

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Computer and Communications Engineering UNIVERSITI MALAYSIA PERLIS

2014

10		DECLARA	TION OF THESIS	
A	uthor's full name :			
C	ate of birth :			
Т	itle :		-100	·····
			<u>, 0</u>	
A	cademic Session :			
			. 6	
l	hereby declare that the th t the library of UniMAP. T	hesis becomes the proper his thesis is classified as	y of Universiti Malaysia Perlis (UniMAP) a	nd to be placed
	,,		9	
		(Contains confidenti	al information under the Official Secret Act	1072)*
		xe		1012)
		(Contains restricted	information as specified by the organ	nization where
		I agree that my t	hesis is to be made immediately avai	lable as hard
	.54	copy or on-line oper	access (ruii text)	
I,	the author, give permiss	sion to the UniMAP to rep	roduce this thesis in whole or in part for	the purpose of
	Search of academic excit	lange only (except during	a period of years, it so requested at	iovej.
			Certified by:	
			oor unoa oy.	
	2		Goranda oy.	
- MAI	SIGNATUR	DE	SIGNATURE OF SUPER	VISOR
O IN	SIGNATUR	RE	SIGNATURE OF SUPER	VISOR
S	SIGNATUR	RE	SIGNATURE OF SUPER	VISOR
O IN	SIGNATUR	RE SSPORT NO.)	SIGNATURE OF SUPER	VISOR
STA	SIGNATUR (NEW IC NO. / PAS Date :	RE SSPORT NO.)	SIGNATURE OF SUPER NAME OF SUPERVISOR Date :	VISOR
S	SIGNATUR (NEW IC NO. / PA: Date :	RE SSPORT NO.)	SIGNATURE OF SUPER NAME OF SUPERVISOR Date :	VISOR
S IN	SIGNATUR (NEW IC NO. / PAS Date :	RE SSPORT NO.)	SIGNATURE OF SUPER	VISOR
O TA	SIGNATUR (NEW IC NO. / PAS Date :	RE SSPORT NO.)	SIGNATURE OF SUPER	VISOR
	SIGNATUR (NEW IC NO. / PA: Date :	RE SSPORT NO.) DENTIAL or RESTRICTED, plea	SIGNATURE OF SUPER NAME OF SUPERVISOR Date :	VISOR
C NC	SIGNATUR (NEW IC NO. / PAS Date : Date :	RE SSPORT NO.) DENTIAL or RESTRICTED, plea	SIGNATURE OF SUPER NAME OF SUPERVISOR Date :	VISOR

i

ACKNOWLEDGEMENT

First and foremost, I would like to praise and express greatly gratitude (syukur Alhamdulillah) to Allah SWT for bestowing me an opportunity, courage, enthusiasm, and patience to prepare this doctoral thesis. I would like to show a high appreciation to both of my supervisors, Assoc. Prof. Dr. Mohd Fareq Abd Malek and Dr. Neoh Siew Chin for their valuable supports throughout all the highs and lows of my learning process. Their useful guidance, feedbacks and constructive ideas have kept my research heading in the right direction and become successful.

I would also like to express a high gratefulness to both of my parents and parents in–law, lovely wife Mrs. Alawiyah Haji Abd Wahab, both of my daughters Nurul Najihah @ kakak and Nurul Nabilah @ adik, all of my other family members, relatives, friends, colleagues, and anyone who I may forget for inspiring me during my Ph.D. study years and of course throughout my life.

I could not have done this without all of you and will always remember all the valuable help, encouragement and kindness delivered to me. Insha'Allah, may Allah SWT always bless all of you.

