optimal search strategy with a promising capability 

(Pavlyukevich
a
, 2007 and Shlesinger, 2006).   

A recent study by Reynolds and Frye (2007) shows that fruit−flies or Drosophila 

Melanogaster, explore their landscape using a series of straight flight paths punctuated 

by a sudden 90° turn, leading to a Lévy−flight−style intermittent scale free search 

pattern.  Likewise, studies on human behaviour such as the Ju/'Hoansi hunter−gatherer 

foraging patterns also show the typical feature of Lévy flights (Brown, Liebovitch & 

Glendon, 2007).  Moreover, the development of an optical material in which Lévy 

statistics govern the diffusive transport of light might allow new optical functionalities 

go beyond normal light diffusion (Barthelemy, Bertolotti & Wiersma, 2008). 

The simplest approach of using new CS metaheuristic algorithm can be done 

through three idealized assumptions, which are (Yang & Deb, 2010):  

i. Each cuckoo lays one egg at a time, and dumps its egg in randomly chosen 

nest of other species of host bird. 

ii. The best nests with high quality of eggs will carry over to the next 

generations. 

iii. The number of available host nests is fixed where the egg laid by a cuckoo 

is discovered by the host bird with a measured discovery rate or fraction 

probability, Pa ∈ [0, 1].   

In this case, the host bird may throw the egg away or may abandon the nest, 

hence build a completely new nest.  The third assumptions can be approximated as the 

fraction Pa of the n nests is replaced by new nests (new random solutions).  Based on 

these three idealized rules, the basic steps of the original CS can be summarized as the 

flowchart shown in Figure 3.3 
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Figure 3.3: Flowchart of the Original CS Algorithm 

 

 

End 

Start 

Initiate a random population of n host nests, xi 

Get a cuckoo randomly by Lévy flights, i 

Evaluate its fitness, Fi 

Select a nest among n randomly, j 

Fi ≤ Fj 

Keep the current best 

t ≤ maxIteration 

Find the best objective (the best nest) 

no 

yes 

Let j as the solution 

Replace j by the new solution 

Abandon nests with worst adaptive, Pa and build new ones at new locations 

via Lévy flights 

yes 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



74 

 

In standard CS algorithm, we generate new solutions, xi
t+1

 for a cuckoo, i by 

explicitly performing a Lévy flight (Yang & Deb, 2010): 

xi
t+1

 = xi
t
 + α ⨁ Lévy (λ) 

          (3.3) 

Note that α > 0 is the step size related to the scales of the problem of interest 

while the product ⊕ means entry−wise multiplications.  The above equation (3.3) is 

essentially the stochastic equation for random walk, which is a Markov chain whose 

next status or location only depends on the current location (the first term in the above 

equation) and the transition probability (the second term).  As in Markov process, after a 

large number of steps, the distance from the origin of random walk in Lévy flight tends 

to form a stable distribution.  Statistically, the stochastic process with both stationary 

and independent increments leads the stable distribution in Lévy flight. The random 

walk via Lévy flight is more efficient than the entry-wise product applied in PSO in 

exploring the search space as its step length is much longer in the long run (Yang & 

Deb, 2009). 

Conceptually, CS random step length drawn from Lévy distribution applies 

power law hence it has an infinite variance with infinite mean depicted as: 

Lévy ~ u = t
-λ

, (1< λ ≤ 3) 

           (3.4) 

Here, the consecutive jumps or steps of a cuckoo essentially form a random walk 

process obeys a power law step length distribution with a heavy−tail.  Some of the new 

solutions obtained within a local search via a low speed Lévy walk around the current 

best solution.  On the contrary, other new solutions generated by a far field 

randomization whose locations are distant enough from the current best solution 

ensuring the optimizer is not trapped within a local optimum space. In sum, the 
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randomization in CS becomes more efficient than GA and PSO as the step−length is 

heavy−tailed, and any large step is possible (Yang & Deb, 2009). 

We can apply three types of α−stable distribution in Lévy flight for generating 

new solutions in CS algorithm, which are Mantegna’s algorithm, McCulloch’s 

algorithm, and standard random walk.  In Mantegna’s algorithm, α ϵ [0.3, 1.99] usually 

becomes as the input parameter with step, v is calculated as (Mantegna, 1994): 

𝑣 =
𝑥

|𝑦|1 𝛼⁄
 

(3.5) 

where x and y are normally distributed variables with standard deviations as follow, 

respectively (Mantegna, 1994): 

 

(3.6) 

σy = 1 

(3.7) 

 

(3.5) till (3.7) indicate that the resulting distribution will have the same behaviour of a 

Lévy distribution for large values of random variable (|v| ≥ 0). 

To calculate the step size of Lévy flights, the v will be then multiplied with n 

factor where n ϵ real number, R.  Normally, n is set to 0.01 from the fact that L/100 is 

the step size of walks or flights where L is the typical length scale.  It is important to set 

the proper factor to ensure the Lévy flights do not become too aggressive, which makes 

new solutions jump outside of the design or search space. 

Secondly, we can use McCulloch’s algorithm to generate α−stable generation of 

Lévy noise (Chambers, Mallows & Stuck, 1976).  The algorithm returns matrix of 
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random numbers with characteristic exponent α, scale c, and location parameter τ.  In 

this case, α must be greater than 0.1 due to the non−negligible probability of overflow 

and no skewers (β = 0) is assumed.  There are three cases to calculate the simplified step 

(v) of α−stable distribution: 

1) Cauchy case (α=1): 

v = c tan(φ) + τ 

(3.8) 

2) Gaussian case (α=2): 

v = c2√w sin(φ) + τ 

(3.9) 

3) Other cases (α ≠ 1 or α ≠ 2): 

𝑣 = 𝑐 (
cos((1 − 𝛼)𝜑)

𝜉
)

1

𝛼
−1

(
sin(𝛼𝜑)

cos(𝜑)
)

1

𝛼

+ 𝜏 

(3.10) 

where c > 0, ξ are negative logarithm of random numbers, φ are random angles in 

radians, and for simplicity, τ = 0.  Thirdly, the simplest way to generate a stable Lévy 

distribution is by generating standard random walk where step, v = 1 constantly. 

In addition, CS is also proven more generic and robust than the PSO and GA in 

optimizing multimodal objective functions.  Through simulations running on various 

standard test functions, CS is more efficient in finding the global optima with higher 

success rates (Yang & Deb, 2009 and 2010).   This is partly due to the fact that there are 

fewer parameters to be fine−tuned in CS, hence, potentially more generic to adapt to a 

wider class of optimization problems (Yang & Deb, 2009).  

 

3.3 Cuckoo Search Algorithm in Linear Antenna Array Synthesis 

In the first stage of this research, five internal parameters of the standard CS 

algorithm are tested specifically upon their implicit effects of the normalized antenna 

radiation pattern. The five parameters include Lévy flights distribution type or α value, 
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α–stable distribution method, length step factor, number of host nest (population), and 

discovery rate or fraction probability or Pa.  In this case, the CS algorithm is simulated 

using 2N = 10 and 2N = 20 linear array configurations. Then, the performance results 

are compared with the conventional array.  Based on (3.2), the experiment involves the 

usage of the CS algorithm to optimize the inter−element spacing with respect to the λ ⁄ 2 

while preserving a uniform excitation amplitude and phase over the array aperture.  The 

λ ⁄ 2 spacing is suitable to avoid mutual coupling impairment occurs among antenna 

array elements. 

In this study, based on (3.2), the fitness optimization is primarily performed to 

design the geometry of a symmetric linear antenna steering at the desired direction with 

a minimum average SLL and/or nulls control using the following objective function: 

Fitness𝑓 =∑
1

∆𝜃𝑖
∫ |𝐴𝐹(𝜃)|2𝑑𝜃 +∑|𝐴𝐹(𝜃𝑘)|

2

𝑘

𝜃𝑢𝑖

𝜃𝑙𝑖𝑖

 

(3.11) 

where [θli, θui] is the spatial region in which the SLL is suppressed, ∆θi = θui − θli, and  

θk are the directions of the prescribed nulls or interferers.  Precisely, the first−term on 

the right−hand side of the fitness function focuses on SLL suppression whereas the 

second−term on the right−hand side is used for nulls control.  In this study, the nest’s 

location vector resulted the minimum value of the fitness function is chosen as the best 

nest’s location (the best normalized locations of antenna array isotropic radiators           

or elements). 

The second stage involves the postulation of modified CS (MCS) algorithm in 

linear antenna array synthesis.  In this section, the MCS algorithm is proposed by 

integrating the standard CS algorithm with the Roulette wheel selection operator, and 

adaptive inertia weight, w and adaptive fraction probability, Pa primarily to control the 
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Lévy flight search motion ability.  The Roulette wheel operator performs the possible 

selections of potential solutions (assigned in a portion of the wheel) based on their 

fitness value.  This is done by dividing the fitness of a selection by the total fitness of all 

the selections, thus normalizing them to one before a random selection is made similar 

to how the Roulette wheel is rotated.  The main purpose is to ensure that candidate 

solutions with a superior fitness had a larger possibility to be selected.   On the other 

hand, the aim of introducing the adaptive w is primarily to control the exploration 

ability towards optimal solutions in N–dimensional search space.  Figure 3.4 shows the 

flowchart of the proposed MCS algorithm.    

Ideally, this breakthrough should make the MCS algorithm more robust and 

efficient than the original CS algorithm particularly in SLL suppression and/or 

prescribed nulls control.   In the MCS algorithm, the process of generating new 

solutions, x
(t + 1)

 for a cuckoo, i via the Lévy flight with adaptive w can be restated as: 

𝑥𝑖
𝑡+1 = 𝑤 × 𝑥𝑖

𝑡 + 𝛼⊕ Lévy(𝜆) 

(3.12) 

As a matter of fact, a larger w would perform further global search ability 

whereas a smaller w would execute further local search ability.  Based on (3.12), the w 

is linearly decreased from a relatively large value to a small value as number of 

iterations increased.  To achieve this, the adaptive w is defined as: 

w = wmax – [(wmax –  wmin) × iter] / maxIter 

(3.13) 
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Figure 3.4: Flowchart of the Proposed MCS Algorithm 
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Initiate randomly and select the best fitted n host nests, xi via Roulette wheel 

operator 

Get a cuckoo randomly by Lévy flights, i controlled by adaptive, w 

Evaluate its fitness, Fi 

Select a nest among n randomly, j 

Fi  ≤ Fj 

Let j as the solution 
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In this study, the fitness minimization is done with the aim to determine the 

optimal locations of nth element based on (3.2) and (3.11), respectively.   Based on a 

flowchart in Figure 3.4, the following pseudo–code of the newly developed MCS 

algorithm is proposed and tested: 

begin 
Let iter denote the iteration number of MCS. 

 Iter←1; 
 Initialize population of host nests with size n at Iter=1;  
 for each iteration 

Operate the Roulette wheel selection to obtain the 
“fittest” host nests with size n; 
Generate a new solution (host nest) but keep the 
current best (say, i) randomly by Lévy flights 
incorporating with inertia weight, w, which controls 
the search ability according to (3.12); 
Evaluate new solution fitness, Fi according to    
(3.11); 
Get a selected host nest among n (say, j) and 
calculate its fitness, Fj according to (3.11); 
if (Fi < Fj) 

   Replace j by the new solution, i; 
end 
A fraction probability, Pa of worse nests is 
abandoned and a new nest (solution) is built; 
Keep the best nests with quality solutions; 
Rank the solutions and find the current best nest; 

end 
Post–process results and visualization; 

end 
 

Initially, the study focuses on the four internal parameters of the MCS algorithm 

specifically on their imperative effects in the antenna array geometry synthesis.  The 

parameters are Lévy flight distribution type (α value), α–stable distribution method, 

number of host nest (population), and discovery rate or fraction probability, Pa.  The 

optimal inter–element spacing solutions obtained by the MCS algorithm are then 

validated through comparisons with the standard CS–optimizer and the conventional 

antenna array within the uniform and Dolph–Chebyshev envelope patterns.   
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In the third stage, the MCS algorithm is hybridized with two EA/EC techniques, 

which are GA and PSO in linear antenna array synthesis.  Both the proposed MCSPSO 

and MCSGA hybrid algorithms use the fitness, f function to guide the Lévy flight 

motions towards the optimal solutions in N–dimensional search space.  Precisely, the 

optimal solutions refer to the linear antenna array elements location along in the x–axis.  

The resulting optimal positions taken from the global minimum value of equation (3.11) 

are presumed to be as the best particle in PSO or best chromosome in GA.  Based on a 

flowchart in Figure 3.5, the following is the postulated pseudo–code of MCSPSO hybrid 

algorithm, which is developed and validated in this study: 

begin 

Let iter denote the iteration number of MCSPSO. 

iter ←1; 

Initialize population of host nests with size n at iter=1;  

for each iteration 

Operate the Roulette wheel selection to obtain the 

ʺfittestʺ host nests with size n; 

Generate a new set of solutions (host nests) but keep 

the Current best (say, i) randomly by Lévy flights 

incorporating with inertia weight, w, which controls 

the search ability according to (3.12); 

Evaluate new solution fitness, Fi according to 

(3.11); 

Get a selected set of host nests among n (say, j) and 

calculate its fitness, Fj according to (3.11); 

if (Fi < Fj) % fitness minimization % 

Replace j by the new set of solutions, i; 

end 

A dynamic fraction probability, Pa of worse nests is 

abandoned and a new nest (set of solution) is built; 

Keep the best nests with quality solutions; 
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Let the best nests become as initial particles; 

for each particle 

Calculate fitness value according to (3.11); 

if the fitness value is better than the best 

fitness value (pbest) in history 

Set current value as the new pbest; 

end 

end 

Choose the particle with the best fitness value of 

all the particles as the gbest; 

for each particle 

Calculate particle velocity according equation 

(2.38); 

Update particle position according equation 

(2.39); 

end 

Evaluate the updated current fitness value according 

to (3.11); 

if the new current fitness value is better than the 

fitness of pbest; 

Set current value as the new pbest; 

end 

if the new current fitness value is better than the 

fitness of gbest 

Set current value as the new gbest; 

end 

Keep the best particles with quality solutions; 

Rank the solutions and find the current best 

particle; 

end 

 Post–process results and visualization; 

end 
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Figure 3.5: Flowchart of the Proposed MCSPSO Algorithm 
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Figure 3.6: Flowchart of the Proposed MCSGA Algorithm 

 

Based on a flowchart in Figure 3.6, the following is the proposed pseudo–code 

for the MCSGA hybrid algorithm, which is developed and validated in this study: 

The best nest of MCS algorithm be as initial n chromosomes, xc with fitness Fbest 

Start 

Calculate the fitness value for new offspring, Fnew 

Fnew ≤ Fbest 

Assign xnew as the new best solution 

g  ≤  maxGeneration 

End 

Find the best objective (the best chromosome) 

no 

yes 

yes 

no 

Select xc for the mating pool 

Crossover a pair of parent, xc to produce new offspring, xnew 

Mutate new offspring, xnew 

Keep the previous best solution 
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begin 

Let gen denote the generation number of MCSGA. 

gen←1; 

Initialize population of host nests with size n at gen=1;  

for each generation 

Operate the Roulette wheel selection to obtain the 

ʺfittestʺ host nests with size n; 

Generate a new set of solutions (host nests) but keep 

the current best (say, i) randomly by Lévy flights 

incorporating with inertia weight, w, which controls 

the search ability according to (3.12); 

Evaluate new solution fitness, Fi according to 

(3.11); 

Get a selected set of host nests among n (say, j) and 

calculate its fitness, Fj according to (3.11); 

if (Fi< Fj) % fitness minimization % 

Replace j by the new set of solutions, i; 

end 

A dynamic fraction probability, Pa of worse nests is 

abandoned and a new nest (set of solution) is built; 

Keep the best nests with quality solutions; 

Let the best nests become as initial chromosomes; 

Evaluate each individual's fitness according to 

(3.11); 

Select pairs to mate from best–ranked individuals; 

Mate pairs at random; 

Apply crossover operator; 

Apply mutation operator; 

for each chromosome 

Calculate new fitness value according to (3.11); 

if the new fitness value is better than the best 

fitness value in history 
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Set current value as the new best 

chromosomes; 

end 

end 

Keep the best chromosomes with quality solutions; 

Rank the solutions and find the current best 

chromosome; 

end 

    Post–process results and visualization; 

end 

In the fourth stage, the proposed MCS, hybrid MCSGA and hybrid MCSPSO 

algorithms are deployed to perform weighted−sum multiobjective (MO) optimization 

for linear antenna array synthesis.  Precisely, the MCSGA leads the MCS algorithm to 

control effectively exploration of the best–fitted chromosomes (host nests) in search 

space after undergoing the unique crossover and mutation processes.  On the other hand, 

the MCSPSO counterpart helps the MCS algorithm in controlling the velocity (direction 

and speed) of particles (cuckoos) Lévy flight motions towards optimal solutions.  The 

position updating process determines the personal best fitness (pbest) for all particles 

and through it to locate a particle with the global best fitness (gbest) in search space.  

  In this case, the MCS algorithm performed optimization involving three 

objective functions simultaneously until the maximum number of iteration achieved 

using the weighted–aggregation objective or total normalized weighted–sum fitness 

function as defined below: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(iter) =
𝑓1

mean(𝑓1(iter = 1))
+

𝑓2

mean(𝑓2(iter = 1))
+

𝑓3

mean(𝑓3(iter = 1))
 

(3.14) 

The approach primarily exploits the weighted–sum of three objective functions, 

f1, f2, and f3 where the fitness, f1 is defined as below: 
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𝑓1 = min{1 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦⁄ }         

(3.15) 

The directivity is the ratio of the radiation intensity in a given direction from the 

antenna to the radiation intensity averaged over all directions.  Mathematically, the 

directivity in terms of beam solid angle can be defined as: 

𝐷(𝜃, 𝜑) =
𝑈(𝜃, 𝜑)

𝑈𝑎𝑣𝑔
= 4𝜋

𝑈(𝜃, 𝜑)

𝑃𝑟𝑎𝑑
 

(3.16) 

where 𝑈(𝜃, 𝜑) = 𝐵𝑜𝐹(𝜃, 𝜑)is the antenna radiation intensity, and 𝑈𝑎𝑣𝑔 is radiation 

intensity averaged over all directions. In this study, the directivity is measured in 

decibel (dB) unit through a formula below: 

𝐷𝑑𝐵(𝜃, 𝜑) = 10 log10 𝐷(𝜃, 𝜑) 

(3.17) 

 

The fitness, f2 is defined as below: 

𝑓2 = min{∑
1

∆∅𝑖
∫ |𝐴𝐹(∅)|2𝑑∅ +∑|𝐴𝐹(∅𝑘)|

2

𝑘

∅𝑢𝑖

∅𝑙𝑖𝑖

} 

(3.18) 

where [∅𝑙𝑖, ∅𝑢𝑖]’s are the spatial regions in which the SLL is suppressed,                

 ∆∅𝑙 = ∅𝑢𝑖 − ∅𝑙𝑖, and ∅𝑘’s are the directions of the prescribed nulls or interferers.  

Moreover, the fitness, f3 is stated as below: 

𝑓3 = min{1 − DRR}       

(3.19) 

where the dynamic range ratio (DRR) is mathematically defined as:                       

DRR =  |max excitation amplitude min excitation amplitude⁄ |   

(3.20) 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



88 

 

Basically, the fitness, f1 is related to the evaluation of minimizing the 
1

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 

ratio or in other words, maximizing the antenna directivity.  The fitness, f2 is concerned 

on the minimizing the average side lobes radiated by the antenna.  Furthermore, the 

fitness, f3 is mainly considered for minimizing the deviations between |maximum 

excitation amplitude| and |minimum excitation amplitude| for all linear array elements.   

The postulated MCSPSO, MCSGA, and MCS algorithms use the dynamic 

discovery rate, Pa, and the inertia weight, w.  In this case, the dynamic Pa reduces the 

possibility of host birds of other species discover the cuckoo’s egg as the iteration 

increases. In other words, the dynamic discovery rate or fraction probability is getting 

smaller gradually as the number of iteration rises initiating the brood–parasitism 

behavior successes is calculated by: 

 

𝑃𝑎 = 𝑃𝑎𝑚𝑎𝑥 − [(𝑃𝑎𝑚𝑎𝑥 − 𝑃𝑎𝑚𝑖𝑛) × iter]/maxIter 

(3.21) 

where 𝑃𝑎𝑚𝑎𝑥is the maximum discovery rate, and 𝑃𝑎𝑚𝑖𝑛 is the minimum discovery rate, 

respectively.  On the other hand, the dynamic inertia weight, w is calculated as in (3.13). 

For simplicity, it is assumed that the weight given for all objectives f1, f2, and f3 

are equal to 1.0.  The weighted–sum fitness in (3.14) is normalized through dividing 

fitness, all objectives f1, f2, and f3 in all iterations with their respective mean values of 

the first iteration.  The purpose is to reduce the possible bias caused by differences in 

terms of magnitude among three objective functions, respectively.  The resulting 

optimal location, amplitude, and phase vectors taken from the global minimum value of 

(3.14) are declared to be the optimal solutions. 

Lastly, the fifth stage postulates various hybrid MCS algorithms via the global 

Pareto front MO approach to find the three optimal decision variables, which are 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



89 

 

positions, excitation amplitudes, and excitation phases of the symmetric linear antenna 

array elements, respectively.  The approach primarily exploits the trade–offs of three 

objective functions, f1, f2, and f3 as defined in (3.15), (3.18), and (3.19), respectively.  In 

the function, f3 the dynamic range ratio (DRR) is calculated using (3.20). 

The strength Pareto evolutionary algorithm (SPEA) method is implemented to 

perform the MO optimization for the linear antenna array synthesis.  In this case, the 

postulated MCS algorithm will be hybridized with the SPEA method known as 

MCSSPEA to find the Pareto front non–dominated solutions.  Furthermore, there is the 

hybridization of hill climbing (HC) algorithm to improve the local search capability of 

MCS and SPEA algorithms referred as MCSHCSPEA algorithm, and also the 

hybridization of both MCS and PSO algorithms with SPEA known as MCSPSOSPEA 

algorithm, respectively.    

The MCSSPEA, MCSHCSPEA, and MCSPSOSPEA hybrid algorithms deploy 

the Roulette wheel selection operator, dynamic Pa, and dynamic w within the MCS 

optimizer.  In this case, the dynamic Pa reduces the possibility of host birds of other 

species discover the cuckoo’s egg as the iteration increases.  In other words, the 

dynamic Pa is getting smaller gradually as the number of iteration rises initiating the 

brood–parasitism behavior successesas defined in (3.21).  Moreover, the dynamic w is 

calculated using (3.13). 