Yours sincerely,

Khairul Najmy Haji Abdul Rani

Ph.D. candidate

Universiti Malaysia Perlis (UniMAP)

December 2014

TABLE OF CONTENTS

CC	ONTENTS		PAGE
DE	CLARAT	ION OF THESIS	i
AC	CKNOWL	EDGEMENT	ii
ТА	BLE OF (CONTENTS	iii
LI	ST OF TA	BLES	vii
LI	ST OF FIC	GURES	x
LI	ST OF AB	BREVIATIONS	xvii
LI	ST OF SY	MBOLS	xix
AB	STRAK	10°	xxi
AB	STRACT	xedt	xxii
1	INTR	ODUCTION Ke	1
	1.1	Research Background	1
	1.2	Research Motivation	3
	1.3	Problem Statement	5
	© 1.4	Research Objectives	8
	1.5	Research Scope	9
	1.6	Research Significance and Contribution	10
	1.7	Thesis Organization	11
2	LITE	RATURE REVIEW	15
	2.1	Introduction	15
	2.2	Radiation Pattern Theory	19

2.3	Linear Antenna Array Theory2								
2.4	Justification of Synthesizing Antenna Array	23							
2.5	Analytical Techniques in Smart Antenna Design	24							
2.6	Numerical Methods in Smart Antenna Design	36							
2.7	Evolutionary Computation or Evolutionary Algorithm Methods	s in							
	Smart Antenna Design	42							
2.8	Genetic Algorithm	45							
2.9	Genetic Algorithm in Antenna Array Synthesis	47							
2.10	Particle Swarm Optimization	51							
2.11	Particle Swarm Optimization in Antenna Array Synthesis	Particle Swarm Optimization in Antenna Array Synthesis 55							
2.12	Summary of Optimization Methods in Array Geometry Synthesis 60								
2.13	Hybrid Optimization Algorithm	61							
2.14	Multiobjective Optimization: Weighted-Sum and Pareto F	ront							
	Optimum	61							
RESE	ARCH METHODOLOGY	68							
© 3.1	System Description	68							
3.2	Cuckoo Search Algorithm	70							
3.3	Cuckoo Search Algorithm in Linear Antenna Array Synthesis	76							
SING	LE OBJECTIVE OPTIMIZATION	102							
4.1	The Preliminary Study on Cuckoo Search Algorithm Inte	rnal							
	Parameters	102							

	4.2	The Postulation of Modified Cuckoo Search Algorithm	in Linear
		Antenna Array Synthesis	123
	4.3	The Proposition of Modified Cuckoo Search Algorithm	n through
		Hybridization in Linear Antenna Array Synthesis	149
5	MULT	TOBJECTIVE OPTIMIZATION	158
	5.1	Multiobjective Optimization Techniques using Modified Cuch	koo Search
		Algorithm in Linear Antenna Array Synthesis	158
	5.	1.1 Weighted–Sum Approach	158
	5.	1.2 Global Pareto Front Approach	171
6	RESU	LTS AND DISCUSSIONS	202
	6.1	Cuckoo Search Algorithm Internal Parameters Analysis	202
	6.2	Modified Cuckoo Search Algorithm Analysis	205
	6.3	Hybrid Modified Cuckoo Search Algorithm Analysis	210
	6.4	Multiobjective Optimization Approach of Modified Cuck	oo Search
	•.6	Algorithm Analysis	213
	6.4	4.1 Weighted–Sum Approach	213
	6.4	4.2 Global Pareto Front Approach	215
	6.5	Result Comparison	219
7	CONC	LUSIONS AND RECOMMENDATIONS	221
	7.1	Conclusions	221
	7.2	Limitations	222
	7.3	Future Work	224
RI	EFERENCE	ES	226