Moreover, there is a calculation mechanism for MCSSPEA, MCSHCSPEA, and 

MCSPSOSPEA optimizers to increase the spread of Pareto front.  The purpose is to 

reduce the local trap predicament as sometimes appeared in the original SPEA.  In this 

study, the distance for three MO functions with p non–dominated solutions is calculated 

as below:   
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 = |∑∑𝑓1𝑖 − 𝑓1𝑗

𝑝

𝑗=𝑖

𝑝

𝑖=1

| + |∑∑𝑓2𝑖 − 𝑓2𝑗

𝑝

𝑗=𝑖

𝑝

𝑖=1

| + |∑∑𝑓3𝑖 − 𝑓3𝑗

𝑝

𝑗=𝑖

𝑝

𝑖=1

| 

(3.22)  

The following equations (3.23) – (3.25) show the Pareto front spread fitness 

formulation of p non–dominated solutions (Zitzler, 2004): 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 = min𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 

(3.23) 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 =
1

(𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 + 𝛿)
 

(3.24) 

𝑆𝑝𝑟𝑒𝑎𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 𝑅𝑎𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 

(3.25) 

The equation (3.24) shows that the smaller distances between the inter–Pareto 

raw points, the higher density would be.  The denominator of (3.24) has the minimum 

distance added with a constant value, δ to ensure the density is enough to spread the raw 

points as calculated in (3.25).  Hence, the simulation can achieve the big spread of 

optimal non–dominated solutions in the Pareto front trade–offs domain. 
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Figure 3.7: Flowchart of the Proposed MCSSPEA Algorithm 

 

 

 

The best nest of MCS algorithm as initial population set, P 

Start 

Use Pareto strength to get non–dominated, P' elements 

Copy P' from P and archive set, N to a new archive set, N' 

Find the best solution set, N' 

End 

yes 

no 

Calculate Pareto front distance expansion formulae and hypervolume indicator, IH 

 Size of P' > N 

Clustering P' elements Fill P' and P elements to N' 

t  ≤  maxIteration 

yes no 
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Figure 3.8: Flowchart of the Proposed MCSPSOSPEA Algorithm 

 

 

The best nest of MCSPSO algorithm as initial population set, P 

Start 

Use Pareto strength to get non–dominated, P' elements 

Copy P' from P and archive set, N to a new archive set, N' 

Find the best solution set, N' 

End 

yes 

no 

Calculate Pareto front distance expansion formulae and hypervolume indicator, IH 

 Size of P' > N 

Clustering P' elements Fill P' and P elements to N' 

t  ≤  maxIteration 

yes no 
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Since this study involves MO functions, hypervolume measure or indicator of 

the dominated portion of the objective space is applied as a quality measure for Pareto 

set approximations.  The hypervolume indicator, IH(A) of a solution set A ⊆ X can be 

defined as the hypervolume of the space with N = 3 objective functions that is 

dominated by the set A and bounded by a reference point r = (r1, r2, ,r3) ∈ ℝ3(Brockhoff 

et al., 2008):  

𝐼𝐻(𝐴) = 𝜈𝑜𝑙(∪𝑎∈𝐴 [𝑓1(𝑎), 𝑟1] × [𝑓2(𝑎), 𝑟2] × [𝑓3(𝑎), 𝑟3]) 

(3.26) 

where νol(.) is the Lebesgue measure and ([f1(a), r1]×[f2(a), r2]×[f3(a), r3]) denotes as 

the 3–dimensional hypercuboid consisting of all points, which are weakly dominated by 

the point a but not weakly dominated by the reference point. 

Based on a flowchart shown in Figure 3.7, the following is the postulated 

pseudo–code of MCSSPEA algorithm, which is developed and tested in this study: 

begin 

Let iter denote the iteration number of MCSSPEA. 

iter1; 

Initialize population of host nests with size n at iter=1;  

for each iteration 

Operate the Roulette wheel selection to obtain the 

ʺfittestʺ host nests with size n; 

Generate a new set of solutions (host nests) but keep 

the Current best (say, i) randomly by Lévy flights 

incorporating with inertia weight, w, which controls 

the search ability according to (3.13); 

Evaluate new solution MO fitness, Fi according to 

(3.15),(3.18), and (3.19); 

Get a selected set of host nests among n (say, j) and 

calculate its MO fitness, Fj according to (3.15), 

(3.18), and (3.19); 
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if (Fi ≤ Fj) % fitness minimization % 

Replace j by the new set of solutions, i; 

end 

A dynamic fraction probability, Pa of worse nests is 

abandoned and a new nest (set of solution) is built; 

Keep the best nests with quality solutions; 

Rank the solutions; 

PopulationCurrent best individuals; 

ArchiveØ; 

for 𝑆𝑖 ∈Population 

𝑆𝑖𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠CalculateObjectives(𝑆𝑖); 

end 

UnionPopulation+Archive; 

for 𝑆𝑖 ∈Union 

𝑆𝑖𝑟𝑎𝑤CalculateRawFitness(𝑆𝑖,Union); 

𝑆𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦CalculateSolutionDensity(𝑆𝑖,Union); 

𝑆𝑖𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑆𝑖𝑟𝑎𝑤+𝑆𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 

end 

ArchiveGetNonDominated(Union); 

if Size(Archive)<𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒 

PopulateWithRemainingBest(Union,Archive,𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒); 

elseif Size(Archive)>𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒 

RemoveMostSimilar(Archive,𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒); 

end 

Return(GetNonDominated(Archive)); 

end 

 Post–process result (Archive) and visualization; 

end 

Based on a flowchart shown in Figure 3.8, the postulated pseudo–code of 

MCSPSOSPEA algorithm, which is developed and tested in this study: 
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begin 

Let iter denote the iteration number of MCSPSOSPEA. 

iter1; 

Initialize population of host nests with size n at iter=1;  

for each iteration 

Operate the Roulette wheel selection to obtain the 

ʺfittestʺ host nests with size n; 

Generate a new set of solutions (host nests) but keep 

the Current best (say, i) randomly by Lévy flights 

incorporating with inertia weight, w, which controls 

the search ability according to (3.13); 

Evaluate new solution MO fitness, Fi according to 

(3.15),(3.18), and (3.19); 

Get a selected set of host nests among n (say, j) and 

calculate its MO fitness, Fj according to (3.15), 

(3.18), and (3.19); 

if (Fi ≤ Fj) % fitness minimization % 

Replace j by the new set of solutions, i; 

end 

A dynamic fraction probability, Pa of worse nests is 

abandoned and a new nest (set of solution) is built; 

Keep the best nests with quality solutions; 

Let the best nests become as initial particles; 

for each particle 

Calculate MO fitness value according to (3.15), 

(3.18), and (3.19); 

if the fitness value is better than the best MO 

fitness value (pbest) in history 

Set current value as the new pbest; 

end 

end 

for each particle 

Calculate particle velocity according to (2.38); 
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Update particle position according to (2.39); 

end 

Evaluate the updated current MO fitness value 

according to (3.15), (3.18), and (3.19); 

if the new current MO fitness value is better than 

the fitness of pbest; 

Set current value as the new pbest; 

end 

Keep the best particles with quality solutions; 

Rank the solutions and find the current best 

particles; 

PopulationCurrent best particles; 

ArchiveØ; 

for 𝑆𝑖 ∈Population 

𝑆𝑖𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠CalculateObjectives(𝑆𝑖); 

end 

UnionPopulation+Archive; 

for 𝑆𝑖 ∈Union 

𝑆𝑖𝑟𝑎𝑤CalculateRawFitness(𝑆𝑖,Union); 

𝑆𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦CalculateSolutionDensity(𝑆𝑖,Union); 

𝑆𝑖𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑆𝑖𝑟𝑎𝑤+𝑆𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 

end 

ArchiveGetNonDominated(Union); 

if Size(Archive)<𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒 

PopulateWithRemainingBest(Union,Archive,𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒); 

elseif Size(Archive)>𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒 

RemoveMostSimilar(Archive,𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒); 

end 

Return(GetNonDominated(Archive)); 

end 

 Post–process result (Archive) and visualization; 

end 
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In this stage, there is also a postulation of MCS algorithms with two stochastic 

algorithms, which are hill climbing (HC) and SPEA metaheuristics.   HC is a local 

search method that uses an iterative improvement strategy.  The strategy is applied to a 

single point, such as the current point (or state) in the search space.  At each iteration, a 

new point 𝐱′ is selected by performing a small displacement or perturbation in the 

current point x, i.e., the new point is selected in the neighbourhood of the current point: 

x:x'+∆x (De Castro, 2006). 

If that new point provides a better value for the evaluation function, then the 

new point becomes the current point.  Else, some other displacement is promoted in the 

current point (a new neighbour is chosen) and tested against its previous value.  

Termination occurs when one of the following stopping criteria is met: 

i. No further improvement can be achieved. 

ii. A fixed number of iterations have been performed. 

iii. A goal point is attained. 

Let x be the current point, g the goal point, and max_iteration a maximum 

number of iterations allowed.  The pseudo−code of a standard (simple) HC is as follow: 

function [x] = hill_climbing(max_iteration,g) 
initialize x 

 eval (x) 
 t ←  1 
 while t < max_iteration & x ~= g && no_improvement do 
  x′ ← perturbation (x) 
  eval (x′) 
  if eval (x′) is better than eval (x) 
   then x ←  x′ 
  end 
  t ← t + 1 
 end 
endfunction 
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Figure 3.9: Flowchart of the Proposed MCSHCSPEA Algorithm 
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Calculate Pareto front distance expansion formulae and hypervolume indicator, IH 

 Size of P' > N 
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Indeed, HC algorithms have some limitations, which are usually terminate at 

local optima solutions, no information about the distance between the solution found 

and the global optimum.  The optimum found depends on the initial configuration, and 

generally not possible to provide an upper bound for the computational time of the 

algorithm (De Castro, 2006). 

Based on a flowchart in Figure 3.9, the following is the postulated pseudo–code 

of MCSHCSPEA algorithm, which is also developed and validated in this simulation: 

begin 

Let iter denote the iteration number of MCSHCSPEA. 

iter1; 

Initialize population of host nests with size n at iter=1;  

for each iteration 

Operate the Roulette wheel selection to obtain the 

ʺfittestʺ host nests with size n; 

Generate a new set of solutions (host nests) but keep 

the Current best (say, i) randomly by Lévy flights 

incorporating with inertia weight, w, which controls 

the search ability according to (3.13); 

Evaluate new solution MO fitness, Fi according to 

(3.15),(3.18), and (3.19); 

Get a selected set of host nests among n (say, j) and 

calculate its MO fitness, Fj according to (3.15), 

(3.18), and (3.19); 

if (Fi ≤ Fj) % fitness minimization % 

Replace j by the new set of solutions, i; 

end 

A dynamic fraction probability, Pa of worse nests is 

abandoned and a new nest (set of solution) is built; 

Keep the best nests with quality solutions; 

Let the best nests become as initial individuals; 

xbest nests; 
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for each individual, x 

Calculate MO fitness, Fx value according to 

(3.15), (3.18), and (3.19); 

end 

 x'perturbation (x) 
 for each individual, x' 

Calculate multiobjective fitness, Fx' value 
according to (3.15), (3.18), and (3.19); 

end 
  if (Fx' ≤ Fx) % fitness minimization% 
   Replace x by the new set of solutions, x'; 
  end 
      Keep the best individuals with quality solutions; 

Rank the solutions; 

PopulationCurrent best individuals; 

ArchiveØ; 

for 𝑆𝑖 ∈Population 

𝑆𝑖𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠CalculateObjectives(𝑆𝑖); 

end 

UnionPopulation+Archive; 

for 𝑆𝑖 ∈Union 

𝑆𝑖𝑟𝑎𝑤CalculateRawFitness(𝑆𝑖,Union); 

𝑆𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦CalculateSolutionDensity(𝑆𝑖,Union); 

𝑆𝑖𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑆𝑖𝑟𝑎𝑤+𝑆𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 

end 

     ArchiveGetNonDominated(Union); 

if Size(Archive)<𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒 

PopulateWithRemainingBest(Union,Archive,𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒); 

elseif Size(Archive)>𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒 

RemoveMostSimilar(Archive,𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑠𝑖𝑧𝑒); 

end 

Return(GetNonDominated(Archive)); 

end 

 Post–process result (Archive) and visualization; 

end 
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In this study, all the modified and hybrid CS algorithms are proposed and 

deployed to perform SO and MO optimization simulations for linear antenna array 

synthesis with 2N = 10 or 20 or 30 symmetric elements based on design specifications 

as enlisted in Table 3.1 below.  All the modified and hybrid CS algorithms in SO 

optimization should accomplish the desired average SLL suppression and null 

mitigation values in both uniform and Dolph–Chebyshev current amplitude 

distributions.  Besides, all the newly proposed CS algorithms in weighted–sum and 

Pareto front MO approaches should fulfill the displayed average SLL suppression, null 

mitigation, antenna directivity improvement, and HPBW reduction in both uniform and 

Dolph–Chebyshev current filtering windows.     

 

Table 3.1: Design Parameter Specification 

Uniform Amplitude Distribution 

No. of Elements Average SLL Null Directivity HPBW  

2N = 10 –35 dB ≤ SLL ≤ –15 dB ≤ –35 dB ≥ 6.0 dB ≤  12
o 

2N = 20 –35 dB ≤ SLL ≤ –15 dB ≤ –35 dB ≥ 6.0 dB ≤  08
o 

2N = 30 –35 dB ≤ SLL ≤ –15 dB ≤ –35 dB ≥ 6.0 dB ≤  04
o 

Dolph–Chebyshev (Relative SLL, R = –30 dB) Amplitude Distribution 

No. of Elements Average SLL  Null Directivity HPBW 

2N = 10 –40 dB ≤ SLL ≤ –25 dB ≤ –40 dB ≥ 7.0 dB ≤  14
o 

2N = 20 –40 dB ≤ SLL ≤ –30 dB ≤ –40 dB ≥ 7.0 dB ≤  07
o 

2N = 30 –40 dB ≤ SLL ≤ –30 dB ≤ –40 dB ≥ 7.0 dB ≤  05
o 
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CHAPTER FOUR 

4 SINGLE OBJECTIVE OPTIMIZATION 

4.1 The Preliminary Study on Cuckoo Search Algorithm Internal Parameters 

Firstly, there is an analysis on the Lévy flights distribution type or α parameter.  

The CS–optimizer with the host nest (population) = 20, fraction probability, Pa = 25% 

or 0.25, length step factor = L/100 or 0.01, along with both α = 1.0 (Lévy flight Cauchy 

distribution), and α = 2.0 (Lévy flight Gaussian distribution) are examined, 

respectively.Figure 4.1(a) – (b) depict two normalized patterns for 2N = 10 linear array 

in which the λ ⁄ 2 inter−element distance are optimized by the original CS algorithm.  

Figure 4.2 and Figure 4.3 shows the polar pattern for both linear arrays with α = 2.0 and 

α = 1.0, respectively.  The normalized and polar patterns are identical for both cases 

primarily due to the same minimum fitness or fmin convergence, which is about 0.01185 

after simulating 500 iterations.  

Based on Figure 4.4, as α smaller, the convergence rate becomes faster. In this 

case, the CS–optimizer with Mantegna’s algorithm shows that for α = 1.0, about 212 

iterations are needed to achieve the convergence whereas for α = 2.0 about 304 

iterations are needed, respectively.  Moreover, for α = 2.0, bigger location fluctuations 

occur in an attempt to search for the optimal solutions before 465 iterations. 
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(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 

 

Figure 4.1: Normalized Pattern for α Comparison (2N = 10, Uniform, maxIter = 500) 
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Table 4.1: Optimal Location for α Comparison (2N = 10, Uniform, maxIter = 500) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [α = 2.0] ±0.4881 ±1.4793 ±2.4626 ±3.4937 ±4.5702 

CS [α = 1.0] ±0.5060 ±1.5235 ±2.5196 ±3.5552 ±4.6319 

 

In addition, Table 4.1 above enlists the optimal locations for both CS−optimizers 

with the Lévy flight Gaussian and Cauchy distributions, which have differences 

between them less than |±0.1000| for all the 2N = 10 array elements.  In other aspect, the 

CS−optimizer with the Gaussian distribution generates the bigger optimal location 

deviations compared to the conventional array between |±0.0060| and |±0.1319|.  In 

contrast, the CS−optimizer with the Cauchy distribution has the smaller variations 

between |±0.0119| and |±0.0702|.  In short, the CS−optimizer with the Gaussian 

distribution generates a bigger diversity in terms of optimal array element locations 

through a further exploration in search space producing a better SLL suppression. 

 
Figure 4.2: Polar Pattern for CS−based Array                                                        

(2N=10, Gaussian, Uniform, maxIter = 500) 
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Figure 4.3: Polar Pattern for CS−based Array                                                         

(2N=10, Cauchy, Uniform, maxIter = 500) 

 

Figure 4.4: Location and Fitness Curves for α Comparison                                     

(2N=10, Uniform, maxIter = 500) 
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Then, there is also an analysis on the effect of 𝛼 using the 2N = 20 linear arrays 

through a MATLAB simulation with 5000 iterations.   For a standardization, the 

CS−optimizer with Mantegna’s algorithm parameters, e.g. nest (population) = 20,         

discovery rate, Pa = 25% or 0.25, length step factor = L/100 or 0.01, along with both     

α = 1.0 (Cauchy distribution), and α = 2.0 (Gaussian distribution) are maintained, 

respectively.  Figure 4.5(a) – (b) show that the CS−optimizer with α = 2.0 performs 

better by having a lower SLL suppression, e.g. between 0.5 dB and 3.5 dB lower than 

the CS−optimizer with α = 1.0 within [30° 83°] and [97° 150°] domains, respectively.  

In addition, Figure 4.6 shows that the CS−optimizer with α = 2.0 had bigger location 

fluctuations, and a lower fmin convergence of 0.0145 after 4400 iterations.  Moreover, 

Table 4.2 enlists the CS−optimizer with the Gaussian distribution generated the bigger 

optimal location deviations compared to the conventional array between |±0.1653| and 

|±3.1577|.  In sum, the CS algorithm with the Gaussian α–stable distribution has a better 

diversity via larger fluctuations in optimal excitation locations for the linear array with 

larger number of elements. 
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(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 

 

Figure 4.5: Normalized Pattern for α Comparison (2N = 20, Uniform, maxIter = 5000) 

0 20 40 60 80 100 120 140 160 180
-40

-35

-30

-25

-20

-15

-10

-5

0

The Direction Angles in Degrees

T
h
e
 N

o
rm

a
liz

e
d
 E

le
c
tr

ic
 F

ie
ld

 i
n
 d

B

 

 

Conventional(SR=[0 83] and [97 180])

CS(alpha=2.0)

CS(alpha=1.0)

105 110 115 120 125 130 135 140 145

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

The Direction Angles in Degrees

T
he

 N
or

m
al

iz
ed

 E
le

ct
ric

 F
ie

ld
 in

 d
B

 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



108 

 

 
Figure 4.6: Location and Fitness Curves for α Comparison                                            

(2N = 20, Uniform, maxIter = 5000) 

 

Table 4.2: Optimal Location for α Comparison (2N = 20, Uniform, maxIter = 5000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [α = 2.0] ±0.6653 ±1.9971 ±3.3248 ±4.6470 ±5.9711 

CS [α = 1.0] ±0.6047 ±1.8184 ±3.0369 ±4.2449 ±5.4526 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [α = 2.0] ±7.2922 ±8.6136 ±9.9481 ±11.2996 ±12.6577 

CS [α = 1.0] ±6.6861 ±7.9265 ±9.1531 ±10.3858 ±11.6309 

 

Secondly, there is an experiment on the imperative effect of three different       

α–stable distribution methods.  The distribution methods are Mantegna’s algorithm, 

McCulloch’s algorithm, and standard random walk, which are tested on both 2N = 10 

and 2N = 20 linear arrays. 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

Iterations

L
o
c
a
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.01

0.015

0.02

0.025

0.03

Iterations

F
it
n
e
s
s

 

 

CS(alpha=2.0)

CS(alpha=1.0)

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



109 

 

 

 
(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 

 

Figure 4.7: Normalized Pattern for Distribution Type Comparison                                

(2N = 10, Uniform, maxIter = 500) 
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Figure 4.8: Location and Fitness Curves for Distribution Type Comparison                 

(2N = 10, Uniform, maxIter = 500) 

 

Table 4.3: Optimal Location Distribution Type Comparison                                         

(2N = 10, Uniform, maxIter = 500) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Mantegna] ±0.4881 ±1.4793 ±2.4626 ±3.4937 ±4.5702 

CS [McCulloch] ±0.4862 ±1.4750 ±2.4521 ±3.4777 ±4.5488 

CS [Random Walk] ±0.4875 ±1.4773 ±2.4591 ±3.4888 ±4.5641 

 

Based on Figure 4.7(a) – (b), all the three α–stable distribution types, which are 

applied in 2N = 10 symmetric linear array have almost similar SLL suppression.  This is 

due to the same fitness convergence attainment of 0.011913 after about 330 iterations as 

depicted in Figure 4.8.   Furthermore, Table 4.3 enlists the optimal locations for all 

CS−optimizers with three different distribution types, which are nearly identical with 

differences of less than |±0.1000| for all elements. 
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(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 

 

Figure 4.9: Normalized Pattern for Distribution Type Comparison                                

(2N = 20, Uniform, maxIter = 10000) 
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Figure 4.10: Location and Fitness Curves for Distribution Type Comparison               

(2N = 20, Uniform, maxIter = 10000) 

 

Table 4.4: Optimal Location Distribution Type Comparison                                         

(2N = 20, Uniform, maxIter = 10000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Mantegna] ±0.6513 ±1.9552 ±3.2598 ±4.5679 ±5.8822 

CS [McCulloch] ±0.4921 ±1.4735 ±2.4534 ±3.4288 ±4.4025 

CS [Random Walk] ±0.5959 ±1.7850 ±2.9713 ±4.1561 ±5.3480 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [Mantegna] ±7.1960 ±8.5146 ±9.8490 ±11.2008 ±12.5595 

CS [McCulloch] ±5.3787 ±6.3612 ±7.3618 ±8.3931 ±9.4448 

CS [Random Walk] ±6.5493 ±7.7592 ±8.9860 ±10.2343 ±11.4929 

 

However, as the number of element increases to 20, the Mantegna’s algorithm 

clearly has the lowest SLL suppression compared to other two counterparts.  Based on 

Figure 4.9, the Mantegna’s algorithm suppresses 0.5 dB to 2.5 dB relatively lower than 
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the McCulloch’s algorithm and standard random walk distributions within the [0° 83°] 

and [97° 180°] domains, respectively.  The Mantegna’s algorithm produces the best 

result due to the capability of finding further optimal solutions (excitation locations) in a 

search space, hence has a better diversity of optimal solutions.  This is proved by the 

bigger fluctuations and lower fmin convergence attainment as depicted in Figure 4.10.  In 

this study, the Mantegna’s algorithm has the fmin convergence of 0.0144, which is 

followed by the standard random walk with the fmin convergence of 0.0159, and the 

McCulloch’s algorithm with the fmin convergence of 0.0193, respectively. 