REFERENCES

v

LIST OF PUBLICATIONS

othis item is protected by original copyright

LIST OF TABLES

NO.	O. TITLE					PAGE
Table 5.1: Opti	mization Metho	ods for Antenna	a Array Synth	esis		60
Table 6.1: Des	ign Parameter S	pecification				101
Table 7.1: Opti	mal Location fo	or α Compariso	n (2 $N = 10$, U	J niform, r	\max Iter = 50	00) 104
Table 7.2: Opti	mal Location fo	or α Compariso	n (2 N = 20, U	Jniform, r	naxIter = 50	000). 108
Table 7.3:	Optimal	Location	Distributio	n Ty	pe Co	mparison
(2N = 10, Unif	orm, maxIter =	500)		.04		110
Table 7.4:	Optimal	Location	Distributio	on Ty	vpe Cor	mparison
(2N = 20, Unif	orm, maxIter =	10000)				112
Table 7.5:	Optimal	Location	for Ste	p Fac	tor Co	mparison
(2N = 10, Unif	orm, maxIter =	500)				
Table 7.6: Opt	imal Location	s. Step Size F	Eactor $(2N = 2)$	20,Unifor	m, maxIter	= 5000)
						116
Table 7.7: Opti	imal Location v	s. Population (2	2N = 10, Unif	orm, max	Iter $= 500$)	119
Table 7.8: Opt	mal Location fo	or P_a Comparison	on $(2N = 10, U)$	Jniform,	maxIter $= 5$	00)121
Table 7.9:	Optimal L	ocation for	CS vs.	MCS	in α	Value
(2N = 20, Unif	orm, maxIter =	2000)				125
Table 7.10:	Optimal Loc	cation for C	CS vs. MO	CS in	Distributio	n Type
(2N = 20, Uniform)	orm, maxIter = 2	2000)				130
Table 7.11	Optimal	Location	for CS	vs.	MCS in	Nest
(2N = 20, Unif	orm, maxIter =	2000)				133
Table 7.12: O	ptimal Locatior	n for CS vs. N	$ICS in P_a$ (2)	N = 20,	Uniform, n	naxIter =
2000)						136

Table 7.13: Optimal Location for CS vs. MCS in Distribution Type
$(2N = 20, \text{Main Beam} = 90^{\circ}, \text{Null} = [45^{\circ}, 135^{\circ}], \text{maxIter} = 1000) \dots 139$
Table 7.14: Optimal Location for CS vs. MCS in Distribution Type
(2N = 20, Dolph-Chebyshev, maxIter = 1000)
Table 7.15: Optimal Location for MCS vs. Other EC–Optimizers
(2N = 30, Dolph-Chebyshev, maxIter = 1000)
Table 7.16: Optimal Location for MCS Hybrids vs. others
(2 <i>N</i> = 20, Uniform, maxIter = 1000)
Table 7.17: Optimal Location for MCS Hybrids vs. others
$(2N = 10, \text{Main Beam} = 60^{\circ}, \text{Null} = [30^{\circ}, 31^{\circ}, 79, 80], \text{maxIter} = 100) \dots 157$
Table 8.1: Optimal Location for Weighted–Sum MCS Hybrids vs. others $(2N = 10, 10)$
Uniform, maxIter = 1000)
Table 8.2: Optimal Amplitude for Weighted–Sum MCS Hybrids vs. others
(2N = 10, Uniform, maxIter = 1000)
Table 8.3: Optimal Phase for Weighted–Sum MCS Hybrids vs. others
(2N = 10, Uniform, maxIter = 1000)
Table 8.4: Optimal Location for Weighted-Sum MCS Hybrids vs. others
$(2N \neq 20, \text{ Uniform, Null} = [35^{\circ}, 145^{\circ}], \text{ maxIter} = 1000) \dots 170$
Table 8.5: Optimal Amplitude for Weighted-Sum MCS Hybrids vs. others
$(2N = 20, \text{ Uniform, Null} = [35^{\circ}, 145^{\circ}], \text{ maxIter} = 1000) \dots 171$
Table 8.6: Optimal Phase for Weighted–Sum MCS Hybrids vs. others
$(2N = 20, \text{Uniform, Null} = [35^{\circ}, 145^{\circ}], \text{ maxIter} = 1000) \dots 171$
Table 8.7: Selected Optimal Pareto Fitness for SPEA-based Arrays
(2 <i>N</i> = 20, Uniform, maxIter = 1000)