Table 4.4 shows that the Mantegna’s algorithm generates the optimal locations 

with more than |±0.2000| differences compared to other rivals for all elements.  With 

bigger fluctuations, the Mantegna’s algorithm has the optimal locations deviate       

between |±0.1513| and |±3.0595| from the conventional array after 10000 iterations.  

Thirdly, there is a study on the imperative effect of the length step factor or L 

towards the linear array beam pattern where the Mantegna’s algorithm with α = 2.0 is 

used constantly. Three Lévy flights step factors, which are L/10 or 0.1, L/100 or 0.01, 

and L/1000 or 0.001 are tested.  Precisely, L is the length scale of cuckoo’s motion in 

searching for a new (other host bird’s) nest for a brood parasitism purpose.  Figure 4.11 

and Figure 4.13(a) – (b) clearly depict that the normalized patterns for both 2N = 10 and 

2N = 20 arrays are uniform regardless the Lévy flights step factors.  This confirms that 

all the length step factors attain the same array element positions and fmin convergence.  

Moreover, all the length step factors ensure the same new nests (potential solutions) are 

discovered within the search space.  This can be seen in Figure 4.12 where all the three 

length step factors have the fmin convergence of 0.011911 for 2N = 10 array, and the fmin 

convergence of 0.014524 for 2N = 20 array as shown in Figure 4.14, respectively. 
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Figure 4.11: Normalized Pattern Step Factor Comparison                                              

(2N = 10, Uniform, maxIter = 500) 

 

Figure 4.12: Location and Fitness Curves for Step Factor Comparison                        

(2N = 10, Uniform, maxIter = 500) 
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Table 4.5: Optimal Location for Step Factor Comparison                                              

(2N = 10, Uniform, maxIter = 500) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [sf = L/10] ±0.4881 ±1.4793 ±2.4626 ±3.4937 ±4.5702 

CS [sf = L/100] ±0.4881 ±1.4793 ±2.4626 ±3.4937 ±4.5702 

CS [sf = L/1000] ±0.4881 ±1.4793 ±2.4626 ±3.4937 ±4.5702 

 

 
(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 

 

Figure 4.13: Normalized Pattern for Step Factor Comparison                                        

(2N = 20, Uniform, maxIter = 5000) 
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Figure 4.14: Location and Fitness Curves for Step Factor Comparison                           

(2N = 20, Uniform, maxIter = 5000) 

 

Table 4.6: Optimal Location vs. Step Size Factor (2N = 20,Uniform, maxIter = 5000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [sf = L/10] ±0.6653 ±1.9971 ±3.3248 ±4.6470 ±5.9710 

CS [sf = L/100] ±0.6653 ±1.9971 ±3.3248 ±4.6470 ±5.9710 

CS [sf = L/1000] ±0.6653 ±1.9971 ±3.3248 ±4.6470 ±5.9710 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [sf = L/10] ±7.2922 ±8.6136 ±9.9481 ±11.2996 ±12.6577 

CS [sf = L/100] ±7.2922 ±8.6136 ±9.9481 ±11.2996 ±12.6577 

CS [sf = L/1000] ±7.2922 ±8.6136 ±9.9481 ±11.2996 ±12.6577 

 

Since all the length step factors have the identical fmin convergence for both       

2N = 10, and 2N = 20 linear arrays, the optimal solutions (element excitation locations) 

are also same as stated in both Table 4.5, and Table 4.6, respectively.  Precisely, for           

2N = 10 linear array, all the length step factors deviate optimal locations less than 
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|±0.1000| compared to the conventional array.  In addition, for 2N = 20 linear array, all 

the length step factors deviate optimal locations between |±0.1653| and |±3.1577| 

compared to the conventional array.  In sum, the use of any length step factor or L, 

which is less than 1.0 generates the same outcome and most importantly, prohibits the 

excessive Lévy flight motions performed by cuckoo in finding new nests (potential 

solutions) within the search space.  As a result, the fmin convergence and optimal 

solutions are identical regardless any length step factors applied.  

Fourthly, there is a study on the imperative effect of the number of host nest 

(population) on the symmetric linear array. In this experiment, the CS–optimizer with 

the discovery rate, Pa = 0.25, Mantegna’s stable algorithm, α = 2.0, and length step 

factor = L/100 or 0.01 are simulated along with three different sizes of host nest 

(population) = 10, 20, and 30, respectively. 

It is found that as the number of host nest bigger, the convergence rate becomes 

faster.  This is due to the higher capability and larger probability in finding global 

minimum solutions since a bigger number of populations occupy in the search space. As 

shown in Figure 4.15, the performances for 2N = 10 linear arrays are identical as the 

same fmin convergence is achieved regardless the number of host nest.  

However, based on Figure 4.16, we can see the differences of the convergence 

rate where the CS–optimizer with the nest = 30 achieves the fmin convergence after just 

130 iterations, nest = 20 around 230 iterations, and nest = 10 about 380 iterations, 

respectively.  In addition, the fluctuations of optimal solutions stabilize first as optimal 

solutions are achieved for nest = 30 (after about 270 iterations).  This is followed by 

nest=20 (after around 310 iterations) and nest = 10 (roughly after 430 iterations), 

respectively.  In sum, the optimal solutions stability is found directly related to the fmin 

convergence rates of the CS–optimizer. 
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Figure 4.15: Normalized Pattern vs. Population (2N = 10, Uniform, maxIter = 500) 

 

Figure 4.16: Location and Fitness Curves (2N = 10, Uniform, maxIter = 500) 
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Table 4.7: Optimal Location vs. Population (2N = 10, Uniform, maxIter = 500) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [nest = 10] ±0.4888 ±1.4813 ±2.4651 ±3.4962 ±4.5725 

CS [nest = 20] ±0.4881 ±1.4794 ±2.4624 ±3.4932 ±4.5694 

CS [nest = 30] ±0.4881 ±1.4795 ±2.4625 ±3.4933 ±4.5695 

 

As each of population sizes has the identical fmin convergence of 0.011911, the 

optimal solutions (array element locations) are also almost similar.  This can be seen in 

Table 4.7, where all the population sizes have the small differences of location among 

them, which are less than |±0.0100|.  Besides, all the three tested CS–optimizers 

generate the optimal solution (element location with respect to λ/2) deviations less than 

|±0.1000| compared to the conventional linear array. 

Fifthly, an investigation is done to analyze the fraction probability (Pa) or 

discovery rate imperative effect on the linear array.  Three different Pa values, which are 

0.25 (discovery rate of 25%), 0.50 (discovery rate of 50%), and 0.95 (discovery rate of 

95%) are compared in the 2N = 10 linear array.  As shown in Figure 4.17(a) – (b), both 

the CS–optimizers with Pa = 0.25 and Pa = 0.50 have the best identical performances 

whereas the CS–optimizer with Pa = 0.95 is the worst one in suppressing side lobes.  In 

this case, both the CS–optimizers with Pa = 0.25 and Pa= 0.50 suppress the side lobes 

relatively between 0.40 dB and 3.35 dB lower than the CS–optimizer with Pa= 0.95.   

Besides to that, both Pa = 0.05 and Pa = 0.25 have similar fmin convergence too, 

which is about 0.0119 after 300 iterations. On the other hand, Pa = 0.95 has a bigger fmin 

convergence of around 0.0136 after 130 iterations as depicted in Figure 4.18. 
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(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 

 

Figure 4.17: Normalized Pattern for Pa Comparison (2N = 10, Uniform, maxIter = 500) 
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Figure 4.18: Location and Fitness Curves for Pa Comparison                                       

(2N = 10, Uniform, maxIter = 500) 

 

Table 4.8: Optimal Location for Pa Comparison (2N = 10,Uniform, maxIter = 500) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Pa = 0.25] ±0.4881     ±1.4793     ±2.4626     ±3.4937 ±4.5702 

CS [Pa = 0.50] ±0.4890     ±1.4795     ±2.4600     ±3.4895 ±4.5638 

CS [Pa = 0.95] ±0.5273     ±1.5962     ±2.6451     ±3.7088 ±4.8086 

 

Based on Table 4.8, both the CS–optimizers with Pa = 0.25 and Pa = 0.50 have 

almost similar optimal locations with the deviations of less than |±0.1000| compared to 

the conventional linear array for all 2N = 10 array elements.  In contrast, the               

CS–optimizer with Pa = 0.95 generates the optimal location deviations with the 

differences between |±0.0273| and |±0.3086| compared to the conventional linear array. 
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Overall, this agrees with the statistical assumption that as the Pa bigger, the 

possibility of an egg laid by a cuckoo to be discovered by the host bird of other species 

becomes higher.  As a result, the cuckoo’s egg (candidate solution) will be abandoned 

or thrown away leading to a new nest searching or a new nest replacement.  Ideally, the 

fittest cuckoo’s egg (best optimal solution) survival should be preserved where the egg 

hatching and brood–parasitism processes well–taken by the host bird unknowingly. 
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4.2 The Postulation of Modified Cuckoo Search Algorithm in Linear Antenna 

Array Synthesis 

Firstly, the characteristic of α is analyzed thoroughly.  In this case, both CS and 

MCS–optimizers employ Mantegna’s algorithm as the selected α–stable distribution 

method, host nest = 30, Pa = 25% or 0.25, length step factor = L/100 or 0.01, along with 

both α = 1.0 (Lévy flight Cauchy distribution), and α = 2.0 (Lévy flight Gaussian 

distribution) are examined on the 2N = 20 antenna array, respectively.  Both of the 

tested MCS–optimizers have the adaptive w magnitude domain of [0.95 1.00].   

As illustrated in Figure 4.19(a) – (b), the MCS–optimizer with the Gaussian 

distribution (α = 2.0) slightly outperforms other optimizers in SLL suppression.  It is 

closely followed by the MCS counterpart with α = 1.0, and then by both CS–optimizers, 

respectively.  Specifically, the MCS algorithm with α = 2.0 generates SLL between      

0.5 dB and 1.5 dB relatively lower than the conventional array in the [20° 130°] and 

[97° 160°] domains.    
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(b) Average SLL Suppression 

 

Figure 4.19: Normalized Pattern for CS vs. MCS in α Value                                           

(2N = 20, Uniform, maxIter = 2000) 

 

Figure 4.20: Location and Fitness Curves for CS vs. MCS in α Value                             

(2N = 20, Uniform, maxIter = 2000) 
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Based on Figure 4.20, the proposed MCS algorithm (α = 2.0) produces the 

biggest oscillation of locations before it stabilizes after about 500 iterations.   This is 

followed by the MCS counterpart (α = 1.0), which fluctuates and stabilizes after 

approximately 500 iterations.  The postulated MCS algorithm (α = 2.0) achieves the 

minimum fitness, fmin convergence after around 500 iterations with the lowest value 

corresponds to 0.0145.  This is trailed by the MCS algorithm (α = 1.0), which converges 

after about 500 iterations with the fmin of 0.0161 then, by the CS algorithm (α = 2.0) 

converges nearly after 450 iterations with the fmin of 0.0215, and finally, the CS 

algorithm (α = 1.0), which converges nearly 950 iterations with the fmin of 0.0242. 

Table 4.9: Optimal Location for CS vs. MCS in α Value                                               

(2N = 20, Uniform, maxIter = 2000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [α = 2.0] ±0.5177 ±1.5535 ±2.5898 ±3.6245 ±4.6596 

MCS [α= 2.0] ±0.7386 ±2.2139 ±3.6916 ±5.1681 ±6.6451 

CS [α = 1.0] ±0.5008 ±1.5027 ±2.5032 ±3.4969 ±4.4975 

MCS [α = 1.0] ±0.6225 ±1.8689 ±3.1149 ±4.3607 ±5.6010 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [α = 2.0] ±5.6975 ±6.7348 ±7.7696 ±8.8171 ±9.8788 

MCS [α= 2.0] ±8.1216 ±9.5943 ±11.0699 ±12.5519 ±14.0308 

CS [α = 1.0] ±5.4970 ±6.4975 ±7.4876 ±8.4890 ±9.5047 

MCS [α = 1.0] ±6.8461 ±8.0908 ±9.3314 ±10.5810 ±11.8378 

 

Table 4.9 also indicates that the proposed MCS–optimizer with Lévy flight 

Gaussian distribution (α = 2.0) has the highest optimal location deviations between 

|±0.2386| and |±4.5308| compared to the conventional array.  This is followed by the 

MCS–optimizer (α = 1.0) with the deviations between |±0.1225| and |±2.3378|.  In sum, 

despite having the bigger size of antenna aperture in 2N = 20 linear array, the proposed 

MCS–optimizer could perform better than the CS–optimizer regardless α values.  In 

other words, the MCS algorithm is capable to search further the optimal element 
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locations in N–dimensional space via Lévy flight motions.  Consequently, this provides 

a bigger diversity of optimal solutions, which suppress side lobes radiation lower.     

Secondly, there is an analysis on the imperative effect of three different α–stable 

distribution methods, which are Mantegna’s algorithm, McCulloch’s algorithm, and 

standard random walk for the broadside case (main beam direction at 90°) on 2N = 20 

linear array.  All the tested MCS–optimizers deploy the Roulette wheel selection 

operator and adaptive weight, w with the magnitude domain of [0.95 1.00]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



127 

 

 

 
(a) Normalized Radiation Pattern 

 

 
(b) Average SLL Suppression 

 

Figure 4.21: Normalized Pattern for CS vs. MCS in Distribution Type                           

(2N = 20, Uniform, maxIter = 2000) 
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The MCS–optimizer with Mantegna’s algorithm again produces the best SLL 

suppression between 0.1 dB – 3.0 dB lower than conventional antenna array within the 

[20° 83°] and [97° 160°] domains for 2N = 20 linear array.  The second best optimizer is 

the MCS algorithm (standard random walk) with the SLL suppression between 0.1 dB 

and 2.3 dB lower than the conventional antenna array as depicted in                       

Figure 4.21(a) – (b). 

Furthermore, the proposed MCS algorithm (Mantegna) executes the biggest 

oscillation of locations before it stabilizes after about 500 iterations as shown in      

Figure 4.22.   This is followed by the MCS counterpart (standard random walk), which 

fluctuates and stabilizes after nearly 700 iterations.  The postulated MCS algorithm 

(Mantegna) achieves the lowest fmin convergence of 0.0145 after about 500 iterations.  

This is followed by the MCS algorithm (standard random walk), which has fmin 

convergence of 0.0196 nearly after300 iterations, and the MCS algorithm (McCulloch) 

with fmin convergence of 0.0207 after 250 iterations, respectively.  In contrast, the CS 

algorithm (McCulloch) has the highest fmin convergence of 0.0237 after 650 iterations. 
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Figure 4.22: Location and Fitness Curves for CS vs. MCS in Distribution Type             

(2N = 20, Uniform, maxIter = 2000) 

As tabulated in Table 4.10, the proposed MCS–optimizer with Mantegna’s 

algorithm has the highest optimal location fluctuations between |±0.2386| and |±4.5308| 

compared to the conventional array.  This is followed by the MCS–optimizer (standard 

random walk) with the deviations between |±0.0661| and |±1.2922|.  Overall, the 

hypothesized MCS–optimizer with Mantegna’s algorithm as the α–stable distribution 

method outperforms other MCS and CS counterparts, specifically in SLL suppression 

for 2N = 20 symmetric array.  Theoretically, this is mainly because the MCS–optimizer 

with Mantegna’s algorithm produces the best diversity (highest variations) of optimal 

solution resulting from the far–reaching metaheuristic search. 
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Table 4.10: Optimal Location for CS vs. MCS in Distribution Type                                

(2N = 20,Uniform, maxIter = 2000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Mantegna] ±0.5177 ±1.5535 ±2.5898 ±3.6245 ±4.6596 

MCS [Mantegna] ±0.7386 ±2.2139 ±3.6916 ±5.1681 ±6.6451 

CS [McCulloch] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

MCS [McCulloch] ±0.4951 ±1.4881 ±2.4838 ±3.4740 ±4.4673 

CS [Random Walk] ±0.5391 ±1.6247 ±2.6976 ±3.7763 ±4.8576 

MCS [Random Walk] ±0.5661 ±1.7008 ±2.8327 ±3.9705 ±5.1088 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [Mantegna] ±5.6975 ±6.7348 ±7.7696 ±8.8171 ±9.8788 

MCS [Mantegna] ±8.1216 ±9.5943 ±11.0699 ±12.5519 ±14.0308 

CS [McCulloch] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

MCS [McCulloch] ±5.4527 ±6.4382 ±7.4213 ±8.4286 ±9.4538 

CS [Random Walk] ±5.9408 ±7.0347 ±8.1215 ±9.3029 ±10.3420 

MCS [Random Walk] ±6.2401 ±7.3707 ±8.4982 ±9.6382 ±10.7922 

 

Thirdly, there is a study on the imperative effect of the number of host nest 

(population) for 2N = 20 linear array.  In this study, all the modified CS and standard 

CS metaheuristic optimizers are simulated using the discovery rate, Pa = 25% or 0.25, 

Mantegna’s algorithm, α = 2.0 (Lévy flight Gaussian distribution), and length step 

factor = L/100 or 0.01 along with three different population sizes (host nest = 10, 20, 

and 30), respectively. 

As shown in Figure 4.23(a) – (b), the proposed MCS–optimizers (nest = 20 and 

30) generates approximately SLL of 5.0 dB lower than the MCS–optimizer (nest = 10), 

and the three standard CS–optimizers (nest= 10, 20, and 30) within the [0° 83°] and 

[97° 180°] suppression regions.It is found that the MCS–optimizer (host nest = 30) 

executes the best SLL suppression between 1.0 dB and 6.0 dB lower than conventional 

array within the [20° 83°] and [97° 160°] domains.   This is followed by two other 

MCS–optimizers (host nest = 10 and 20).   

Based on Figure 4.24, the proposed MCS algorithm (nest = 30) executes the 

biggest oscillation of locations before it stabilizes after 500 iterations.  Moreover, the 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



131 

 

postulated MCS algorithm (nest = 30) achieves the lowest fmin convergence of 0.0145.  

This proves that for a more complex synthesis (e.g. larger number of array elements), 

the MCS–optimizer with the highest number of population (nest = 30) delivers the best 

SLL suppression while maintaining the main beam.  Precisely, with the larger number 

of population, the MCS–optimizer gains a higher possibility and more capability in 

exploring further optimal solutions within search domain through iterative searching 

process.  Consequently, this produces a better diversity of optimal solutions. 
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(b) Average SLL Suppression 

 

Figure 4.23: Normalized Pattern for CS vs. MCS in Nest                                                 

(2N = 20, Uniform, maxIter = 2000) 

 

Figure 4.24: Location and Fitness Curves for CS vs. MCS in Nest                                  

(2N = 20, Uniform, maxIter = 2000) 
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Table 4.11: Optimal Location for CS vs. MCS in Nest                                                     

(2N = 20, Uniform, maxIter = 2000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Nest = 30] ±0.5177 ±1.5535 ±2.5898 ±3.6245 ±4.6596 

MCS [Nest = 30] ±0.7386 ±2.2139 ±3.6916 ±5.1681 ±6.6451 

CS [Nest = 20] ±0.6813 ±2.0445 ±3.4066 ±4.7634 ±6.1229 

MCS [Nest = 20] ±0.5647 ±1.6952 ±2.8248 ±3.9567 ±5.0849 

CS [Nest = 10] ±0.4984 ±1.4932 ±2.4918 ±3.4856 ±4.4844 

MCS [Nest = 10] ±0.5080 ±1.5240 ±2.5393 ±3.5544 ±4.5714 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [Nest = 30] ±5.6975 ±6.7348 ±7.7696 ±8.8171 ±9.8788 

MCS [Nest = 30] ±8.1216 ±9.5943 ±11.0699 ±12.5519 ±14.0308 

CS [Nest = 20] ±7.4873 ±8.8485 ±10.2117 ±11.5825 ±12.9585 

MCS [Nest = 20] ±6.2142 ±7.3438 ±8.4657 ±9.6022 ±10.7531 

CS [Nest = 10] ±5.4810 ±6.4787 ±7.4727 ±8.4822 ±9.5128 

MCS [Nest = 10] ±5.5867 ±6.6011 ±7.6053 ±8.6234 ±9.6594 

 

As can be seen in Table 4.11, the MCS algorithm (nest = 30) has the biggest 

fluctuations of optimal radiator location with the differences between |±0.2386| and 

|±4.5308| compared to the conventional antenna array.  This agrees with the simulation 

results in Figure 4.23(a) – (b), where the biggest deviations of optimal solution 

stimulates the postulated MCS–optimizer (nest = 30) to generate a better performance 

than other MCS and CS competitors. 

Fourthly, an investigation is also done on 2N = 20 symmetric array to find the 

imperative effect of discovery rate or fraction probability (discovery rate = 25% or        

Pa =0.25, discovery rate = 50% or Pa= 0.50, and discovery rate = 95% or Pa = 0.95). 

Figure 4.25(a) – (b) show that the postulated MCS–optimizer (Pa = 0.25) has the best 

SLL suppression between 0.12 dB and 2.85 dB lower than the conventional array within 

the suppression domains [20° 83°] and [97° 160°].   This is followed by the MCS 

algorithm (Pa = 0.50). Moreover, Figure 4.26 displays that both the proposed MCS 

algorithm (Pa = 0.25) generate the biggest location variations before reaching the 

constant optimum location after 500 iterations.  This agrees with Table 4.12 where the 
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proposed MCS–optimizer (Pa = 0.25) has the biggest location deviations compared to 

the conventional array between |±0.2386| and |±4.5308|.  Moreover, the MCS–optimizer    

(Pa = 0.25) attain the lowest fmin convergence.  In sum, the proposed MCS–optimizer 

with the smaller Pa tends to have the lower fmin convergence and the bigger fluctuations 

of optimal location, thus, suppress the lower side lobes for 2N = 20 linear array. 