Table	8.8:	Optimal	Location	for	SPEA-based	Arrays
(2N = 2)	20, Unifor	n, maxIter = 1000)				179
Table	8.9:	Optimal	Amplitude	for	SPEA-based	Arrays
(2N = 2)	20, Unifor	n, maxIter = 1000)				180
Table 8	8.10: Optin	nal Phase for SPEA	A-based Arr	ays (2 <i>N</i> =	20, Uniform, maxIte	r = 1000
Table	8.11:	Selected Optima	l Pareto	Fitness	for SPEA-based	Arrays
(2N = 2)	20, Dolph-	Chebyshev, maxIte	er = 1000)		<u>ie</u>	
Table	8.12:	Optimal	Location	for	SPEA-based	Arrays
(2N = 2)	20, Dolph-	Chebyshev, maxIte	er = 1000)			190
Table	8.13:	Optimal	Amplitude	for	SPEA-based	Arrays
(2N = 2)	20, Dolph-	Chebyshev, maxIte	er = 1000)			190
Table	8.14:	Optimal	Phase	for	SPEA-based	Arrays
(2N = 2)	20, Dolph-	Chebyshev, maxIte	er = 1000)			190
Table	8.15:	Selected Optima	l Pareto	Fitness	for SPEA-based	Arrays
(2N = 2)	20, Unifort	n , Null = $[30^\circ, 31^\circ]$, 149°, 150°]	, maxIter =	= 1000)	199
Table	8.16:	Optimal	Location	for	SPEA-based	Arrays
(2N	20, Unifor	n, Null = $[30^{\circ}, 31^{\circ}]$, 149°, 150°]	, maxIter =	= 1000)	199
Table	8.17:	Optimal	Amplitude	for	SPEA-based	Arrays
(2N = 2)	20, Uniform	n, Null = $[30^{\circ}, 31^{\circ}]$, 149°, 150°]	, maxIter =	= 1000)	
Table	8.18:	Optimal	Phase	for	SPEA-based	Arrays
(2N = 2)	20, Unifor	n, Null = $[30^{\circ}, 31^{\circ}]$, 149°, 150°]	, maxIter =	= 1000)	
Table 9	9.1: EA/EC	C Stochastic Metho	d Performan	ce Compa	rison	

LIST OF FIGURES

NO. TITLE PAGE Figure 5.1: (a) Switched-beam system coverage patterns, and (b) Adaptive array coverage (Stevanović, Skrivervik and Mosig, 2003)......17 Figure 5.3: Beamforming lobes and nulls that switched-beam (red), and Adaptive array (blue) systems with identical user signals (green line) and co-channel interferers Figure 5.5: Linear plot of power pattern and its associated lobes and beamwidths. 20 Figure 5.7: Normalized radiation pattern for amplitude-only synthesis (Keizer, 2009). Figure 5.9: Number of far-field directions violating the -45 dB SLL requirement, and Figure 5.10: (i) Normalizing all other amplitudes by the edge element $a_n(ii)$ The Figure 5.11: AF as a function of u for |SLL| = 10 dB with N = 11 (red) odd elements, Figure 5.12: Polar plot for AF as a function of u for |SLL| = 10 dB with N = 11 (red) Figure 5.13: AF as a function of u for |SLL| = -13 dB with N = 17 (red) odd elements,