Theoretically, this agrees with the CS (and so is MCS) algorithm assumption: 

Whenever discovery rate or fraction probability, Pa bigger, the possibility of egg laid by 

a cuckoo to be discovered by the host bird of other species becomes higher.  As a result, 

the cuckoo’s egg (candidate solution) could be abandoned or thrown away leading to a 

new host nest searching or replacement done by cuckoo. 
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(b) Average SLL Suppression 

 

Figure 4.25: Normalized Pattern for CS vs. MCS in Pa                                                                             

(2N = 20, Uniform, maxIter = 2000) 

 

Figure 4.26: Location and Fitness Curves for CS vs. MCS in Pa                                                        

(2N = 20, Uniform, maxIter = 2000) 
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Table 4.12: Optimal Location for CS vs. MCS in Pa (2N = 20, Uniform, maxIter = 2000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Pa = 0.95] ±0.5107 ±1.5324 ±2.5534 ±3.5723 ±4.5948 

MCS [Pa = 0.95] ±0.5130 ±1.5393 ±2.5652 ±3.5913 ±4.6198 

CS [Pa = 0.50] ±0.4693 ±1.3993 ±2.3272 ±3.2442 ±4.1589 

MCS [Pa = 0.50] ±0.5682     ±1.7058     ±2.8438     ±3.9809     ±5.1175     

CS [Pa = 0.25] ±0.5177     ±1.5535     ±2.5898     ±3.6245     ±4.6596     

MCS [Pa = 0.25] ±0.7386     ±2.2139     ±3.6916     ±5.1681     ±6.6451     

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [Pa = 0.95] ±5.6178 ±6.6402 ±7.6559 ±8.6816 ±9.7263 

MCS [Pa = 0.95] ±5.6435 ±6.6696 ±7.6916 ±8.7222 ±9.7719 

CS [Pa = 0.50] ±5.0598 ±5.9880 ±6.9604 ±7.9722 ±9.0101 

MCS [Pa = 0.50] ±6.2501     ±7.3835     ±8.5150 ±9.6552    ±10.8044 

CS [Pa = 0.25] ±5.6975     ±6.7348     ±7.7696 ±8.8171     ±9.8788 

MCS [Pa = 0.25] ±8.1216     ±9.5943    ±11.0699 ±12.5519    ±14.0308 

 

Fifthly, there is a more stiff experiment on the broadside case (main beam 

steered to 90°) for 2N = 20 linear array with two prescribed nulls at 45° and 135°.  All 

the MCS and CS–optimizers with three α–stable distribution methods, host nest 

(population) = 30, discovery rate, Pa = 25% or 0.25, α = 2.0 (Gaussian), and the length 

step factor = L/100 or 0.01 are simulated for 1000 iterations.   

Figure 4.27(a) – (b) show generally that the hypothesized MCS–based array with 

the Mantegna’s algorithm outperforms other rivals with the SLL between 0.001 dB and 

4.256 dB relatively lower than the conventional array.   

Figure 4.27(c) – (d) display that the MCS–optimizer (Mantegna’s algorithm) 

clearly demonstrates the best prescribed nulls mitigation at direction of 45° with SLL of 

–52.865 dB, and at direction of 135° with SLL of –53.615 dB, respectively. 
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(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 
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(c) Null Mitigation at 45° 

 
(d) Null Mitigation at 135° 

 

Figure 4.27: Normalized Pattern for CS vs. MCS in Distribution Type                           

(2N = 20, Main Beam = 90°, Null = [45°, 135°], maxIter = 1000) 
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Figure 4.28: Location and Fitness Curves for CS vs. MCS in Distribution Type           

(2N = 20, Main Beam = 90°, Null = [45°, 135°]) 

 

Table 4.13: Optimal Location for CS vs. MCS in Distribution Type                                

(2N = 20, Main Beam = 90°, Null = [45°, 135°], maxIter = 1000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Mantegna] ±0.4961     ±1.4846     ±2.4652     ±3.4373     ±4.4084     

MCS [Mantegna] ±0.7056     ±2.1159     ±3.5259     ±4.9363     ±6.3482     

CS [McCulloch] ±0.5492     ±1.6466     ±2.7435     ±3.8403     ±4.9364     

MCS [McCulloch] ±0.5860     ±1.7585     ±2.9345     ±4.1110     ±5.2872     

CS [Random Walk] ±0.5368     ±1.6158     ±2.6897     ±3.7601     ±4.8504     

MCS [Random Walk] ±0.5321     ±1.5964     ±2.6607     ±3.7250     ±4.7893     

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [Mantegna] ±5.3896     ±6.3739     ±7.4809 ±8.6066     ±9.5032 

MCS [Mantegna] ±7.7584     ±9.1684    ±10.5780 ±11.9900    ±13.4071 

CS [McCulloch] ±6.0358     ±7.1355     ±8.2336 ±9.3341    ±10.4292 

MCS [McCulloch] ±6.4631     ±7.6292     ±8.7984 ±9.9805    ±11.1713 

CS [Random Walk] ±5.9251     ±6.9828     ±8.0584 ±9.2452    ±10.2804 

MCS [Random Walk] ±5.8535     ±6.9178     ±7.9821 ±9.0464    ±10.1107 
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According to Figure 4.28, the MCS (Mantegna’s algorithm) has the most 

location fluctuations before stabilizing.  This is followed by the MCS (McCulloch’s 

algorithm). In short, the proposed MCS (Mantegna’s algorithm) produce the biggest 

diversity of optimal solutions.  Furthermore, the MCS–optimizer (Mantegna’s 

algorithm) also generates the lowest fmin convergence of 0.0141.  This is followed by the 

MCS (McCulloch’ algorithm), with the fmin convergence of 0.0158 and the MCS 

(standard random walk) with the fmin convergence of 0.0193, respectively.  Overall, the 

proposed MCS optimizer regardless α–stable distribution methods used converge with 

the lower fmin values compared to the CS opponents. 

As enlisted in Table 4.13, the proposed MCS algorithms generate a significant 

optimal location deviations compared to the conventional array. In details, the MCS 

(Mantegna’ algorithm) has the biggest deviations between |±0.2056| and |±3.9071| for 

all 2N = 20 array elements.  This is trailed by the MCS (McCulloch’s algorithm) with 

the deviations between |±0.0860| and |±1.6713|.  The biggest deviations become the 

main factor for the postulated MCS–optimizer (Mantegna’s algorithm) to achieve 

superior optimal solutions diversity that demonstrates best side lobes suppression and/or 

nulls mitigation whilst preserving the main beam. 

Sixthly, the MCS and CS–optimizers with three α–stable distribution methods, 

host nest (population) = 20, discovery rate, Pa = 25% or 0.25, α = 2.0 (Lévy flight 

Gaussian distribution) and the length step factor = L/100 or 0.01 are simulated for        

2N = 20 linear array within the Dolph–Chebyshev amplitude envelope.  All the tested 

MCS–optimizers deploy the Roulette wheel selection operator and adaptive weight, w 

with the magnitude domain of [0.95 1.00].  Figure 4.29 depicts the theoretical        

Dolph–Chebyshev filter window, which is applied in this study. 
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Figure 4.29: The Dolph–Chebyshev Excitation Amplitude for 2N = 20 Linear Array 
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(b) Average SLL Suppression 

 

Figure 4.30: Normalized Pattern for CS vs. MCS in Distribution Type                         

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 

 

Based on Figure 4.30(a) – (b), the proposed MCS–optimizer (Mantegna) 

generates the best equiripple side lobes suppression with the gain relatively 32.1 dB 

below the main beam, narrowly followed by the MCS–optimizer (McCulloch) and the 

MCS–optimizer (standard random walk) with equally 31.9 dB below the main beam.  

The CS opponent with the McCulloch’s algorithm is the worst one with 31.6 dB below 

the main beam.  It can be seen that in Figure 4.31, the MCS–optimizer (Mantegna’s 

algorithm) has the largest fluctuations in optimal position of antenna radiators.  In 

addition, the MCS–optimizer (Mantegna) converges quickly after 107 iterations and 

achieves the fmin of 0.0111.  This is closely trailed by the MCS–optimizer (McCulloch) 

with the fmin convergence of 0.0114 after 280 iterations, and the MCS–optimizer 

(standard random walk) with fmin convergence of 0.0121 after 47 iterations. 
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Figure 4.31: Location and Fitness Curves for CS vs. MCS in Distribution Type          

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 

 

Table 4.14: Optimal Location for CS vs. MCS in Distribution Type                                

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Mantegna] ±0.5259 ±1.5777 ±2.6294 ±3.6812 ±4.7329 

MCS [Mantegna] ±0.7433 ±2.2297 ±3.7164 ±5.2027 ±6.6892 

CS [McCulloch] ±0.5000 ±1.5000 ±2.5000 ±3.4991 ±4.4988 

MCS [McCulloch] ±0.5382 ±1.6146 ±2.6909 ±3.7673 ±4.8437 

CS [Random Walk] ±0.5264 ±1.5778 ±2.6305 ±3.6824 ±4.7342 

MCS [Random Walk] ±0.5835 ±1.7506 ±2.9176 ±4.0847 ±5.2517 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [Mantegna] ±5.7848 ±6.8364 ±7.8882 ±8.9400 ±9.9919 

MCS [Mantegna] ±8.1760 ±9.6625 ±11.1487 ±12.6356 ±14.1217 

CS [McCulloch] ±5.4985 ±6.4983 ±7.4982 ±8.4985 ±9.5000 

MCS [McCulloch] ±5.9201 ±6.9964 ±8.0728 ±9.1492 ±10.2255 

CS [Random Walk] ±5.7872 ±6.8404 ±7.8932 ±8.9421 ±9.9953 

MCS [Random Walk] ±6.4188 ±7.5858 ±8.7529 ±9.9199 ±11.0870 
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Based on Table 4.14, the MCS–optimizer (Mantegna) obviously has the largest 

fluctuations of array element location (with respect to λ/2) between |±0.2433| and 

|±4.6217| compared to the conventional array.  This is followed by both MCS 

counterparts (standard random walk and McCulloch).  In sum, this agrees with       

Figure 4.31 that the significant fluctuations of optimal location and small fmin 

convergence stimulate the three proposed MCS–optimizers to generate a better SLL 

suppression in the Dolph–Chebyshev envelope compared to the three original CS 

competitors.  In other words, the proposed MCS algorithms are capable to explore and 

exploit a better diversity of optimal solutions within search domain.  

Seventhly, there is an experiment on 2N = 30 linear Dolph–Chebyshev array in 

which the proposed MCS algorithm based array is relatively compared with the original 

CS, genetic algorithms (GA), and particle swarm optimization (PSO)–based arrays.  All 

the evaluated MCS and CS–metaheuristic optimizers are simulated for 1000 iterations 

using host nest (population) = 30, discovery rate, Pa = 25% or 0.25, length step        

factor = L/100 or 0.01, α–stable distribution method = Mantegna’s algorithm, and          

α = 2.0 (Lévy flight Gaussian distribution).  Once again, the MCS–optimizer deploys 

the Roulette wheel selection operator, and adaptive w domain = [0.95 1.00].  The fixed 

excitation Dolph–Chebyshev filter envelope as illustrated in Figure 4.32 is used whereas 

for a simplification, the excitation phase is set to 0° for all 2N = 30 symmetric linear 

array elements.  Precisely, the feed current Dolph–Chebyshev amplitudes, which are 

applied in this study are [0.4235    0.2477    0.3127    0.3827    0.4564    0.5322    0.6083    

0.6826    0.7532    0.8182     0.8756    0.9238    0.9613    0.9870    1.0000].   

The PSO–optimizer is constructed using particle (population) = 30, max/min 

velocity limit of particle = [–0.1 +0.1], individuality accelerator = 1.0, and sociality 

accelerator = 1.0, respectively.  The GA–optimizer with the Roulette wheel selection 
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operators also uses chromosome or gene (population) = 30, gene crossover probability, 

Pc = 90% or 0.9, and gene mutation probability, Pm = 10% or 0.1. 

 

 

Figure 4.32: The Dolph–Chebyshev Excitation Amplitude for 2N = 30 Linear Array 
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(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 

 

Figure 4.33: Normalized Pattern for MCS vs. Other EC–Optimizers                             

(2N = 30, Dolph–Chebyshev, maxIter = 1000) 
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Based on Figure 4.33(a) – (b), the MCS–optimizer with the Mantegna’s 

algorithm has the identical highest peak of equiripple side lobes gain relatively about 

33.35 dB below the main beam, and relatively 20.10 dB below the highest SLL peak of 

the uniform (conventional) pattern, respectively due to the lowest fmin convergence of 

0.0126 after about 400 iterations as shown in Figure 4.34.  The highest SLL peak of the 

uniform pattern, which is produced by the conventional array, is comparatively        

13.25 dB below the main beam.  On the other hand, the standard CS–optimizer with the 

Mantegna’s algorithm generates the equiripple side lobes of relatively about 32.86 dB 

below the main beam or relatively about 19.61 dB below the highest SLL peak of the 

uniform pattern.   In addition, both of the GA and PSO counterparts has the equiripple 

SLL of relatively about 33.10 dB below the main beam or relatively 19.85 dB below the 

highest SLL peak of the uniform pattern.  

 

Figure 4.34: Location and Fitness Curves for MCS vs. Other EC–Optimizers                       

(2N = 30, Dolph–Chebyshev, maxIter = 1000) 
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Table 4.15: Optimal Location for MCS vs. Other EC–Optimizers                                      

(2N = 30, Dolph–Chebyshev, maxIter = 1000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

MCS [Mantegna] ±0.7269 ±2.1807 ±3.6344 ±5.0882 ±6.5420 

CS [Mantegna] ±0.5000 ±1.5002 ±2.5004 ±3.5005 ±4.5007 

PSO ±0.5457 ±1.6380 ±2.7302 ±3.8224 ±4.9146 

GA ±0.5417 ±1.6251 ±2.7085 ±3.7918 ±4.8752 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

MCS [Mantegna] ±7.9958 ±9.4495 ±10.9033 ±12.3571 ±13.8109 

CS [Mantegna] ±5.5009 ±6.4996 ±7.4996 ±8.4996 ±9.4996 

PSO ±6.0068 ±7.0990 ±8.1912 ±9.2834 ±10.3756 

GA ±5.9586 ±7.0420 ±8.1254 ±9.2087 ±10.2921 

Element 11 12 13 14 15 

Xn [λ/2] ±10.5000 ±11.5000 ±12.5000 ±13.5000 ±14.5000 

MCS [Mantegna] ±15.2646 ±16.7184 ±18.1722 ±19.6259 ±21.0797 

CS [Mantegna] ±10.5013 ±11.5018 ±12.5020 ±13.5021 ±14.5018 

PSO ±11.4678 ±12.5600 ±13.6522 ±14.7445 ±15.8447 

GA ±11.3755 ±12.4589 ±13.5423 ±14.6256 ±15.7090 

 

It can be found from Table 4.15 that the postulated MCS algorithm (Mantegna’s 

α–stable distribution method) demonstrates the biggest array element location 

fluctuations (with respect to λ/2) compared to standard CS, PSO, and GA counterparts.  

This implies that the MCS algorithm is capable to explore further optimal solutions 

within the global search space with the deviations compared to the conventional antenna 

array between |±0.2269| and |±6.5797|.  Consequently, this becomes as the key factor for 

the proposed MCS–optimizer to produce the best diversity of optimal solutions (array 

element locations), which generates the lowest fmin convergence, and the best equiripple 

SLL suppression. 
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4.3 The Proposition of Modified Cuckoo Search Algorithm through 

Hybridization in Linear Antenna Array Synthesis 

In this stage, both the postulated MCSPSO and MCSGA–hybrid algorithms with 

Mantegna’s α–stable distribution method, host nest (population) = 30, discovery rate, Pa 

= 25% or 0.25, length step factor = L/100 or 0.01, and α = 2.0 (Lévy flight Gaussian 

distribution) are tested on 2N = 20 linear antenna array.  Both MCSPSO and MCSGA 

hybrid algorithms along with MCS algorithm deploy the Roulette wheel selection 

operator and adaptive inertia, w domain of [0.95 1.00].  The proposed MCSPSO and 

MCSGA–hybrid optimizers are compared with the hybrid GAPSO, MCS, and standard 

CS algorithms, respectively. 

It is found that the proposed MCSPSO hybrid algorithm outperforms other 

competitors with the SLL suppression of 0.30 dB – 4.70 dB lower than the conventional 

array within the [20°83°] and [97° 180°] regions whilst maintaining the main beam 

intensity at direction angle of 90°.  This is closely followed by the proposed MCS 

metaheuristic algorithm with the SLL suppression of 0.17 dB – 4.46 dB as can be seen 

in Figure 4.35(a) – (b). 
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(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 

 

Figure 4.35: Normalized Pattern for MCS Hybrids vs. others                                                  

(2N = 20, Uniform, maxIter = 1000) 
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Figure 4.36: Location and Fitness Curves for MCS Hybrids vs. others                           

(2N = 20, Uniform, maxIter = 1000) 

 

Table 4.16: Optimal Location for MCS Hybrids vs. others                                              

(2N = 20, Uniform, maxIter = 1000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Mantegna] ±0.5032 ±1.5097 ±2.5133 ±3.5257 ±4.5425 

MCS [Mantegna] ±0.6885 ±2.0652 ±3.4428 ±4.8200 ±6.1961 

MCSPSO [Mantegna] ±0.6863 ±2.0565 ±3.4256 ±4.7964 ±6.1639 

MCSGA [Mantegna] ±0.5321 ±1.5963 ±2.6607 ±3.7255 ±4.7890 

GAPSO ±0.5359 ±1.6110 ±2.6914 ±3.7697 ±4.8494 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [Mantegna] ±5.5418 ±6.5398 ±7.5332 ±8.6300 ±9.5861 

MCS [Mantegna] ±7.5732 ±8.9516 ±10.3255 ±11.7039 ±13.0822 

MCSPSO [Mantegna] ±7.5229 ±8.8808 ±10.2481 ±11.6280 ±13.0103 

MCSGA [Mantegna] ±5.8532 ±6.9188 ±7.9813 ±9.0437 ±10.1121 

GAPSO ±5.9274 ±7.0053 ±8.0814 ±9.1594 ±10.2439 
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Based on Figure 4.36, the MCSPSO–hybrid optimizer has the lowest fmin 

convergence of 0.0150 after executing nearly 500 iterations.  This is closely followed by 

the MCS counterpart with the fmin convergence of 0.0158.  In this case, both the 

proposed MCSPSO and MCS algorithms produce the two largest optimal location 

deviations compared to the conventional array as appeared in both Figure 4.36 and    

Table 4.16, respectively. In this case, the MCSPSO hybrid algorithm has the location 

(with respect to 𝜆/2) deviations between |±0.1863| and |±3.5103|. 

In the second experiment, a more vigorous condition is tested on the postulated 

MCSPSO, MCSGA, and other competitors where the main beam is steered to 60°, with 

four prescribed nulls at 30°, 31°, 79°, and 80°, respectively.   The simulation shows that 

the MCSPSO–based array slightly surpasses other counterparts in SLL suppression 

specifically within the [0° 30°] and [80° 130°] suppression regions.  This is narrowly 

followed by both of the proposed MCSGA and MCS–optimizers.  In this case, the 

MCSPSO algorithm yields the average SLL magnitude of 3.7 dB – 10.3 dB below the 

conventional linear array as shown in Figure 5.37(a).  
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(a) Normalized Radiation Pattern 

 
(b) Null Mitigation between 79° and 80° 
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(c) Null Mitigation between 30° and 31° 

 

Figure 4.37: Normalized Pattern for MCS Hybrids vs. others                                          

(2N = 10, Main Beam = 60°, Null = [30°, 31°, 79°, 80°], maxIter = 100) 

 

According to Figure 5.37 (b) – (c), the proposed MCSPSO hybrid algorithm also 

has the best null mitigation through attaining the lowest magnitude of 92.28 dB and 

71.73 dB below the main beamnearly at direction angles of 30.94° and 79.07°, 

respectively.  In addition, Figure 4.38, Figure 4.39, and Figure 4.40 portray the adaptive 

polar pattern, which is generated by conventional, MCSPSO, and MCSGA–based 

arrays.  It is clearly found that all the three arrays have the main lobe with the largest 

radiation intensity steered to 60° and perform nulls mitigation at the four prescribed 

directions.  Precisely, both the postulated MCSPSO and MCSGA hybrid algorithms 

generate side lobe suppression relatively lower than the conventional array as shown in 

both Figure 4.39 and Figure 4.40, respectively. 
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Figure 4.38: Polar Pattern for Conventional Array                                                               

(2N = 10, Main Beam = 60°, Null = [30°, 31°, 79°, 80°]) 

 

 

Figure 4.39: Polar Pattern for MCSPSO Array                                                                 

(2N = 10, Main Beam = 60°, Null = [30°, 31°, 79°, 80°]) 
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Figure 4.40: Polar Pattern for MCSGA Array                                                                   

(2N = 10, Main Beam = 60°, Null = [30°, 31°, 79°, 80°]) 

 

 

Figure 4.41: Location and Fitness Curves for MCS Hybrids vs. others                            

(2N = 10, Main Beam = 60°, Null = [30°, 31°, 79°, 80°]) 
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Table 4.17: Optimal Location for MCS Hybrids vs. others                                                    

(2N = 10, Main Beam = 60°, Null = [30°, 31°, 79, 80], maxIter = 100) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Mantegna] ±0.5624 ±1.6879 ±2.8124 ±3.9379 ±5.0748 

MCS [Mantegna] ±0.5673 ±1.6985 ±2.8332 ±3.9632 ±5.1084 

MCSPSO [Mantegna] ±0.5684 ±1.7021 ±2.8389 ±3.9707 ±5.1204 

MCSGA [Mantegna] ±0.5620 ±1.6858 ±2.8120 ±3.9350 ±5.0704 

GAPSO ±0.5421 ±1.6289 ±2.7146 ±3.7993 ±4.8903 

 

Figure 4.41 clearly shows that the postulated MCSPSO–based array generates 

the largest optimal location oscillations and attains the lowest fmin convergence of 

0.1234 after about 57 iterations.  Moreover, based on Table 4.17, the MCSPSO is 

proven to have the largest optimal location deviations (with respect to λ/2) compared to 

the conventional array between |±0.0684| and |±0.6204| for 2N = 10 linear array.  

Overall, the MCSPSO outperforms MCSGA and MCS counterparts in side lobes 

suppression and/or nulls mitigation.  In this case, the hybridization process manipulates 

the PSO algorithm particles (population) significant velocity and position updating 

processes.  Consequently, the MCSPSO–hybrid optimizer is able to control effectively 

the Lévy flight direction (motion) and speed of cuckoos (population), and through it can 

locate the global best (gbest) solutions in search space. 
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CHAPTER FIVE 

5 MULTIOBJECTIVE OPTIMIZATION 

5.1 Multiobjective Optimization Techniques using Modified Cuckoo Search 

Algorithm in Linear Antenna Array Synthesis 

This chapter discusses the simulations of proposing modified and hybrid CS 

algorithms in MO optimization methods for linear antenna array synthesis.  In this case, 

two approaches are deployed, which are weighted–sum and global Pareto front. 