Figure 5	5.14: Pola	r plot for	AF as a fi	unction	of <i>u</i> f	or $ SLL = -1$	3 dB with A	V = 17 (red)
odd elen	nents, and	N = 20 (blue) even	eleme	nts (Al	exopoulus, 20)06)	
Figure	5.15:	Array	pattern	for	the	Legendre	functions	synthesis
(Gomez	& Covar	rubias, 20	09)					
Figure 5	.16: SLL	when the	main lobe	e steere	ed in th	e range –60°	$\leq heta_0 \leq 60^\circ ext{ f}$	or different
space br	oadening	factors, 2	Gomez a	& Cova	arrubias	s, 2009)		41
Figure 5	5.17: HP	BW when	n the main	n lobe	steere	d in the ran	ge $-60^\circ \le 6$	$\theta_0 \leq 60^\circ \text{for}$
different	t space br	oadening	factors, Δ	(Gome	z & Co	ovarrubias, 20	009)	41
Figure 5	5.18: Best	t array pa	ttern found	d by R	GA fo	r the 12-eler	nent array ca	ase with an
improve	d null; i.e	e., $h = 60^{\circ}$	and $h = 12$	20° (Ge	oswam	i and Mandal	, 2012)	51
Figure 5	.19: Con	vergence	rate plot fo	or the 1	0-elen	nent array cas	se (Goudos e	t al., 2010).
				<u>, 6</u>				
Figure 5	5.20: Arra	ay patterr	for the 1	0–eler	nent ar	ray case wit	h SLL supp	ression and
desired t	peamwidt	h at 23° (Goudos et	al., 20	10)			59
Figure 5	.21: Left	: Pareto o	ptimality i	n obje	ctive sp	bace, and Rig	ht: Possible	relations of
solution	s in objec	tive space	e (Zitzler, 1	999)				
Figure 5	.22: Non	-convex p	oart of the	Pareto	front (I	Ryu, Kim & V	Wan, 2009)	
Figure 6	.1: Block	Diagram	of Researc	ch Met	hodolo	gy		
Figure 6	.2: Geom	etry of the	e 2 <i>N</i> –elem	ent syı	nmetri	c linear array		
Figure 6	.3: Flowc	hart of th	e Original	CS Al	gorithn	1		73
Figure 6	.4: Flowc	hart of th	e Proposed	I MCS	Algori	thm		79
Figure 6	.5: Flowc	hart of th	e Proposed	I MCS	PSO A	lgorithm		
Figure 6	.6: Flowc	hart of th	e Proposed	I MCS	GA Alg	gorithm		
Figure 6	.7: Flowc	hart of th	e Proposed	I MCS	SPEA A	Algorithm		
Figure 6	.8: Flowc	hart of th	e Proposed	I MCS	PSOSP	EA Algorith	n	

Figure 6.9: Flowchart of the Proposed MCSHCSPEA Algorithm
Figure 7.1: Normalized Pattern for α Comparison (2N = 10, Uniform, maxIter = 500)
Figure 7.2: Polar Pattern for CS-based Array
(2 <i>N</i> =10, Gaussian, Uniform, maxIter = 500)
Figure 7.3: Polar Pattern for CS-based Array
2 <i>N</i> =10, Cauchy, Uniform, maxIter = 500)
Figure 7.4: Location and Fitness Curves for α Comparison
2N=10, Uniform, maxIter = 500)
Figure 7.5: Normalized Pattern for α Comparison (2N = 20, Uniform, maxIter = 5000)
Figure 7.6: Location and Fitness Curves for α Comparison
(2N = 20, Uniform, maxIter = 5000)
Figure 7.7: Normalized Pattern for Distribution Type Comparison
2N = 10, Uniform, maxIter = 500)
Figure 7.8: Location and Fitness Curves for Distribution Type Comparison
(2N = 10, Uniform, maxIter = 500)
Figure 7.9: Normalized Pattern for Distribution Type Comparison
2N = 20, Uniform, maxIter = 10000)
Figure 7.10: Location and Fitness Curves for Distribution Type Comparison
2N = 20, Uniform, maxIter = 10000)
Figure 7.11: Normalized Pattern Step Factor Comparison
2N = 10, Uniform, maxIter = 500)
Figure 7.12: Location and Fitness Curves for Step Factor Comparison
(2N = 10, Uniform, maxIter = 500)