 

5.1.1 Weighted–Sum Approach 

In the first weighted–sum MO simulation, the postulated MCSPSO, MCSGA, 

and MCS algorithms with Mantegna’s algorithm as the selected α–stable distribution 

method, host nest (population) = 30, length step factor = L/100 or 0.01, and α = 2.0 

(Lévy flight Gaussian distribution) are examined on the 2N = 10 linear array.  For 

uniformity, all the proposed MCSPSO, MCSGA, and MCS algorithms have the 

dynamic Pa magnitude domain of [0.01 0.25] and dynamic, w magnitude domain of 

[0.95 1.05], respectively.  The proposed algorithms are deliberately compared with 

hybrid GAPSO, and original CS algorithm.  Precisely, both the MCSPSO and GAPSO 

optimizers use the PSO algorithm with the dynamic random particle velocity domain of 

[–0.1 +0.1].  Moreover, the MCSGA and GAPSO algorithms apply the GA optimizer 

with the gene crossover probability, Pc = 90% or 0.9, and gene mutation probability,    

Pm = 10% or 0.1. 

Based on Figure 5.1(a), the normalized radiation pattern for the postulated 

MCSPSO optimizer outperforms other competitors by having the lowest average SLL 
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suppression and whereas the MCSGA counterpart has the highest intensity or the 

smallest half–power beamwidth (HPBW) of the main beam. Precisely, the MCSPSO 

algorithm suppresses SLL between –0.97 dB and –15.20 dB compared to the 

conventional array within the [120
o
 180

o
] and [0

o
 60

o
] regions as can be seen in      

Figure 5.1(b). The HPBW is the angular separation in which the magnitude of the 

radiation pattern decreases by 50% (or –3 dB) from the peak of the main beam.  Figure 

5.1(c) shows the pattern for MCSGA optimizer has the smallest HPBW, which 

decreases to –3 dB at 84.825
o
 and 95.175

o
.  Hence, the HPBW is 95.175

o 
– 84.825

o
 = 

10.35
o
.  Furthermore, the postulated MCSGA array generates a higher directivity of 

8.4474 dB whereas the MCSPSO counterpart has the smaller directivity of             

8.2567 dB, respectively.   

 

(a) Normalized Radiation Pattern 
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(b) Average SLL Suppression 

 

(c) HPBW Pattern 

 

Figure 5.1: Normalized Pattern for Weighted–Sum MCS Hybrids vs. others                

(2N = 10, Uniform, maxIter = 1000) 
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As displayed in Figure 5.2, the MCSPSO hybrid optimizer produces the lowest 

weighted–sum fitness, fmin of 0.6654 that leads to the best SLL suppression 

performance.  It executes the largest optimal location fluctuations followed by the 

MCSGA counterpart.  Besides, the MCSPSO–based array also generates the lowest 

optimal amplitude magnitudes for all the 2N = 10 symmetric elements as shown in 

Figure 5.3.  Furthermore, Figure 5.4 portrays that the MCSPSO optimizer produces the 

biggest optimal phase fluctuations compared to other tested algorithms, respectively.  

All the optimal locations, amplitudes, and phases of the MCSPSO optimizer produce a 

better diversity of excitation components, which increase the linear array beam scanning 

capability with low side lobes.  

 

Figure 5.2: Optimal Location and Total Fitness Curves for Weighted–Sum MCS 

Hybrids vs. others (2N = 10, Uniform, maxIter = 1000) 
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Figure 5.3: Optimal Amplitude for Weighted–Sum MCS Hybrids vs. others                

(2N = 10, Uniform, maxIter = 1000) 

 

Figure 5.4: Optimal Phase for Weighted–Sum MCS Hybrids vs. others                        

(2N = 10, Uniform, maxIter = 1000) 
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Table 5.1 precisely conscripts the optimal location variations for all the tested 

weighted–sum optimizers for 2N = 10 linear array after 1000 iterations.  The MCSPSO 

hybrid algorithm evidently generates the largest position variations compared to the 

conventional array which, is between |±0.1119| and |±0.3954| followed by the MCSGA 

counterpart.  Moreover, the MCSPSO array has the lowest optimal excitation amplitude 

which is 0.0844, hence the biggest amplitude differences compared to the conventional 

array as tabulated in Table 5.2.Looking on the aspect of the array excitation phase, the 

MCSPSO hybrid algorithm has the magnitude domain of [0
o
180

o
] for all 2N = 10 linear 

array elements.   

Table 5.3 shows that the MCSPSO–based optimizer generates the biggest 

optimal phase deviations compared to the conventional array, which are between 

34.5848
o
 and 180

o
. 

 

Table 5.1: Optimal Location for Weighted–Sum MCS Hybrids vs. others         

(2N = 10, Uniform, maxIter = 1000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Mantegna] ±0.4055 ±1.1638 ±1.9590 ±2.7393 ±3.5674 

MCS [Mantegna] ±0.4769 ±1.4518 ±2.4265 ±3.4521 ±4.5170 

MCSPSO [Mantegna] ±0.6119 ±1.7458 ±2.8382 ±4.0097 ±4.8954 

MCSGA [Mantegna] ±0.5429 ±1.6285 ±2.7025 ±3.7869 ±4.8959 

GAPSO ±0.4489 ±1.3770 ±2.3313 ±3.3593 ±4.4227 

 

Table 5.2: Optimal Amplitude for Weighted–Sum MCS Hybrids vs. others                    

(2N = 10, Uniform, maxIter = 1000) 

Element 1 2 3 4 5 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

CS [Mantegna] 0.9873 0.9906     0.9881     0.9908     0.9911     

MCS [Mantegna] 1.0195     1.0200     1.0271     1.0241     1.0193 

MCSPSO [Mantegna] 0.0844 0.0844 0.0844 0.0844 0.0844 

MCSGA [Mantegna] 1.0378     1.0375     1.0445     1.0388     1.0418 

GAPSO 0.2000 0.2000 0.2000 0.2000 0.2000 
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Table 5.3: Optimal Phase for Weighted–Sum MCS Hybrids vs. others                         

(2N = 10, Uniform, maxIter = 1000) 

Element 1 2 3 4 5 

ϕn 
0

o 
144.8614

o
 34.5848

o
 113.2354

o
 19.0016

o
 

CS [Mantegna] 0
o
 0

o
 0

o
 0

o
 22.4561

o
 

MCS [Mantegna] 0
o
 0

o
 180

o
 180

o
 0

o
 

MCSPSO [Mantegna] 180
o
 0

o
 0

o
 180

o
 180

o
 

MCSGA [Mantegna] 0
o
 126.4717

o
 31.1931

o
 114.1964

o
 16.7280

o
 

GAPSO 0.2285
o
 144.8629

o
 34.6929

o
 113.3098

o
 19.1002

o
 

 

Secondly, a more substantial simulation is done on the 2N = 20 linear array with 

main beam radiates at the desired direction angle of 90
o
 and two prescribed interferers at 

direction angles of 35
o
 and 145

o
, respectively.  In this simulation, MCSPSO, MCSGA, 

MCS and original CS algorithms deploy the Mantegna’s α–stable distribution method, 

host nest (population) = 30, length step factor = L/100 or 0.01, and α = 2.0 (Lévy flight 

Gaussian distribution).  All the MCS–based algorithms have a dynamic Pa magnitude 

domain of [0.01 0.25] and a dynamic w magnitude domain of [0.95 1.05], respectively.  

Both the MCSPSO and GAPSO optimizers deploy the PSO algorithm with the dynamic 

random particle velocity domain of [–0.1 +0.1].  Furthermore, the MCSGA and GAPSO 

algorithms use the GA optimizer with the gene crossover probability, Pc = 90% or 0.9, 

and gene mutation probability, Pm = 10% or 0.1. 
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(a) Normalized Radiation Pattern 

 
(b) Average SLL Suppression 
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(c) HPBW Pattern 

 
(d) Mitigation at 35° 

84 86 88 90 92 94
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

The Direction Angles in Degrees

T
h
e
 N

o
rm

a
li
z
e
d
 E

le
c
tr

ic
 F

ie
ld

 i
n
 d

B

 

 

34.93 34.935 34.94 34.945 34.95 34.955 34.96 34.965 34.97

-66.134

-66.132

-66.13

-66.128

-66.126

-66.124

-66.122

-66.12

-66.118

The Direction Angles in Degrees

T
h
e
 N

o
rm

a
li
z
e
d
 E

le
c
tr

ic
 F

ie
ld

 i
n
 d

B

 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



167 

 

 
(e) Mitigation at 145° 

 

Figure 5.5: Normalized Pattern for Weighted–Sum MCS Hybrids vs. others                

(2N = 20, Uniform, Null = [35°, 145°], maxIter = 1000) 

 

Figure 5.5(a) shows that the MCSPSO–based array outperforms other arrays in 

SLL suppression particularly between the [0
o
 83

o
] and [97

o
 180

o
] regions, respectively.  

In this case, the MCSPSO hybrid algorithm generates the SLL between 0.047 dB and 

3.826 dB below the conventional array as depicted in Figure 5.5(b).   Moreover, the 

MCSPSO–based array as in Figure 5.5(c) demonstrates the highest radiation intensity at 

the main beam with the smallest HPBW of 92
o 

– 88
o
 = 4

o
 with the directivity of   

11.5831 dB.  This is trailed by the MCSGA counterpart with the calculated HPBW of 

92.67
o
 – 87.39

o
 = 5.28

o
, and the directivity of 11.3074 dB.  In addition, Figure 5.5(d) 

shows that the proposed MCSPSO algorithm has the significant null mitigation, with the 

measurements of –70.661 dB nearly at 144.96°, whereas Figure 5.5(e) indicates that the 

144.92 144.93 144.94 144.95 144.96 144.97 144.98 144.99 145
-70.68

-70.675

-70.67

-70.665

-70.66

-70.655

-70.65

-70.645

The Direction Angles in Degrees

T
h
e
 N

o
rm

a
li
z
e
d
 E

le
c
tr

ic
 F

ie
ld

 i
n
 d

B

 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



168 

 

proposed MCSGA counterpart has the remarkable null mitigation of –66.126 dB at 

about 34.95°. 

Based on Figure 5.6, the MCSPSO hybrid–optimizer produces the largest 

optimal location fluctuations with the lowest weighted–sum fmin convergence of 1.0994. 

Besides, the proposed MCSPSO hybrid–optimizer generates the lowest optimal 

amplitude measurements for all 2N = 20 array elements as shown in Figure 5.7.  In 

another aspect, Figure 5.8 portrays that the MCSPSO based–optimizer produces the 

biggest optimal phase variations for the 2N = 20 linear array with two prescribed nulls. 

 

Figure 5.6: Optimal Location and Total Fitness Curves for Weighted–Sum MCS 

Hybrids vs. others 

(2N = 20, Uniform, Null = [35°, 145°], maxIter = 1000) 
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Figure 5.7: Optimal Amplitude for Weighted–Sum MCS Hybrids vs. others                 

(2N = 20, Uniform, Null = [35°, 145°], maxIter = 1000) 

 

Figure 5.8: Optimal Phase for Weighted–Sum MCS Hybrids vs. others                        

(2N = 20, Uniform, Null = [35°, 145°], maxIter = 1000) 
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As mentioned earlier, the MCSPSO hybrid algorithm executes the largest 

optimal location oscillations with the measurements between |±0.1620| and |±3.1255| 

compared to the conventional array for all 2N = 20 linear array as enlisted in Table 5.4.  

In addition, the MCSPSO hybrid algorithm has the lowest optimal amplitude deviations 

compared to the conventional array between 0.5427 and 0.5432 for all 2N = 20 array 

elements as presented in Table 5.5.  As can be seen in Table 5.6, the MCSPSO hybrid 

algorithm has the largest optimal phase deviations compared to the conventional array 

between 0
o
 and 88.9306

o
.  In this case, an element has the excitation phase of 0

o
 and 

three elements have the excitation phase of 180
o
.  This indicates that the proposed 

MCSPSO–based optimizer is capable to search the optimal solutions (optimal phases) to 

the minimum and maximum extents, which improves the scanning capability with low 

side lobes, a narrow main beam, and well–mitigated nulls. 

 

Table 5.4: Optimal Location for Weighted–Sum MCS Hybrids vs. others                     

(2N = 20, Uniform, Null = [35°, 145°], maxIter = 1000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS [Mantegna] ±0.4996 ±1.4969 ±2.4978 ±3.4928 ±4.4918 

MCS [Mantegna] ±0.4703 ±1.4108 ±2.3514 ±3.2919 ±4.2325 

MCSPSO [Mantegna] ±0.6620 ±1.9907 ±3.3192 ±4.6481 ±5.9780 

MCSGA [Mantegna] ±0.5499 ±1.6497 ±2.7488 ±3.8493 ±4.9491 

GAPSO ±0.5093 ±1.5102 ±2.5140 ±3.5113 ±4.5116 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

CS [Mantegna] ±5.4933 ±6.4910 ±7.4846 ±8.4826 ±9.4916 

MCS [Mantegna] ±5.1730 ±6.1136 ±7.0541 ±7.9947 ±8.9353 

MCSPSO [Mantegna] ±7.3084 ±8.6368 ±9.9648 ±11.2959 ±12.6255 

MCSGA [Mantegna] ±6.0489 ±7.1487 ±8.2485 ±9.3460 ±10.4481 

GAPSO ±5.5158 ±6.5135 ±7.5116 ±8.5057 ±9.5117 
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Table 5.5: Optimal Amplitude for Weighted–Sum MCS Hybrids vs. others                  

(2N = 20, Uniform, Null = [35°, 145°], maxIter = 1000) 

Element 1 2 3 4 5 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

CS [Mantegna] 1.0004 1.0012 1.0009 1.0003 1.0003 

MCS [Mantegna] 1.0853 1.0716 1.0213 1.0516 1.0819 

MCSPSO [Mantegna] 0.5428 0.5429 0.5427 0.5428 0.5427 

MCSGA [Mantegna] 1.0656 1.0656 1.0656 1.0656 1.0656 

GAPSO 0.6666 0.6666 0.6666 0.6666 0.6666 

Element 6 7 8 9 10 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

CS [Mantegna] 1.0008 1.0014 1.0002 1.0010 1.0010 

MCS [Mantegna] 1.0117 1.0228 1.0986 1.0071 1.0161 

MCSPSO [Mantegna] 0.5432 0.5428 0.5428 0.5430 0.5430 

MCSGA [Mantegna] 1.0656 1.0656 1.0656 1.0656 1.0656 

GAPSO 0.6666 0.6666 0.6666 0.6666 0.6666 

 

 

 

Table 5.6: Optimal Phase for Weighted–Sum MCS Hybrids vs. others                         

(2N = 20, Uniform, Null = [35°, 145°], maxIter = 1000) 

Element 1 2 3 4 5 

ϕn 
0

o 
179.3495

o
 22.3307

o
 15.5222

o
 131.2926

o
 

CS [Mantegna] 0
o 

180
o
 24.3387

o
 17.2827

o
 131.4126

o
 

MCS [Mantegna] 0
o 

168.6877
o
 21.0032

o
 14.5994

o
 123.4877

o
 

MCSPSO [Mantegna] 0
o 

180
o
 50.3968

o
 36.2676

o
 180

o
 

MCSGA [Mantegna] 0
o 

180
o
 24.8503

o
 17.2736

o
 146.1066

o
 

GAPSO 0.0948
o 

179.4246
o
 22.3733

o
 15.5829

o
 131.3076

o
 

Element 6 7 8 9 10 

ϕn 
176.3662

o 
31.7982

o
 74.2622

o
 59.5501

o
 55.6673

o
 

CS [Mantegna] 180
o 

35.3167
o
 78.8409

o
 67.8246

o
 61.9853

o
 

MCS [Mantegna] 165.8818
o 

29.9079
o
 69.8475

o
 56.0100

o
 52.3581

o
 

MCSPSO [Mantegna] 180
o 

70.7653
o
 163.1928

o
 146.8616

o
 124.8258

o
 

MCSGA [Mantegna] 180
o 

35.3860
o
 82.6413

o
 66.2692

o
 61.9484

o
 

GAPSO 176.3985
o 

31.8015
o
 74.3409

o
 59.6257

o
 55.7297

o
 

 

5.1.2 Global Pareto Front Approach 

In the first global Pareto simulation, the proposed MCSSPEA, MCSHCSPEA 

and MCSPSOSPEA optimizers with Mantegna’s algorithm as the selected α–stable 
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distribution method, host nest (population) = 20, discovery rate, Pa = 25% or 0.25, 

length step factor = L/100 or 0.01, and α = 2.0 (Lévy flight Gaussian distribution) are 

analyzed on 2N = 20 linear array.  In this case, the proposed MCSSPEA, MCSHCSPEA 

and MCSPSOSPEA optimizers with the dynamic inertia weight, w magnitude domain 

of [0.80 1.20] are directly compared with the standard SPEA and conventional arrays in 

the normal uniform window.  The bigger, w magnitude domain leads the MCS 

algorithms to gain a more control on the Lévy flight motions with a heavy–tailed and   

α–stable distribution towards the best host nest (candidate solution) in search space. 

The MCSPSOSPEA optimizer uses the particle swarm optimization (PSO) 

algorithm with the dynamic random particle velocity domain of [–0.1 +0.1].  The 

MATLAB simulation executes 1000 iterations of Pareto optimization to find the set of 

three decision variables or optimal solutions simultaneously, which are linear array 

excitation locations, amplitudes, and phases.   

The spread Pareto fitness domain are f1∈[0.12, 0.18], f2∈[0.018, 0.032], and    

f3∈[0.0, 0.2], respectively, as shown in Figure 6.9(b) – (e).  Since, this is a                

three–dimensional (3D) Pareto fronts plot, hypervolume calculation are done for all the 

tested optimizers.  Ideally, the hypervolume near or equals to zero is preferred for a 

global Pareto minimization process.  In this case, the SPEA has the smallest 

hypervolume, which is 0.6361×10
–5

 unit
3
, which is followed by the MCSHCSPEA with 

the hypervolume of 1.5907×10
–5 

unit
3
, the MCSPSOSPEA with the hypervolume of 

2.9925×10
–5 

unit
3
, and the MCSSPEA with the hypervolume of 3.5477×10

–5 
unit

3
, 

respectively. This indicates that at overall Pareto MO trade–offs  aspect, both the 

MCSPSOSPEA and MCSHCSPEA algorithms have some non–dominated points that 

are dominated by SPEA, which has the smallest hypervolume. In sum, all the optimizers 

have very small hypervolumes, which close to zero after going through a MO 
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minimization process.  Besides, there are small hypervolume differences among the 

optimizers, which are less than 3.0×10
–5 

unit
3
 (estimated difference between the largest 

and smallest hypervolumes). 

 

(a) Pareto Approximation 
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(b) Pareto Approximation 

 

(c) Pareto Approximation 
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(d) Pareto Approximation 

 

Figure 5.9: Strength Pareto Evolutionary Algorithm (SPEA) Front Approximations    

(2N = 20, Uniform, maxIter = 1000) 

Based on Figure 5.10(a), the normalized radiation pattern for the hypothesized 

MCSPSOSPEA optimizer evidently outperforms other competitors by having the lowest 

average SLL suppression and highest directivity of the main beam.  The half–power 

beamwidth (HPBW) is the angular separation in which the magnitude of the radiation 

pattern decreases by 50% (or –3 dB) from the peak of the main beam.  Figure 5.10(b) 

shows the pattern for MCSPSOSPEA optimizers similarly decrease to –3 dB at 

88.1426
o
 and 91.8487

o
.  Hence, the HPBW is 91.8487

o 
– 88.1426

o
 = 3.7061

o
.  Figure 

5.10(b) also depicts the MCSPSOSPEA–based array generates the highest directivity 

measurement of 7.4124 dB.  This is followed by the MCSHCSPEA counterpart with the 

directivity of 6.9339 dB.  Besides, the postulated MCSPSOSPEA optimizer has the best 

average SLL suppression between –0.545 dB and –2.232 dB compared to the 
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conventional array within the suppression regions of [40
o
 83

o
] and   [97

o
 140

o
] as shown 

in Figure 5.10(c).  

Figure 5.11 shows that compared to other opponents, the MCSPSOSPEA 

algorithm fluctuates furthest its excitation amplitude with respect to the conventional 

array.  Furthermore, it also has the biggest optimal phase deviations compared to other 

rivals as depicted in Figure 5.12.  All of these findings become the key factor for the 

MCSPSOSPEA algorithm applying the selected non–dominated solutions to design a 

linear array, which can suppress the average lowest side lobes while preserving the main 

beam intensity.  Based on the selected non–dominated solutions aspect, the 

MCSPSOSPEA algorithm has better Pareto front trade–offs especially with respect to f1 

and f3 despite having a bigger hypervolume, which leads to the best directivity and 

smallest half–power beamwidth (HPBW).    

 

(a) Normalized Radiation Pattern 
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(b) HPBW Pattern 

 

(c) Average SLL Suppression 

 

Figure 5.10: Normalized Pattern for SPEA–based Arrays                                                        

(2N = 20, Uniform, maxIter = 1000) 
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Figure 5.11: Optimal Amplitude for SPEA–based Arrays                                               

(2N = 20, Uniform, maxIter = 1000) 

 

Figure 5.12: Optimal Phase for SPEA–based Arrays                                                      

(2N = 20, Uniform, maxIter = 1000) 
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In this experiment, the MCSPSOSPEA algorithm generates 11 non–dominated 

solutions whereas MCSHCSPEA algorithm generates 12 non–dominated solutions, 

respectively.  Table 5.7  shows the fitness trade–off values of the selected                 

non–dominated solutions for all the four tested Pareto algorithms for the comparison 

purposes as shown in Figure 5.10, Figure 5.11, and Figure 5.12, respectively.  It can be 

seen that the MCSPSOSPEA has the smallest relative values of Pareto front with 

respect to f1 and f3 after running 1000 iterations of a Pareto MO minimization. 