Figure	7.13:	Normalize	d Patter	n for	Ste	p F	Factor	Comp	arison
(2N = 2)	0, Unifor	rm, maxIter = 5	000)		•••••	•••••		•••••	115
Figure	7.14:	Location and	l Fitness	Curves	for	Step	Factor	Comp	arison
(2N = 2)	0, Unifor	rm, maxIter = 5	000)					•••••	116
Figure 7	7.15: Nor	malized Patter	n vs. Popula	tion (2 <i>N</i> :	= 10, U	niform	, maxIter	= 500)) 118
Figure 7	7.16: Loc	ation and Fitne	ess Curves (2	2N = 10, 1	Uniforr	n, max	Iter $= 500$)	118
Figure 7	7.17: Noi	malized Patter	n for P_a Con	mparison	(2 <i>N</i> =	10, Un	iform, ma	xIter =	= 500)
					•••••			•••••	120
Figure	7.18:	Location	and Fit	ness C	Curves	for	P_a	Comp	arison
(2N = 1)	0, Unifor	rm, maxIter = 5	00)		2	•••••		•••••	121
Figure	7.19:	Normalized	Pattern	for C	S vs	. MC	CS in	α	Value
(2N = 2)	0, Unifor	rm, maxIter = 2	(000						124
Figure	7.20: 1	Location and	Fitness C	Curves f	or CS	vs.	MCS in	α	Value
(2N = 2)	0, Unifor	m, maxIter - 2	000)		•••••	•••••		•••••	124
Figure	7.21:	Normalized I	Pattern for	CS v	s. MO	CS in	Distribu	ution	Туре
(2N = 2)	0, Unifor	m, maxIter = 2	.000)		•••••	•••••		•••••	127
Figure	7,22: Lo	cation and F	itness Curv	es for C	S vs.	MCS	in Distrib	oution	Туре
(2N 2	0, Unifor	rm, maxIter = 2	.000)		•••••	•••••		•••••	129
Figure	7.23:	Normalized	Pattern	for	CS	vs.	MCS	in	Nest
(2N = 2)	0, Unifor	rm, maxIter = 2	.000)		•••••	•••••		•••••	132
Figure	7.24:	Location and	l Fitness	Curves	for	CS v	vs. MCS	in	Nest
(2N = 2)	0, Unifor	rm, maxIter = 2	.000)		•••••	•••••		•••••	132
Figure	7.25:	Normalized	l Pattern	for	CS	vs.	MCS	in	P_a
(2N = 2)	0, Unifor	m, maxIter = 2						•••••	135

Figure 7.26: Location and Fitness Curves for CS vs. MCS in P_a
(2N = 20, Uniform, maxIter = 2000)
Figure 7.27: Normalized Pattern for CS vs. MCS in Distribution Type
$(2N = 20, \text{Main Beam} = 90^\circ, \text{Null} = [45^\circ, 135^\circ], \text{maxIter} = 1000) \dots 138$
Figure 7.28: Location and Fitness Curves for CS vs. MCS in Distribution Type
$(2N = 20, \text{Main Beam} = 90^\circ, \text{Null} = [45^\circ, 135^\circ])$
Figure 7.29: The Dolph–Chebyshev Excitation Amplitude for $2N = 20$ Linear Array 141
Figure 7.30: Normalized Pattern for CS vs. MCS in Distribution Type
(2N = 20, Dolph-Chebyshev, maxIter = 1000)
Figure 7.31: Location and Fitness Curves for CS vs. MCS in Distribution Type
(2N = 20, Dolph-Chebyshev, maxIter = 1000). 143
Figure 7.32: The Dolph–Chebyshev Excitation Amplitude for $2N = 30$ Linear Array 145
Figure 7.33: Normalized Pattern for MCS vs. Other EC–Optimizers
(2N = 30, Dolph-Chebyshev, maxIter = 1000)
Figure 7.34: Location and Fitness Curves for MCS vs. Other EC–Optimizers
(2N = 30, Dolph-Chebyshev, maxIter = 1000)
Figure 7.35: Normalized Pattern for MCS Hybrids vs. others
$(2N \neq 20, \text{ Uniform, maxIter} = 1000)$
Figure 7.36: Location and Fitness Curves for MCS Hybrids vs. others
(2N = 20, Uniform, maxIter = 1000)
Figure 7.37: Normalized Pattern for MCS Hybrids vs. others
$(2N = 10, \text{Main Beam} = 60^\circ, \text{Null} = [30^\circ, 31^\circ, 79^\circ, 80^\circ], \text{maxIter} = 100) \dots 154$
Figure7.38:PolarPatternforConventionalArray
$(2N = 10, \text{Main Beam} = 60^\circ, \text{Null} = [30^\circ, 31^\circ, 79^\circ, 80^\circ])155$