 

Table 5.7: Selected Optimal Pareto Fitness for SPEA–based Arrays                             

(2N = 20, Uniform, maxIter = 1000) 

Fitness f1 f2 f3 

SPEA  0.1535     0.0206     0.1406     

MCSSPEA  0.1461     0.0248     0.1277     

MCSHCSPEA 0.1442     0.0307     0.1505     

MCSPSOSPEA 0.1349     0.0249     0.1277 

 

 

Table 5.8: Optimal Location for SPEA–based Arrays                                                            

(2N = 20, Uniform, maxIter = 1000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

SPEA ±0.5262     ±1.5786     ±2.6310     ±3.6835     ±4.7359     

MCSSPEA ±0.4956     ±1.4869     ±2.4782     ±3.4695     ±4.4608     

MCSHCSPEA ±0.5888     ±1.7663     ±2.9438     ±4.1214     ±5.2989     

MCSPSOSPEA ±0.7241     ±2.1724     ±3.6206     ±5.0688     ±6.5171     

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

SPEA ±5.7883     ±6.8407     ±7.8931 ±8.9456     ±9.9980 

MCSSPEA ±5.4521     ±6.4434     ±7.4347 ±8.4260     ±9.4173 

MCSHCSPEA ±6.4765     ±7.6540     ±8.8315 ±10.0091    ±11.1866 

MCSPSOSPEA ±7.9653     ±9.4135    ±10.8618 ±12.3100    ±13.7582 
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Table 5.9: Optimal Amplitude for SPEA–based Arrays                                                           

(2N = 20, Uniform, maxIter = 1000) 

Element 1 2 3 4 5 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

SPEA 0.9224     0.9142     0.9751     0.9119     0.9584     

MCSSPEA 0.9887     0.9629     0.9332     0.9178     1.0716     

MCSHCSPEA 1.1873     1.1529     1.1385     1.2220     1.2689     

MCSPSOSPEA 1.4603     1.4180     1.4002     1.5029     1.5606     

Element 6 7 8 9 10 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

SPEA 1.0142     1.0401     1.0098     1.0105 1.0375     

MCSSPEA 1.0402     1.0965     1.0863     0.9800 0.9692     

MCSHCSPEA 1.2886     1.3098     1.2218     1.2280 1.2954     

MCSPSOSPEA 1.5848     1.6109     1.5026     1.5103 1.5932     

 

 

Table 5.10: Optimal Phase for SPEA–based Arrays (2N = 20, Uniform, maxIter = 1000) 

Element 1 2 3 4 5 

ϕn 
0

o 
39.8173

o
 142.2216

o
 1.0740

o
 59.3696

o
 

SPEA 0
o 

41.9045
o
 149.6768

o
 1.1303

o
 62.4817

o
 

MCSSPEA 0
o 

39.4706
o
 140.9834

o
 1.0647

o
 58.8527

o
 

MCSHCSPEA 0
o 

46.8864
o
 167.4716

o
 1.2647

o
 69.9101

o
 

MCSPSOSPEA 0
o
 57.6648

o
 180.0000

o
 1.5555

o
 85.9812

o
 

Element 6 7 8 9 10 

ϕn 
152.6461

o
 130.6266

o
 76.3159

o
 119.2334

o
 97.2496

o
 

SPEA 160.6477
o
 137.4740

o
 80.3164

o
 125.4836

o
 102.3473

o
 

MCSSPEA 151.3171
o
 129.4893

o
 75.6515

o
 118.1953

o
 96.4029

o
 

MCSHCSPEA 179.7468
o
 153.8180

o
 89.8650

o
 140.4021

o
 114.5152

o
 

MCSPSOSPEA 180.0000
o
 180.0000

o
 110.5235

o
 172.6782

o
 140.8404

o
 

 

As enlisted in Table 5.8, the MCSPSOSPEA hybrid algorithm executes the 

largest optimal location oscillations with respect to λ/2 compared to the conventional 

array.  Precisely, the MCSPSOSPEA has the oscillations between |±0.2241| and 

|±4.2582| for all 2N = 20 linear antenna array elements.  Table 5.9 shows that the 

MCSPSOSPEA hybrid algorithms also attain the biggest optimal amplitude deviations 

compared to the conventional array.  In this case, the MCSPSOSPEA has the deviations 

between 0.4002 and 0.6109. Besides, Table 5.10 indicates that the postulated 
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MCSPSOSPEA algorithm produces the largest optimal phase variations compared to 

the conventional array with the variations between 0
o
 and 53.4448

o
, respectively.   

In sum, the dynamic hybridization of MCS with PSO and SPEA in 

MCSPSOSPEA algorithm is proven deliver a better control of Lévy flight motion of 

cuckoo in searching for a host nest (optimal solution), which provides the brood with a 

higher probability of survival.   Hence, the proposed MCSPSOSPEA hybrid algorithm 

performs a better minimization trade–offs using the selected non–dominated solutions 

with Pareto fitness functions tabulated in Table 5.7 by producing a bigger diversity of 

optimal excitation position, amplitude, and phase values.   

The next experiment compares the proposed MCSSPEA, MCSHCSPEA and 

MCSPSOSPEA hybrid algorithms along with the standard SPEA and conventional 

arrays under the Dolph–Chebyshev signal processing window with the relative SLL,       

R = –30 dB for the 2N = 20 linear array.  In this experiment, all the SPEA–based 

optimizers with Mantegna’s algorithm as the selected α–stable distribution method, host 

nest (population) = 20, discovery rate, Pa = 25% or 0.25, length step factor = L/100 or 

0.01, and α–stable = 2.0 (Lévy flight Gaussian distribution) are simulated for 1000 

iterations on 2N = 20 linear antenna array.  All the proposed MCSSPEA, 

MCSHCSPEA, and MCSPSOSPEA optimizers apply the dynamic inertia weight, w 

with the magnitude domain of [0.80 1.20].  Furthermore, the proposed MCSPSOSPEA 

algorithm uses the PSO velocity of particle (cuckoo) updating mechanism with the 

domain of [–0.1 +0.1].  This smaller domain is to avoid an excessive Lévy flight motion 

towards the global best (gbest) solution in N–dimensional search space.  The excessive 

Lévy flight motion produces too much excitation solution fluctuations compared to the 

conventional array, which are not optimum for equiripple side lobes suppression in a 

“highly–sensitive” Dolph–Chebyshev signal processing window.  
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Figure 5.13(a) shows the initial Pareto non–dominated solutions with respect to 

the three fitness functions. The spread Pareto fitness domain are f1∈ [0.05, 0.25],         

f2∈ [0.01, 0.06], and f3∈ [0.0, 2.8], respectively, as depicted in Figure 5.9(b) – (e).  In 

this study, the MCSPSOSPEA has the hypervolume of 0.2041×10
–4 

unit
3
, the 

MCSSPEA has the hypervolume of 0.2083×10
–4 

unit
3
, and the standard MCSHCSPEA 

has the hypervolume of 7.3015×10
–4 

unit
3
, respectively.  It is found that each of the 

tested algorithms has a very small hypervolume (closes to zero) due to the Pareto 

minimization.  Besides, all the optimizers have similar hypervolumes with the 

differences less than 7.3×10
–4 

unit
3 

(estimated difference between the largest and 

smallest hypervolumes). 

The MCSPSOSPEA algorithm outperforms other competitors in side lobes 

suppression particularly within the [0
o 

60
o
] and [120

o
 180

o
] suppression regions as 

shown in Figure 5.14(a).   In addition, the MCSPSOSPEA algorithm as in Figure 

5.14(b) generates the smallest HPBW of 92.67
o 

– 87.33
o
 = 5.34

o
 with the highest 

directivity of 7.8733 dB.  This is followed by the MCSHCSPEA algorithm with the 

HPBW of 93.00
o
 – 87.00

o
 = 6.00

o
 with the directivity of 7.7769 dB.  The hybrid 

MCSSPEA–based array has the directivity of 7.2022 dB whereas the SPEA counterpart 

has the directivity of 7.1259 dB, respectively.  Precisely, the MCSPSOSPEA algorithm 

generates the best SLL suppression between 0.18 dB and 0.98 dB relatively lower than 

the conventional linear array.  The MCSSPEA counterpart is the second best optimizer 

in the SLL suppression between 0.28 dB and 0.78 dB relatively lower than the 

conventional linear array.    Figure 5.14(c) shows that the MCSPSOSPEA algorithm 

generates the lowest side lobes radiation intensity for 2N = 20 linear antenna array 

within the Dolph–Chebyshev signal filtering window.  

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



183 

 

Table 5.11: Selected Optimal Pareto Fitness for SPEA–based Arrays                          

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 

Fitness f1 f2 f3 

SPEA  0.1403 0.0151 2.4990 

MCSSPEA  0.1388 0.0156 2.4983 

MCSHCSPEA 0.1286 0.0165 2.5288 

MCSPSOSPEA 0.1270 0.0186 2.4206 

 

In this experiment, both the MCSSPEA and MCSPSOSPEA hybrid algorithms 

generate 19 non–dominated solutions whereas MCSHCSPEA algorithm produces 14 

non–dominated solutions.  Table 5.11  shows the fitness trade–off values of the selected 

non–dominated solutions for all the four tested SPEA–based Pareto algorithms, 

respectively.  The MCSPSOSPEA generates the smallest values of fitness f1 and f3 after 

going through 1000 iterations of minimization process.  Once again, looking at the 

selected non–dominated solutions aspect, the MCSPSOSPEA algorithm has better 

Pareto front trade–offs especially with respect to f1 and f3 despite having a bigger 

hypervolume than the standard SPEA counterpart, which leads to the best antenna 

directivity and smallest half–power beamwidth (HPBW). 
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(a) Pareto Approximation 

 

(b) Pareto Approximation 
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(c) Pareto Approximation 

 

(d) Pareto Approximation 

 

Figure 5.13: Strength Pareto Evolutionary Algorithm (SPEA) Front Approximations               

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 
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(a) Normalized Radiation Pattern 

 

(b) HPBW Pattern 
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(c) Average SLL Suppression 

 

Figure 5.14: Normalized Pattern for SPEA–based Arrays                                              

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 

 

Furthermore, Figure 5.15 shows that the MCSPSOSPEA hybrid algorithm has 

the biggest optimal Dolph–Chebyshev amplitude deviations compared to the 

conventional linear array.  This is followed by the MCSHCSPEA, MCSSPEA and 

SPEA algorithms.  Similarly for optimal phase values as in Figure 5.16, the 

MCSPSOSPEA hybrid algorithm generates the biggest fluctuations followed by the 

MCSHCSPEA counterpart.  Nevertheless, both the MCSSPEA and SPEA algorithms 

produce almost similar fluctuations in the excitation location, Dolph–Chebyshev 

amplitude and phase, respectively. 
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Figure 5.15: Optimal Amplitude for SPEA–based Arrays                                              

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 

 

Figure 5.16: Optimal Phase for SPEA–based Arrays                                                      

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 
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Table 5.12 clearly indicates that the proposed MCSPSOSPEA–based array 

produces the largest optimal element location fluctuations compared to the conventional 

linear array.  Precisely, the MCSPSOSPEA fluctuations occurred between |±0.1157| and 

|±2.1974| for all 2N = 20 linear array elements.  This is followed by the MCSHCSPEA 

with the fluctuations between |±0.0467| and |±0.8866|.  Based on Table 5.13, the 

MSCPSOSPEA hybrid optimizer generates the largest amplitude variations compared to 

the standard Dolph–Chebyshev window (as generated by the conventional linear array), 

which is between 0.1669 and 0.6967.  This is followed by the MCSHCSPEA optimizer, 

with the fluctuations between 0.0591 and 0.2965 for all the 2N = 20 linear array 

elements.  In addition, the MCSPSOSPEA algorithm also generates the biggest optimal 

phase fluctuations compared to the conventional array, which are between 0
o
 and 

32.8966
o
 as enlisted in Table 5.14.  Once again, the MCSHCSPEA algorithm has the 

second largest optimal phase deviations which are between 0
o
 and 13.8217

o
.  In sum, 

the postulated MCSPSOSPEA algorithm is capable to explore furthest the optimal 

solutions in the search domain based on the biggest fluctuations as mentioned earlier.  

As a result, the MCSPSOSPEA algorithm produces the best diversity of Pareto front 

trade–offs, which surpass other competitors in suppressing side lobes while attaining the 

best directivity and smallest half–power beamwidth (HPBW) of main beam for 2N = 20 

linear antenna array within the Dolph–Chebyshev signal processing window.    
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Table 5.12: Optimal Location for SPEA–based Arrays                                                   

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

SPEA ±0.5230 ±1.5691 ±2.6152 ±3.6613 ±4.7074 

MCSSPEA ±0.5191 ±1.5572 ±2.5953 ±3.6334 ±4.6715 

MCSHCSPEA ±0.5467 ±1.6400 ±2.7333 ±3.8266 ±4.9200 

MCSPSOSPEA ±0.6157 ±1.8470 ±3.0783 ±4.3096 ±5.5409 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

SPEA ±5.7535 ±6.7996 ±7.8457 ±8.8918 ±9.9379 

MCSSPEA ±5.7096 ±6.7477 ±7.7858 ±8.8239 ±9.8620 

MCSHCSPEA ±6.0133 ±7.1066 ±8.2000 ±9.2933 ±10.3866 

MCSPSOSPEA ±6.7722 ±8.0035 ±9.2348 ±10.4661 ±11.6974 

 

Table 5.13: Optimal Amplitude for SPEA–based Arrays                                                        

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 

Element 1 2 3 4 5 

An 1.0000 0.8771 1.2009 1.5497 1.9052 

SPEA 1.0131 0.8992 1.2532 1.5752 1.9466 

MCSSPEA 1.0056 0.9062 1.2335 1.5597 1.9431 

MCSHCSPEA 1.0591 0.9544 1.2991 1.6427 2.0464 

MCSPSOSPEA 1.1928 1.0440 1.4512 1.8436 2.2927 

Element 6 7 8 9 10 

An 2.2465 2.5522 2.8022 2.9793 3.0712 

SPEA 2.3367 2.5988 2.8579 3.0419 3.1464 

MCSSPEA 2.3370 2.6522 2.9066 3.0941 3.1976 

MCSHCSPEA 2.4613 2.7933 3.0612 3.2587 3.3677 

MCSPSOSPEA 2.7406 3.1333 3.4149 3.6315 3.7679 

 

Table 5.14: Optimal Phase for SPEA–based Arrays                                                          

(2N = 20, Dolph–Chebyshev, maxIter = 1000) 

Element 1 2 3 4 5 

ϕn 
0

o 
39.8173

o
 142.2216

o
 1.0740

o
 59.3696

o
 

SPEA 0
o 

41.6525
o
 148.7767

o
 1.1235

o
 62.1060

o
 

MCSSPEA 0
o 

41.2294
o
 147.2655

o
 1.1121

o
 61.4751

o
 

MCSHCSPEA 0
o 

43.4226
o
 155.0994

o
 1.1713

o
 64.7454

o
 

MCSPSOSPEA 0
o 

49.0272
o
 175.1182

o
 1.3225

o
 73.1021

o
 

Element 6 7 8 9 10 

ϕn 
152.6461

o 
130.6266

o
 76.3159

o
 119.2334

o
 97.2496

o
 

SPEA 159.6816
o 

136.6473
o
 79.8334

o
 124.7290

o
 101.7319

o
 

MCSSPEA 158.0596
o 

135.2593
o
 79.0224

o
 123.4620

o
 100.6985

o
 

MCSHCSPEA 166.4678
o 

142.4545
o
 83.2261

o
 130.0297

o
 106.0553

o
 

MCSPSOSPEA 180.0000
o 

160.8412
o
 93.9682

o
 146.8127

o
 119.7439

o
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In the last test, a more complex broadside case simulation is conducted where 

2N = 20 linear array radiates at the desired angle of 90
o
 with four predefined interferers 

at 30
o
, 31

o
, 149

o
 and 150

o
, respectively.   For a uniformity, all the tested SPEA–based 

optimizers deploy the Mantegna’s algorithm as the α–stable distribution type, host nest 

(population) = 20, discovery rate or fraction probability, Pa = 25% or 0.25, length step 

factor = L/100 or 0.01, α = 2.0 (Lévy flight Gaussian distribution), and dynamic inertia 

weight, w domain of [0.80 1.20].  The proposed MCSSPEA, MCSHCSPEA and 

MCSPSOSPEA hybrid–based arrays are compared with the standard SPEA–based and 

conventional arrays in terms of SLL suppression, and interferermitigation whilst 

improving the main beam radiation through 1000 iterations of MATLAB simulations.   

The Pareto front non–dominated decision variables include the linear array excitation 

location, amplitude, and phase, respectively. 

Figure 5.17(a) – (d) portray the spread Pareto fitness domain, which are bounded 

by f1∈ [0.115, 0.155], f2∈ [0.015, 0.045], and f3∈ [0.0, 0.4], respectively.  In details, the 

SPEA counterpart has the smallest hypervolume of 4.3996×10
–6 

unit
3
 whereas the 

postulated MCSPSOSPEA has the hypervolume of 6.3902×10
–6

 unit
3
, followed by the 

MCSSPEA counterpart with the hypervolume of 9.6473×10
–6

 unit
3
, and the 

MCSHCSPEA hybrid algorithm with the hypervolume of 2.6184×10
–5 

unit
3
, 

respectively.  In sum, all the hypervolume values are so small (near to zero) due to the 

Pareto fitness minimization process.  Besides, all the tested SPEA optimizers have 

almost identical hypervolumes with the differences less than 2.2×10
–5 

unit
3 

(estimated 

difference between the largest and smallest hypervolumes). 

The MCSPSOSPEA–based array outperforms other arrays in SLL suppression 

particularly between the [60
o 

83
o
] and [97

o 
120

o
] regions, respectively as in             

Figure 5.18(a).   Moreover, the MCSPSOSPEA–based array as in Figure 5.14(b) 
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generates the smallest half–power beamwidth (HPBW) of 91.8954
o 

– 88.1072
o
 = 

3.7882
o
 with the highest directivity of 8.3578 dB.  This is trailed by the MCSHCSPEA 

counterpart with the calculated HPBW of 92.2838
o
 – 87.7614

o
 = 4.5224

o
, and the 

radiation directivity of 7.6527 dB.  On the other hand, the MCSSPEA–based array has 

the smaller directivity of 7.4503 dB followed by the original SPEA–based array with the 

directivity of 7.3769 dB, respectively.  Figure 5.18(c) displays that the MCSPSOSPEA 

algorithm executes the lowest SLL between 0.0597 dB and 4.1265 dB relatively lower 

than the conventional array.  In addition, Figure 5.18(d) and Figure 5.18(e) show that 

the proposed MCSPSOSPEA algorithm demonstrates the best nulls mitigation 

compared to other rivals, with the significant measurements of –52.8246 dB at 

approximately 31.5127°, and –56.9966 dB at around 148.3961°, respectively. 

 

(a) Pareto Approximation 
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(b) Pareto Approximation 

 

(c) Pareto Approximation 
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(d) Pareto Approximation 

 

Figure 5.17: Strength Pareto Evolutionary Algorithm (SPEA) Front Approximations    

(2N = 20, Uniform, Null = [30
o
, 31

o
, 149

o
, 150

o
], maxIter = 1000) 
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(a) Normalized Radiation Pattern 

 

(b) HPBW Pattern 
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(c) Average SLL Suppression 

 

(d) Null Mitigation near to 31
o
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(e) Null Mitigation near to 149
o
 

 

Figure 5.18:  Normalized Pattern for SPEA–based Arrays                                                 

(2N = 20, Uniform, Null = [30
o
, 31

o
, 149

o
, 150

o
], maxIter = 1000) 

 

Figure 5.19: Optimal Amplitude for SPEA–based Arrays                                                        

(2N = 20, Uniform, Null = [30
o
, 31

o
, 149

o
, 150

o
], maxIter = 1000) 
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Figure 5.20: Optimal Phase for SPEA–based Arrays                                                               

(2N = 20, Uniform, Null = [30
o
, 31

o
, 149

o
, 150

o
], maxIter = 1000) 

 

The MCSPSOSPEA algorithm produces the biggest amplitude fluctuations.  

This is followed by the MCSHCSPEA counterpart as shown in Figure 5.19.  Similarly, 

the MCSPSOSPEA algorithm also generates the biggest excitation phase deviations 

compared to the conventional array, which is also followed by the MCSHCSPEA 

algorithm as depicted in Figure 5.20.  In this simulation, the MCSSPEA algorithm 

generates 12 non–dominated solutions, the MCSHCSPEA algorithm has 14              

non–dominated solutions, and the MCSPSOSPEA algorithm has 10 non–dominated 

solutions, respectively. 
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Table 5.15: Selected Optimal Pareto Fitness for SPEA–based Arrays                                      

(2N = 20, Uniform, Null = [30
o
, 31

o
, 149

o
, 150

o
], maxIter = 1000) 

Fitness f1 f2 f3 

SPEA  0.1356     0.0241     0.1505     

MCSSPEA  0.1342     0.0213     0.1346     

MCSHCSPEA 0.1307     0.0258     0.1277     

MCSPSOSPEA 0.1196     0.0253     0.1485    

 

Table 5.15 shows the spread Pareto fitness trade–off of the selected                

non–dominated solutions for all the four tested SPEA–based algorithms for the 

comparison purposes as presented in  

Figure 5.18 – Figure 5.20, respectively.  Overall, the MCSPSOSPEA algorithm 

has the smallest value of f1 whereas the MCSHCSPEA counterpart has the smallest f3 

and MCSSPEA algorithm has the smallest value of f2, respectively after 1000 iterations 

of Pareto MO minimization process.  Viewing at the selected non–dominated solutions 

aspect, the MCSPSOSPEA algorithm has better Pareto front trade–offs especially with 

respect to f1 despite having a bigger hypervolume than the standard SPEA counterpart, 

which leads to the best directivity and smallest half–power beamwidth (HPBW). 

 

Table 5.16: Optimal Location for SPEA–based Arrays                                                          

(2N = 20, Uniform, Null = [30
o
, 31

o
, 149

o
, 150

o
], maxIter = 1000) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

SPEA ±0.4910     ±1.4731     ±2.4551     ±3.4372     ±4.4192     

MCSSPEA ±0.5417     ±1.6251     ±2.7085     ±3.7918     ±4.8752     

MCSHCSPEA ±0.5978     ±1.7935     ±2.9891     ±4.1847     ±5.3804     

MCSPSOSPEA ±0.7061     ±2.1184     ±3.5306     ±4.9429     ±6.3551     

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000 

SPEA ±5.4013     ±6.3834     ±7.3654 ±8.3475     ±9.3295 

MCSSPEA ±5.9586     ±7.0420     ±8.1254 ±9.2087    ±10.2921 

MCSHCSPEA ±6.5760     ±7.7716     ±8.9673 ±10.1629    ±11.3585 

MCSPSOSPEA ±7.7674     ±9.1796    ±10.5919 ±12.0041    ±13.4163 
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As enlisted in Table 5.16, the postulated MCSPSOSPEA–based array generates 

the largest optimal location fluctuations compared to the conventional array (with 

respect to λ/2) for all 2N = 20 array elements between |±0.2061| and |±3.9163|.  The 

MCSPSOSPEA algorithm once again executes the biggest amplitude deviations 

compared to the conventional array between 0.4932 and 0.6445 as tabulated in        

Table 5.17.  This is followed by the MCSHCSPEA counterpart with the fluctuations 

between 0.0501 and 0.1842 for all 2N = 20 linear array elements. 

 

Table 5.17: Optimal Amplitude for SPEA–based Arrays                                                           

(2N = 20, Uniform, Null = [30
o
, 31

o
, 149

o
, 150

o
], maxIter = 1000) 

Element 1 2 3 4 5 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

SPEA 0.9902     0.9615     0.9495     1.0191     1.0582     

MCSSPEA 1.0806     0.9804     1.0280     1.0912     1.0509     

MCSHCSPEA 1.0501     1.1040     1.1842     1.0649     1.0882     

MCSPSOSPEA 1.5957     1.5225     1.4932     1.5394     1.5452     

Element 6 7 8 9 10 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

SPEA 1.0747     1.0923     1.0189     1.0242 1.0803     

MCSSPEA 0.9507     1.0999     0.9851     0.9736 0.9824 

MCSHCSPEA 1.1694     1.0729     1.0799     1.0849 1.1005 

MCSPSOSPEA 1.6445     1.5302     1.5569     1.5988 1.4982 

 

Moreover, Table 5.18 depicts that both the hybrid MCSPSOSPEA and 

MCSHCSPEA algorithms generate the optimal phase domain of [0
o 

180
o
].  On the other 

hand, the MCSSPEA counterpart has the optimal phase domain of [0
o 

165.3738
o
] and is   

followed by the standard SPEA algorithm with the phase domain of [0
o 

149.9067
o
], 

respectively.  In this case, the MCSPSOSPEA algorithm produces the biggest phase 

deviations compared to the conventional array, which are between 0
o
 and 49.3734

o
.  The 

MCSHCSPEA counterpart has the second biggest phase deviations between 0
o
 and 

27.8236
o
.  This is followed by the MCSSPEA algorithm with the deviations between 0

o
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and 12.7277
o 

and the original SPEA algorithm between 0
o
 and 2.7394

o 
for all 2N = 20 

linear array elements. 

 

Table 5.18: Optimal Phase for SPEA–based Arrays                                                                   

(2N = 20, Uniform, Null = [30
o
, 31

o
, 149

o
, 150

o
], maxIter = 1000) 

Element 1 2 3 4 5 

ϕn 
0

o 
39.8173

o
 142.2216

o
 1.0740

o
 59.3696

o
 

SPEA 0
o 

39.1027
o
 139.6693

o
 1.0548

o
 58.3041

o
 

MCSSPEA 0
o 

43.1373
o
 154.0802

o
 1.1636

o
 64.3199

o
 

MCSHCSPEA 0
o 

47.6069
o
 170.0452

o
 1.2842

o
 70.9844

o
 

MCSPSOSPEA 0
o 

56.2318
o
 180.0000

o
 1.5168

o
 83.8445

o
 

Element 6 7 8 9 10 

ϕn 
152.6461

o
 130.6266

o
 76.3159

o
 119.2334

o
 97.2496

o
 

SPEA 149.9067
o
 128.2824

o
 74.9464

o
 117.0937

o
 95.5043

o
 

MCSSPEA 165.3738
o
 141.5184

o
 82.6792

o
 129.1752

o
 105.3583

o
 

MCSHCSPEA 180.0000
o
 156.1817

o
 91.2460

o
 142.5596

o
 116.2750

o
 

MCSPSOSPEA 180.0000
o
 180.0000

o
 107.7770

o
 168.3871

o
 137.3404

o
 

 

 In sum, the bigger deviations of optimal solutions (position, amplitude, and 

phase) prove that the postulated MCSPSOSPEA hybrid algorithm is capable to explore 

furthest in the search space producing the best diversity of the selected non–dominated 

solutions.  Consequently, this stimulates the MCSPSOSPEA algorithm to synthesize 

linear antenna arrays with the lowest average SLL suppression, smallest main beam 

HPBW, highest normalized radiation directivity, and best predefined nulls mitigation 

compared to other SPEA–based competitors.   
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CHAPTER SIX 

6 RESULTS AND DISCUSSIONS 

6.1 Cuckoo Search Algorithm Internal Parameters Analysis 

Generally, five internal parameters of CS algorithm are tested in linear array 

geometry synthesis, which are Lévy flights distribution type (α), α–stable distribution 

method, length step factor (L), numbers of host nest (population), and discovery rate or 

fraction probability (Pa).  Firstly, two types of Lévy flights distribution, which includes 

α = 1.0 (Cauchy) and α = 2.0 (Gaussian) are analyzed on 2N = 10 and 2N = 20 linear 

antenna arrays, accordingly.  It is found that as α smaller, the convergence rate becomes 

faster.  This is due to the fact that the CS–optimizer agreed with the Cauchy distribution 

property.  It means that the CS algorithm can find the optimal solutions and converge 

faster due to the presence of larger steps or jumps compared to the random Brownian 

motion existed in optimizer with the Gaussian distribution.  In other words, the 

stochastic CS–optimizer with the Cauchy distribution demonstrates a mix of long 

trajectories, and short random movements while finding the optimal solutions within 

N−dimensional search space. 

Overall, the performance for both optimizers are identical in 2N = 10 linear array 

since both optimizers have the same minimum fitness, fmin convergence and almost 

similar optimal locations with the differences less than |±0.1000| for all array elements.  

However, the CS−optimizer with α = 2.0 performs better by having a lower SLL 

suppression in 2N = 20 symmetric array, mainly due to the bigger location fluctuations 

compared to the conventional array, and a lower fmin convergence.  In sum, the CS 

algorithm with the Lévy flight Gaussian distribution performed better for a larger 

number of array elements.  In this case, the CS algorithm with the Lévy flight Gaussian 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



203 

 

distribution is capable to explore further in finding the optimal solutions (antenna 

excitation locations) for the 2N = 20 linear array. 

Secondly, three α–stable distribution methods, which are Mantegna’s algorithm, 

McCulloch’s algorithm, and standard random walk are analyzed on both 2N = 10 and 

2N = 20 linear arrays.  It is found that the performances for all the three α–stable 

distribution methods are alike for 2N = 10 linear array.  This situation is due to the same 

fmin convergence and nearly same optimal solutions (locations) with the differences less 

than |±0.1000| for all antenna elements.  Even so, as the number of element is increased 

to 20, the CS algorithm with the α–stable Mantegna’s algorithm generates the lowest 

SLL suppression compared to other two competitors.  This is because the Mantegna’s 

algorithm is capable to control the Lévy flight motion based on the α–stable distribution 

more effectively in finding further the optimal solutions in a search space.  This is 

proven by the largest optimal location deviations (as well as magnitudes) compared to 

the conventional linear array, and a lower fmin convergence. 

Thirdly, three length step factors (L), which are L/10 (factor of 0.1), L/100 

(factor of 0.01), and L/1000 (factor of 0.001) are examined on both 2N = 10 and 2N = 

20 linear arrays.  Precisely, L is the length scale of cuckoo’s motion in searching for a 

new (other host bird’s) nest for a brood parasitism purpose.  It is found that the 

performance for all the three length step factors applied in both 2N = 10 and 2N = 20 

linear arrays are same.  These outcomes are primarily due to the same fmin convergence 

and optimal locations for all array elements. 

Overall, this indicates that all the three small length step factors, which are 

smaller than 1.0 ensure that the Lévy flight motions performed by cuckoo are not being 

too aggressive, e.g. have a uniform steady searching motion.  As a result, new identical 

solutions are found in all the length step factors within the N−dimensional search space.  
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In another aspect, this also shows that the small length step factors will not be enough to 

overpower the increasing lengths since the Lévy flight motions with the heavy−tailed 

distribution has an infinite variance or possible length.  In other words, any small length 

step factor will not distinguish the random motions process, which obeys a power−law 

step length distribution with a heavy−tail.  Thus, the optimal solutions found in 

N−dimensional search space will be the same for any given step factor. 

Fourthly, three numbers of host nest (population), which are 10, 20, and 30are 

examined on 2N = 10 linear array.  It is found that the performances for all the three 

numbers of population are alike.  This is mainly due to the same fmin convergence and 

almost similar optimal location magnitudes with the differences less than |±0.1000| for 

all array elements. 

However, all the three numbers of host nest (population) applied in the CS 

algorithm converge at different times. As the number of host nest bigger, the 

convergence rate becomes faster due to the higher capability and larger probability to 

find global minimum solutions since bigger number of individuals occupied in the 

search space. 

In other aspect, there should be the ideal number of population applied in the 

CS−optimizer due to the process complexity and computing execution time (CPU 

processing time).  In this case, bigger number of population means higher process 

complexity and more execution elapsed time. 

Fifthly, three discovery rates or fraction probabilities, Pa, which are 25% or 

0.25, 50% or 0.50, and 95% or 0.95 are examined on 2N = 10 symmetric array.  It is 

found that both the CS–optimizers with Pa = 0.25 and Pa= 0.50 have the best identical 

performances whereas the CS–optimizer with Pa= 0.95 is the worst one in SLL 

suppression.  This is primarily due to the lower fmin convergence and almost similar 
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optimal locations for all 2N = 10 array elements in both CS–optimizers with Pa= 0.25 

and Pa = 0.50. 

In sum, this finding agrees with the principle that as the Pa larger, the possibility 

of egg laid by a cuckoo to be discovered by the host bird of other species becomes 

higher leading to a new nest searching or replacement.  As a result, the likelihood of 

getting the best possible optimum solutions will be diminished or vanished in some 

extents.   In other words, the lower Pa applied in CS algorithm will lead the cuckoo’s 

egg (optimal solution) hatching and brood–parasitism processes well–taken by the host 

bird unknowingly.  Hence, the lower Pa the better SLL suppression due to the superior 

optimal solutions found in the N–dimensional optimization problem. 

 

6.2 Modified Cuckoo Search Algorithm Analysis 

In this part of analysis, there is a development of modified cuckoo search (MCS) 

algorithm by integrating the standard CS algorithm with the Roulette wheel selection 

operator, and the adaptive inertia weight, w.  The Roulette wheel operator generates a 

random selection (through a wheel rotation process) where candidate solutions with a 

superior fitness have a larger possibility to be selected.  Moreover, the aim of 

introducing the adaptive w isprimarily to control the MCS algorithm exploration ability 

better towards optimal solutions in search space. 

Firstly, two types of Lévy flight distribution, which are α = 1.0 (Cauchy) and     

α = 2.0 (Gaussian) are analyzed on 2N = 20 linear array.  It is found that the MCS 

algorithm (α = 2.0) outperforms the MCS counterpart (α = 1.0), and the standard CS 

algorithms with α = 1.0 and 2.0, in terms of SLL suppression.  This is due to the fact 

that MCS algorithm (α = 2.0) has the highest optimal element location magnitudes and 
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fluctuations compared to the conventional array.  In addition to that, the postulated 

MCS algorithm (α = 2.0) also achieves the lowest fmin convergence. 

In sum, the combination of Roulette wheel selection operator, adaptive w, and 

Lévy flight Gaussian distributions in MCS algorithm evidently is capable to search 

further best−fitted solutions (linear array excitation locations) in N–dimensional space.  

As a result, the proposed MCS algorithm delivers the bigger diversity of optimal 

solutions, which generate the normalized antenna radiation pattern with lower side lobes 

whilst preserving the main beam intensity. 

Secondly, three α–stable distribution methods, which are Mantegna’s algorithm, 

McCulloch’s algorithm, and standard random walk are analyzed on 2N = 20 linear 

array.  It is found that the MCS–optimizer with Mantegna’s algorithm demonstrates the 

best SLL suppression.  This is primarily due to the biggest location deviations compared 

to the conventional arrayand the lowest fmin convergence. 

In sum, the introduction of Roulette wheel selection operator, adaptive w, and 

Mantegna’s algorithm enhance the capability of MCS algorithm in generating random 

numbers (candidate solutions) based on a symmetric α–stable distribution.   As a result, 

the MCS–optimizer with Mantegna’s algorithm is capable to demonstrate a far–reaching 

metaheuristic search, which outperforms other competitors in SLL suppression whilst 

maintaining the main lobe. 

Thirdly, three numbers of population (host nest), which are 10, 20, and 30 are 

examined on 2N = 20 linear array.  It is found that the hypothesized MCS–optimizers 

with the largest number of population (nest = 30) outperforms other counterparts in 

suppressing SLL.  This is due to the highest location deviations compared to the 

conventional array and the lowest fmin convergence. 
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In sum, the introduction of Roulette wheel selection operator and adaptive 

inertia weight, w along with a larger population size can provide a higher possibility in 

finding the optimal solutions in the search space.  Hence, a better diversity of optimal 

solutions is directly generated from a larger number of individuals (candidate solutions). 

Nevertheless, there should be the appropriate number of population chosen for 

the MCS−optimizer due to the process complexity and execution time (CPU processing 

time) limitations.  This is important since the bigger number of population will cause 

the higher complexity and the more processing time for execution. 

Fourthly, three discovery rates or fraction probabilities, which are Pa = 25% or 

0.25, 50% or 0.50, and 95% or 0.95 are examined on 2N =20 linear array.  It is clearly 

found that the MCS–optimizer with Pa = 0.25 has the best SLL suppression compared to 

other two MCS counterparts.  This is primarily due to the lowest fmin convergence, and 

biggest optimal location fluctuations compared to the conventional array for all 2N = 20 

array elements. 

To conclude, the simulation result confirms the hypothesis that as the Pa smaller, 

the possibility of egg laid by a cuckoo to be discovered by the host bird of other species 

becomes lower.  Hence, this leads to a bigger odd for the survival of its brood or 

offspring, possibly then becomes as a candidate solution.  In this experiment, the 

application of Roulette wheel selection operator and adaptive, w along with the lowest 

Pa significantly improves the proposed MCS−optimizer performance in SLL 

suppression whilst maintaining the main beam due to the higher probability of finding 

the best–fitted optimal solutions (element excitation locations) in search space. 

Fifthly, a rigid broadside case experiment is performed on the proposed       

MCS–optimizer for 2N = 20 linear array.  In this case, the linear array is steered to 90° 

and has two predefined nulls at 45° and 135°, respectively.  All the tested optimizers 
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with three α–stable distribution methods, host nest (population) = 30, Pa = 25% or 0.25, 

α = 2.0 (Lévy flight Gaussian distribution), and length step factor = L/100 or 0.01 are 

compared along with the conventional array in terms of SLL suppression, and 

prescribed nulls mitigation.  In this study, the MCS algorithm deploys the Roulette 

wheel selection operator and dynamic inertia weight, w with the domain of [0.95 1.00]. 

The MATLAB simulation shows that the hypothesized MCS–based array with 

the Mantegna’s algorithm significantly outperforms other rivals in SLL suppression and 

null mitigation at both direction angles of 45° and 135°, respectively.  This is due to the 

proposed MCS–optimizer (Mantegna’s algorithm) generates relatively the lowest fmin 

convergence and biggest optimal location fluctuations than the other opponents. 

To recap, the introduction of Roulette wheel selection operator and adaptive w 

significantly improves the MCS–optimizer (with Mantegna’s algorithm as the α–stable 

distribution method applied) in generating a group of potential best–fitted host nests or 

candidate solutions, and controlling cuckoo’s Lévy flight motion towards the best host 

nest or best optimal solution in search space.  As a result, the proposed MCS–optimizer 

(Mantegna’s algorithm) is able to demonstrate the best SLL suppression and/or nulls 

mitigation whilst maintaining the main beam, simultaneously.  

Sixthly, there is also an investigation done on the proposed MCS algorithm for 

2N = 20 linear array within a window or tapering function, known as the               

Dolph–Chebyshev window.  Similarly to the previous experiment, all the evaluated 

MCS and CS–optimizers with three α–stable distribution methods, host nest 

(population) = 20, discovery rate, Pa = 25% or 0.25, α = 2.0 (Lévy flight Gaussian 

distribution), and the length step factor = L/100 or 0.01 are compared along with 

conventional array in terms of SLL suppression.  In this experiment, all the tested 
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MCS–optimizers deploy the Roulette wheel selection operator and adaptive weight, w 

with the magnitude domain of [0.95 1.00]. 

The output reveals that the postulated MCS–based array with the Mantegna’s 

algorithm outperforms other rivals in equiripple side lobe level (SLL) suppression 

followed by both MCS–based array with the McCulloch’s algorithm and the standard 

random walk, respectively.  The MCS algorithm with the Mantegna’s α–stable 

distribution method demonstrates the best performance is directly driven bythe largest 

optimal location magnitudes and the lowest fmin convergence.  In this case, all the three 

MCS–optimizers produce a bigger optimal location fluctuations compared with the 

conventional array, and a lower fmin convergence than the original CS competitors. 

To recapitulate, the integration of the Roulette wheel selection operator, adaptive 

w, and Mantegna’s algorithm improves the performance of the MCS–based linear array 

in SLL suppression within the Doppler–Chebyshev signal processing window.  In other 

words, the proposed MCS algorithm (Mantegna’s α–stable distribution method) is 

capable to perform a far–reaching metaheuristic exploration for a better diversity of 

optimal solutions in N–dimensional search space regardless signal processing window 

or tapering function used.  

Seventhly, there is an experiment on 2N = 30 linear array to compare the 

proposed MCS algorithm with the original CS algorithm and two other evolutionary 

computation (EC) methods, which are particle swarm optimization (PSO) and genetic 

algorithms (GA).  Likewise to the earlier study, the Dolph–Chebyshev becomes the 

selected tapering function.  Both MCS and CS–optimizers are simulated for 1000 

iterations using host nest (population) = 30, discovery rate, Pa = 25% or 0.25, length 

step factor = L/100 or 0.01, and α = 2.0 (Lévy flight Gaussian distribution).  Once again, 
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the MCS–optimizer uses the Roulette wheel selection operator, and adaptive w domain 

of [0.95 1.00].   

All the corresponding internal parameters of PSO and GA are set compatible 

with both the MCS and CS metaheuristic algorithms to avoid any predisposition or bias.  

The PSO algorithm is simulated using particle (population) = 30, particle min/max 

velocity domain = [–0.1 +0.1], individuality accelerator = 1.0, and sociality     

accelerator = 1.0, respectively.  The GA uses the Roulette wheel selection operators 

with chromosome or gene (population) = 30, gene crossover probability, Pc = 90%       

or 0.9, and gene mutation probability, Pm = 10% or 0.1. 

The iterative simulation shows that the MCS algorithm marginally outperforms 

other opponents in suppressing narrow–width side lobes of 2N = 30 linear array.  In this 

case, the largest optimal location magnitudes, and the lowest fmin convergence are the 

key factors for the postulated MCS algorithm to perform the best equiripple SLL 

suppression whilst preserving the main lobe intensity at the direction angle of 90°.   

In sum, the introduction of Roulette wheel selection operator and adaptive w 

mechanisms in the postulated MCS algorithm successfully produces a better diversity of 

N–dimensional solutions via an effective controllable cuckoo’s Lévy flight motions in 

search space.  Here, the N–dimensional solutions refer to the 2N= 30 element or radiator 

symmetric positions along the xy–plane.  As a result, the proposed MCS algorithm is 

able to suppress side lobes better than other well–known EC techniques for a large 

number of array elements within the Dolph–Chebyshev feed current tapering window.  

 

6.3 Hybrid Modified Cuckoo Search Algorithm Analysis 

In this part of analysis, the MCS algorithm undergoes a hybridization process 

with PSO algorithm known as MCSPSO, and GA merely referred as MCSGA.  The 
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newly developed MCSPSO and MCSGA hybrid–optimizers manipulate the fitness, f 

function in guiding cuckoo’s α–stable Lévy flight motions towards a potential host nest 

(optimal element locations) in N–dimensional search space. 

In the first simulation, the postulated MCSPSO and MCSGA–hybrid optimizers 

with Mantegna’s algorithm as the selected α–stable distribution method, host nest 

(population) = 30, discovery rate, Pa = 25% or 0.25, length step factor = L/100 or 0.01, 

and α = 2.0 (Lévy flight Gaussian distribution) are executed on 2N =20 linear arrays.  

Other compatible EC algorithms are simulated for a comparison purpose include hybrid 

GAPSO, MCS, and standard CS algorithms, respectively.  For a uniformity, the 

proposed MCSPSO, MCSGA, and MCS algorithms deploy the Roulette wheel selection 

operator and adaptive inertia w domain of [0.95 1.00]. 

The MATLAB simulation shows that the MCSPSO hybrid–optimizer has the 

best SLL suppression.  This is primarily due to the lowest fmin convergence.  Moreover, 

the despite worse than the MCSPSO hybrid algorithm, the MCSGA counterpart has a 

lower SLL suppression than the GAPSO, and original CS rivals. 

To sum up, the hybridization of the proposed MCS algorithm and standard PSO 

stochastic algorithm enhance the capability of searching further the optimal solutions 

(array element locations) in search space.  This is initially done through the usage of 

MCS value–added parameters, which are the Roulette wheel selection operator, and 

adaptive w to control effectively exploration of the best–fitted chromosomes (host nests) 

in the search space.  Furthermore, the hybridization process manipulates the PSO 

algorithm in controlling the velocity of cuckoo Lévy flight motions towards optimal 

solutions.  Besides, the position updating process in PSO stochastic algorithm is used to 

calculate the personal best fitness or pbest for all particles (host nests), and from that to 

locate the particle (host nest) with the global best fitness or gbest found in search space.  
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Therefore, the hybrid MCSPSO algorithm is proven can generate a better diversity of 

optimal solutions (array element positions), which demonstrate the desired radiation 

pattern with a lower SLL suppression whilst maintaining a main beam intensity. 

Another experiment involves a more robust circumstance of 2N = 10 symmetric 

array where all the tested metaheuristic algorithms have the main lobe steered to 60°, 

with four prescribed nulls at 30°, 31°, 79°, and 80°, respectively.  All the fundamental 

parameters used for all the algorithms are same as in the previous experiment.  It is 

found that after executing 100 iterations, the MCSPSO–based array generates the best 

SLL suppression especially within the [0° 30°] and [80° 130°] regions, respectively.  

Besides to that, the MCSPSO hybrid algorithm also demonstrates the best nulls 

mitigation approximately at the predefined direction angles.  These findings are driven 

by two key factors, which are the biggest optimal solution fluctuations compared to the 

conventional array, and the lowest fmin convergence. 

In sum, the hybridization of MCS and PSO metaheuristic algorithms can 

produce a significant diversity of optimal solutions (array element locations).  This is 

done through the integration of MCS algorithm value–added features, which are 

Roulette wheel selection operator, and adaptive inertia, w with the PSO stochastic 

algorithm routines, which are velocity and position of particle (host nest) iterative 

updating mechanisms.  As a result, the MCSPSO–hybrid optimizer is able to control the 

cuckoo’s Lévy flight direction and speed, and through it can locate the global best 

(gbest) solutions, which generates a radiation pattern with the lowest side lobes 

suppression and/or the best prescribed nulls mitigation while preserving and steering the 

main lobe to the desired direction angle. 
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6.4 Multiobjective Optimization Approach of Modified Cuckoo Search 

Algorithm Analysis 

In this study, the proposed MCS algorithm optimizes three objective functions 

simultaneously to identify three decision variables, which are optimal excitation 

locations, amplitudes, and phases.  Two approaches are done in the MO optimization, 

which are weighted–sum, and global Pareto front.  

 

6.4.1 Weighted–Sum Approach 

Firstly, the postulated MCSPSO, MCSGA, and MCS metaheuristic 

algorithmswith Mantegna’s α–stable distribution method, host nest                

(population) = 30, discovery rate, Pa = 25% or 0.25, length step factor = L/100 or 0.01, 

and α = 2.0 (Lévy flight Gaussian distribution) are examined on the 2N = 10 linear 

array.  Both optimizers are directly compared with hybrid GAPSO, MCS, and CS 

algorithms through a weighted–sum method.  All the MCS–based algorithms has a 

dynamic Pa magnitude domain of [0.01 0.25] and an adaptive w domain of [0.95 1.05].  

Both domains are set to gain a more flexibility in exploring and controlling cuckoo’s 

Lévy flight motions towards the best host nest (potential solution) in search space.  

Moreover, Both the MCSPSO and GAPSO optimizers deploy the PSO algorithm with 

the dynamic random particle velocity domain of [–0.1 +0.1].  Furthermore, the MCSGA 

and GAPSO algorithms use the GA optimizer with the gene crossover probability,       

Pc = 90% or 0.9, and gene mutation probability, Pm = 10% or 0.1. 

The MATLAB simulation shows that the proposed MCSPSO hybrid algorithm 

outperforms all other stochastic algorithms in SLL suppression whereas the MCSGA 

counterpart has the smallest half–power beamwidth (HPBW) of the main beam.  Four 
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main factors lead the outstanding performance in SLL suppression and high directivity 

of MCSPSO hybrid algorithm via the weighted–sum technique.  The first factor: the 

MCSPSO hybrid algorithm generates the lowest weighted–aggregation fmin convergence.  

The second factor: the MCSPSO hybrid algorithm generates the largest position 

variations compared to the conventional array with respect to 𝜆/2.  The third factor: the 

MCSPSO hybrid algorithm has the lowest optimal amplitude, hence the biggest 

amplitude variations compared to the conventional array.  The fourth factor:  the 

MCSPSO hybrid algorithm produces the biggest optimal phase deviations compared to 

the conventional array.  Notes that, the fmin is normalized in all iterations by dividing the 

fitness functions, f1, f2, and f3 with their corresponding mean calculated in the first 

iteration.  The purpose is to reduce the possible bias due to magnitude differences 

among the three fitness functions. 

Secondly, a more stringent experiment is conducted using the weighted–sum 

method to simulate 2N = 20 linear array with main beam radiates to the desired 

direction angle of 90
o
 and prescribed interferers at the direction angles of 35

o
 and 145

o
, 

respectively.  All the CS and MCS optimizers have the same internal parameters. 

Besides, all the MCS–based algorithms have a dynamic Pa magnitude domain of [0.01 

0.25] and a dynamic w magnitude domain of [0.95 1.05], respectively.  Both the 

MCSPSO and GAPSO optimizers deploy the PSO algorithm with the dynamic random 

particle velocity domain of [–0.1 +0.1].  Moreover, the MCSGA and GAPSO 

algorithms use the GA optimizer with the gene crossover probability, Pc = 90% or 0.9, 

and gene mutation probability, Pm = 10% or 0.1. 

It is found that the postulated MCSPSO based–optimizer has the best average 

side lobes suppression, highest radiation intensity with the smallest half–power 

beamwidth (HPBW), significant directivity, and best prescribed null mitigation at about 
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145°.  This is followed by the MCSGA counterpart in terms of SLL suppression, small 

HPBW, high directivity, and the best predefined null mitigation nearly at 35°. 

Once again, the outstanding performance of MCSPSO hybrid algorithm is 

primarily due to the four factors similarly to the previous experiment.  This includes the 

lowest weighted–aggregation fmin convergence, and the largest variations compared to 

the conventional array in terms of optimal location, amplitude, and phase for all the     

2N = 20 array elements. 

Overall, the proposed MCSPSO stochastic algorithm is able to further search the 

best host nest (optimal solution) in search space.  Hence, this produces a better diversity 

of optimal solution (array element location, amplitude, and phase).  This is driven by the 

use of value–added attributes, e.g. Roulette wheel selection operator, adaptive w, 

dynamic Pa, and both the velocity and position of particle iterative effective updating 

mechanisms in PSO optimizer.  As a result, the MCSPSO hybrid algorithm can control 

more effectively the Lévy flight searching motion (via velocity and position updating 

processes), and through it can locate the global best host nest (optimal solution) within 

N–dimensional search space. 

 

6.4.2 Global Pareto Front Approach 

The final analysis focuses on the MO optimization using various MCS 

algorithms through the global Pareto front method.  Altogether, four Pareto algorithms 

(including the three proposed algorithms) will be compared in performing a 

minimization trade–off of three objective functionsto find a set of non–dominated 

solutions, which are antenna array excitation locations, amplitudes, and phases.  The 

three proposed hybrid algorithms tested are the modified cuckoo search–strength Pareto 

evolutionary algorithm (MCSSPEA), modified cuckoo search–hill climbing–strength 
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Pareto evolutionary algorithm (MCSHCSPEA) and modified cuckoo search–particle 

swarm optimization–strength Pareto evolutionary algorithm (MCSPSOSPEA).  The 

other competitors simulated are the standard strength Pareto evolutionary algorithm 

(SPEA) and the conventional array. 

In the first Pareto experiment, the MCSSPEA, MCSHCSPEA and MCSSPEA 

algorithms deploy Mantegna’s algorithm as the selected α–stable distribution method, 

host nest (population) = 20, fraction probability, Pa = 25% or 0.25, step length         

factor = L/100 or 0.01, and α = 2.0 (Lévy flight Gaussian distribution) for 2N = 20 linear 

array.  In this study, the proposed MCSSPEA, MCSHCSPEA and MCSPSOSPEA 

optimizers use the dynamic inertia weight, w with the magnitude domain of [0.80 1.20].   

The bigger w magnitude domain leads the MCS algorithms to gain a more control on 

the Lévy flight motions with a heavy–tailed and   α–stable distribution towards the best 

host nest (candidate solution) in search space.  Furthermore, the proposed 

MCSPSOSPEA algorithm uses the particle swarm optimization (PSO) optimizer with 

the dynamic random particle velocity domain of [–0.1 +0.1].  The comparison is 

conducted within the uniform distribution window. 

Overall, all the optimizers have very small hypervolumes, which close to zero 

(due to the Pareto MO minimization) and are almost identical with the differences 

among them less than 3.0×10
–5

 unit
3
.  Based on the selected trade–off solutions, the 

MCSPSOSPEA algorithm has better Pareto front trade–offs especially with respect to f1 

and f3 despite having a bigger hypervolume than the standard SPEA counterpart, which 

leads to the best directivity and smallest HPBW.  The selected trade–off solutions are 

chosen from the nearest point of all compared Pareto–based algorithms since 

hypervolume differences among them are small. 
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In this case, the proposed MCSPSOSPEA algorithm generates the highest 

antenna directivity, smallest HPBW of the main beam, and lowest average SLL 

suppression.   In other words, the MCSPSOSPEA algorithm executes the highest 

radiation intensity at the main beam and lowest electromagnetic field at side lobes.  The 

key factors for these findings are the proposed MCSPSOSPEA hybrid algorithm has the 

biggest optimal location (with respect to λ/2), amplitude, and phase deviations 

compared to the conventional array, respectively.  In other words, the MCSPSOSPEA 

algorithm is capable to do metaheuristic search further and provide a better diversity of 

global Pareto front trade–offs. 

The second Pareto experiment focuses on the performance comparison within 

the Dolph–Chebyshev window with the relative SLL, R = –30 dB for 2N = 20 linear 

array.  All the internal parameters for all the tested SPEA–based optimizers are kept the 

same as in the previous experiment. 

It is found that all the tested algorithms have the Pareto fitness hypervolumes, 

which are very small (close to zero) and almost similar with the differences among them 

less than 8.0×10
–4 

unit
3
.  Once again, using the selected trade–off solutions, the 

proposed MCSPSOSPEA algorithm has the smallest values of f1 and f3.  Besides, the 

simulation also demonstrates that the proposed MCSPSOSPEA–hybrid optimizer has 

the best average SLL suppression, smallest HPBW of main lobe, and highest directivity 

followed by the MCSHCSPEA counterpart.  Similarly to the previous experiment, the 

findings are primarily driven by the biggest fluctuations of optimal excitation position, 

Dolph–Chebyshev amplitude, and phase compared to the conventional array, 

respectively.  This shows that the proposed MCSPSOSPEA hybrid algorithm is capable 

to do stochastic search further, and deliver a better diversity of Pareto front trade–offs in 

a complex Dolph–Chebyshev window too. 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



218 

 

Then, the third Pareto simulation is conducted on an intricate broadside analysis 

for 2N = 20 linear antenna array with a main beam at 90
o 

and four predefined interferers 

at 30
o
, 31

o
, 149

o
 and 150

o
, respectively.  For uniformity, all the tested SPEA–based 

optimizers deploy the same internal parameters as in the previous simulations.  In this 

simulation, all the SPEA–based algorithms and conventional array are compared in 

terms of average SLL suppression, HPBW reduction, directivity improvement, and 

prescribed nulls mitigation whilst improving the main lobe intensity. 

The simulation shows that all the tested algorithms generate the Pareto fitness 

hypervolumes, which are very near to zero and alike with the differences among them 

less than 2.2×10
–5 

unit
3
.  In this case, the proposed MCSPSOSPEA–hybrid optimizer 

finds the selected Pareto non–dominated solutions with the smallest values of f1.  In this 

case, the MCSPSOSPEA algorithm demonstrates the best SLL suppression whilst 

maintaining and improving the main lobe electromagnetic field strength with the 

smallest HPBW and highest antenna directivity.  In addition, the MCSPSOSPEA also 

has the best mitigation near to the four prescribed interferers.   

The best linear antenna array performance demonstrated by the MCSPSOSPEA 

algorithm is directly driven by the biggest optimal position, amplitude, and phase 

variations compared to the conventional array for all 2N = 20 array elements. 

In summary, the combination of the proposed MCS algorithm with PSO and 

SPEA algorithms is proven successfully produce significant non–dominated solutions 

through the Pareto MO trade–offs mechanism.  In this case, the MCS maximum utilizes 

the advantage of SPEA metaheuristic method, which has a lot of potentials in deploying 

3–dimensional optimization and Pareto dominance calculation based on relative fitness 

strengths.  Furthermore, the deployment of six significant attributes:  

i. The Roulette wheel selection operator. 
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ii. Dynamic discovery rate or fraction probability. 

iii. Dynamic inertia weight. 

iv. Fitness strength comparisons in SPEA (to locate and preserve Pareto 

non–dominated solutions). 

v. The distances expansion formula (to reduce the local trap of global 

Pareto fronts). 

vi. Both velocity and position of particle updating mechanism in PSO (to 

navigate cuckoo Lévy flight motions) backing the MCSPSOSPEA hybrid 

algorithm to be as an alternative and efficient evolutionary computation 

(EC) technique in the average SLL suppression and/or prescribed nulls 

mitigation whilst increasing the main lobe intensity (small HPBW) and 

antenna directivity (in dB) regardless signal processing window applied.       

 

6.5 Result Comparison 

In this section, all the proposed modified and hybrid CS algorithm performances 

are compared relatively with other existing EA/EC stochastic techniques in terms of 

maximum SLL suppression, nulls mitigation and HPBW values.  Other existing 

comparable EA/EC techniques are taken from previous literatures.  The following is the 

comparison details.   
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Table 6.1: EA/EC Stochastic Method Performance Comparison 

Uniform Amplitude (2N = 10) 

EA/EC Technique SLL Suppression Null Mitigation HPBW 

MCS  –23.84 dB ≤ SLL ≤ –14.50 dB –82.42 dB 10.9
o
 

MCSPSO  –29.67 dB ≤ SLL ≤ –09.59 dB –85.76 dB 8.3
o
 

MCSPSOSPEA  –22.85 dB ≤ SLL ≤ –12.09 dB –36.64 dB 7.3
o
 

BBCA (Sharma, 2014)  –18 dB ≤ SLL ≤ –14 dB n/a 13
o
 

PSO (Khodier, 2009)  –24 dB ≤ SLL ≤ –18 dB n/a 12
o
 

CLPSO (Goudos, 2010)   –19.07dB ≤ SLL ≤  –19.07 dB n/a 11.5
o 

Dolph–Chebyshev R = –30 dB Amplitude (2N = 10) 

EA/EC Technique SLL Suppression Null Mitigation HPBW 

MCS  –32.30 dB ≤ SLL ≤ –21.61 dB –71.22 dB 11.63
o 

MCSPSO  –34.81 dB ≤ SLL ≤ –19.89 dB −51.88 dB 11.64
o 

MCSPSOSPEA  –27.46 dB ≤ SLL ≤ –24.12 dB –41.33 dB 9
o 

PS(Günes, 2010)  –31 dB ≤ SLL ≤ –23 dB n/a 12.2
o 

Uniform Amplitude (2N = 20) 

EA/EC Technique SLL Suppression Null Mitigation HPBW 

MCS       –26 dB ≤ SLL ≤ –13.67 dB –48 dB 5.27
o 

MCSPSO       –26 dB ≤ SLL ≤ –13.15 dB –70.65 dB 4
o 

MCSPSOSPEA  –25.94 dB ≤ SLL ≤ –13.86 dB –57 dB 3.79
o
 

GA (Laseetha, 2011)  –24 dB ≤ SLL ≤ –15 dB n/a 7.20
o
 

RGA (Goswami, 2012)  –30 dB ≤ SLL ≤ –15 dB –86.36 dB 5.81
o 

PSO (Zaman, 2012)  –32.50 dB ≤ SLL ≤ –22.50 dB n/a 6.70
o 

FA (Zaman, 2012)  –28 dB ≤ SLL ≤ –23 dB n/a 6.70
o 

FA (Kaur, 2013)  –22.50 dB ≤ SLL ≤ –13 dB –50 dB 7
o 

TM (Kaur, 2013)       –23 dB ≤ SLL ≤ –12.50 dB –48 dB 7
o
 

SADE (Kaur, 2013)       –16 dB ≤ SLL ≤ –12.50 dB –45 dB 7.50
o 

FA (Basu, 2011)  –20.50 dB ≤ SLL ≤ –15.57 dB n/a 5
o 

ABC (Basu, 2011)  –27.50 dB ≤ SLL ≤ –15.56 dB n/a 5
o 

 

Based on the comparison table, the proposed MCSPSO algorithm generate the 

reasonable average SLL suppression and the best in null mitigation for both 2N = 10 

and 2N = 20 linear array elements under the uniform current amplitude distribution.  

The postulated MCSPSOSPEA technique had the competitive average SLL suppression, 

significant null mitigation, and best HPBW (best main beam intensity) for both 2N = 10 

and 2N = 20 linear array elements under the uniform and Dolph–Chebyshev windows.  

The PSO and RGA techniques are the two best existing EA/EC competitors for both 

MCSPSO and MCSPSOSPEA metaheuristics in terms of average SLL suppression and 

null mitigation despite having larger HPBW.  
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CHAPTER SEVEN 

7 CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

On the whole, the contributions of this study can be divided into two general 

aspects.  Firstly, looking at the theoretical aspect, the introduction of MCS algorithm, 

hybridization of MCSPSO algorithm (in both single objective and weighted–sum MO 

optimizations techniques), and integration of MCSPSOSPEA, MCSHCSPEA and 

MCSSPEA algorithms in the Pareto front MO optimization are proven scientifically can 

be as alternative EA/EC techniques for linear antenna array synthesis. 

In this case, all the postulated MCS, MCSPSO, MCSSPEA, MCSPSOSPEA and 

MCSHCSPEA algorithms with the fine–tuned internal parameters are capable to 

perform side lobes suppression and/or predefined nulls mitigation while 

preserving/enhancing the main lobe either for a broadside/non–broadside case.  The 

proposed MCS, MCSPSO, MCSPSOSPEA, and MCSHCSPEA are verified perform 

better than their compatible opponents in their respective analysis as discussed in 

Chapter 8.  Since the CS metaheuristic algorithm is still at the infancy stage in 

electromagnetic optimization, there are large opportunities for the algorithm to be 

manipulated through various enhancement and hybridization mechanisms particularly, 

for array geometry synthesis.   This research is a pioneering study, which only exposes a 

small portion of the modified CS algorithm highly potential breakthrough.    

Looking at the practical aspect, the findings of the various proposed MCS–based 

hybrid algorithms in this study can be put together as a new foundation for 
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researchers/engineers to design smart antenna specifically, adaptive antenna array.  In 

this case, the design can be developed in both software and hardware parts. 

 

7.2 Limitations 

Generally, there are seven limitations appeared in this pioneering study.   

Despite of becoming more robust compared to other well−known EA/EC techniques, 

the original CS algorithm itself has three disadvantages, which has been improved in 

this study.  Firstly, the original CS algorithm uses fixed value for both Pa and α 

parameters.  Both internal parameters are critical and sensitive in fine−tuning a local 

and global explorative random motion towards optimal solutions, and adjusting 

convergence rate (Valian, Mohanna & Tavakoli, 2011).  In this case, the initialization of 

both Pa and α parameters are fixed, hence cannot be amended in the next iterations.  

Consequently, the main drawback appears in terms of number of iterations required to 

find optimal solutions.  In case if the value of Pa is small and the value of α is large, the 

performance of the original CS algorithm will be ineffective, which leads to significant 

increase in number of iterations.  In contrast, if the value of Pa is large and the value of 

α is small, the convergence rate will be high (small number of iterations needed) but 

still unable to find optimal solutions (Kamat & Karegowda, 2014).  In this research, an 

adaptive Pa is introduced to control the convergence rate so that optimal solutions can 

be found at the reasonable number of iterations.  Hence, the dynamic Pa can increase the 

diversity of solutions and approximation capability. 

Secondly, based on the assumption that a cuckoo lays one egg at a time at a nest 

of other host bird, the egg survival is highly risk.  In other words, it is barely for one egg 

hatches successfully after being discovered by the host bird.  In this regard, there is a 

need of introducing a dynamic parameter along with the fixed step size, 𝛼 for cuckoos 
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to search around the potential good nests (solutions) for laying egg.  Precisely, this can 

been achieved by introducing and embedding an adaptive inertia weight, w parameter 

along with the fixed 𝛼 to search for new nests (solutions), x
(t + 1)

 via the Lévy flight 

motion.  Hence, cuckoos are capable to explore more rigorously for a better 

environment if the current habitat is not suitable for breeding. 

Thirdly, the assumption is made in the original CS algorithm where the number 

of available of random host nests is fixed.  The host birds spot the cuckoos’ eggs with a 

probability Pa ∈ [0, 1].  For such incidents, the host birds will either evict the parasitic 

eggs or abandon the nests totally and seeks for a new site to rebuild the nests (Ong 

2014).  In this case, there is a missing mechanism to select the fittest nests (solutions) 

with the best probability of cuckoos’ eggs survival.  This becomes crucial with the 

scarcity number of host nests.  In this research, a Roulette wheel selection operator is 

introduced to do an initial stochastic selection of highly potential host nests (solutions).    

Fourthly, this study synthesizes a linear antenna array only.  Geometrically, the 

linear antenna array is simple to be synthesized since all the isotropic radiators or 

symmetric elements are aligned straight along the xy–plane.  Hence, it is easy to 

implement and verify the postulated algorithms on the linear antenna array to search for 

optimal solutions with the aim of a better SLL suppression and/or significant predefined 

nulls mitigation. 

Fifthly, this study just applies two signal processing windows or tapering 

functions only, which are the uniform and Doppler–Chebyshev windows.  These two 

windows are the two most common windows used in geometry linear array synthesis.  

Most literatures state that many previous geometry array syntheses used these two 

windows due to its straightforwardness.  Hence, it is compatible to compare the 
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postulated algorithms performance with the competitors using the same signal 

processing windows as stated in literatures. 

Sixthly, the postulated MCS algorithm is hybridized and compared with only 

two stochastic algorithms, which are particle swarm optimization (PSO) and genetic 

algorithms (GA).  These two well–known metaheuristic algorithms are used because of 

their simplicity and flexibility in finding optimal solutions in N–dimensional search 

space.  Besides, there is the hybridization of MCS algorithm with one Pareto optimum 

technique only, which is the strength Pareto evolutionary algorithm (SPEA) to find MO 

trade–off solutions.  The SPEA is chosen because of its simple routines and has a 

significant capability in approximating Pareto dominance.  

Seventhly, this study is completely based on the software design of adaptive 

antenna signal processing component only where various metaheuristic algorithms 

development and verification are done via MATLAB iterative simulations.  Hence, 

there is no study on the hardware design, such as circuit fabrication and prototyping 

which can verify the postulated algorithms. 

 

7.3 Future Work 

Since this is a pioneering study on the postulation of enhanced and hybrid 

versions of CS algorithm, there are large opportunities for further study in the near 

future.  Firstly, the synthesis can be done in a more complex array geometry, e.g. 

planar/rectangular, circular, cylindrical, and spherical array.  This requires a more 

intensive and complex 3D–simulations with certain fine–tuned CS internal parameters. 

Secondly, the array geometry synthesis possibly can be executed in few other 

signal processing windows or tapering functions e.g. Tukey, Kaiser, Poisson, Hamming, 

Hann, Blackman, and Taylor.  Two possible purposes are to increase the result 
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variations, and to find the scientific relations between postulated algorithms and various 

current amplitude tapering techniques.  Different signal processing window may need 

alteration of CS internal parameters. 

Thirdly, the postulated MCS algorithm can be hybridized and compared with 

few other popular stochastic algorithms, e.g. ant colony optimization (ACO), harmony 

search (HC), artificial bee colony (ABC), artificial immune systems (AIS), artificial 

neural network (ANN), firefly algorithm (FA), invasive weed optimization (IWO), and 

intelligent water drops (IWD).  These metaheuristic algorithms are either good in global 

search or local search.  Besides, there can be also a hybridization of MCS algorithm 

with other Pareto optimum methods, e.g. non–dominated sorting genetic algorithm 

(NSGA), vector evaluated genetic algorithm (VEGA), and niched Pareto genetic 

algorithm (NPGA).  Hence, this can generate more varieties of simulation result. 

Fourthly, the process of circuit fabrication and prototyping can be done in the 

future to develop the respective hardware design.  In this case, certain feasibility studies, 

analyses and adjustments are required to fulfil hardware design requirements and 

specifications.  The verifications in both software (via the CST Studio Suite software) 

and hardware design can enrich the values and contributions of postulated algorithms in 

adaptive array geometry synthesis.  
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