Figure	7.39:	Polar	Pattern	for	MCSPSO	Arr	ay
(2N = 10, N)	/Iain Beam =	= 60°, Null =	[30°, 31°, 79°,	, 80°])		1	55
Figure	7.40:	Polar	Pattern	for	MCSGA	Arr	ay
(2N = 10, N)	/Iain Beam =	= 60°, Null =	[30°, 31°, 79°,	, 80°])		1	56
Figure 7.4	41: Locatio	on and Fit	mess Curves	for M	CS Hybrids	vs. othe	ers
(2N = 10, N)	/Iain Beam =	= 60°, Null =	[30°, 31°, 79°,	, 80°])		1	56
Figure 8.1	: Normaliz	zed Pattern	for Weighte	ed–Sum N	ACS Hybrids	vs. oth	ers
(2N = 10, U)	Jniform, max	xIter = 1000)				1	60
Figure 8.2	: Optimal I	Location and	Total Fitnes	ss Curves	for Weighted	–Sum M	CS
Hybrids vs.	others $(2N)$	= 10, Uniform	n, maxIter $= 1$	000)		1	61
Figure 8.3	3: Optimal	Amplitude	for Weighte	d–Sum N	ACS Hybrids	vs. oth	ers
(2N = 10, U)	Jniform, max	xIter = 1000)				1	62
Figure 8.	4: Optimal	Phase fo	Weighted-	-Sum M	CS Hybrids	vs. othe	ers
(2N = 10, U)	Jniform, max	(Iter $=$ 1000)				1	62
Figure 8.5	5: Normaliz	ed Pattern	for Weighte	ed–Sum N	ACS Hybrids	vs. oth	ers
(2N = 20, U)	Jniform, Nul	$l = [35^{\circ}, 145]$	°], maxIter = 1	1000)		1	67
Figure 8.6	: Optimal I	Location and	Total Fitnes	ss Curves	for Weighted	–Sum M	CS
Hybrids vs	others					1	68
Figure 8.7	7: Optimal	Amplitude	for Weighte	ed–Sum N	ACS Hybrids	vs. oth	ers
(2N = 20, U)	Jniform, Nul	$l = [35^{\circ}, 145]$	°], maxIter = 1	1000)		1	69
Figure 8.	8: Optimal	Phase fo	r Weighted-	-Sum M	CS Hybrids	vs. othe	ers
(2N = 20, U)	Jniform, Nul	$l = [35^{\circ}, 145]$	°], maxIter = 1	1000)		1	69
Figure 8.9	: Strength H	Pareto Evolut	tionary Algor	ithm (SPE	EA) Front App	proximatio	ns
(2N = 20, U)	Jniform, max	xIter = 1000)				1	75

Figure	8.10:	Normalized	Pattern	for	SPEA-based	Arrays
(2N = 20,	Uniform, n	naxIter = 1000)		••••••		177
Figure	8.11:	Optimal	Amplitude	for	SPEA-based	Arrays
(2N = 20,	Uniform, n	naxIter = 1000)		••••••		178
Figure	8.12:	Optimal	Phase	for	SPEA-based	Arrays
(2N = 20,	Uniform, n	naxIter = 1000)		•••••		178
Figure 8.	13: Strengt	h Pareto Evolu	utionary Algor	rithm (SI	PEA) Front Approx	ximations
(2N = 20,	Dolph-Che	ebyshev, maxIte	er = 1000)	•••••		185
Figure	8.14:	Normalized	Pattern	for C	SPEA-based	Arrays
(2N = 20,	Dolph-Che	ebyshev, maxIte	er = 1000)			187
Figure	8.15:	Optimal	Amplitude	for	SPEA-based	Arrays
(2N = 20,	Dolph-Che	ebyshev, maxIte	er = 1000)	•••••		188
Figure	8.16:	Optimal X	Phase	for	SPEA-based	Arrays
(2N = 20,	Dolph-Che	ebyshev, maxIte	er = 1000)	•••••		188
Figure 8.	17: Strengt	h Pareto Evolu	utionary Algor	rithm (SI	PEA) Front Approx	ximations
(2N = 20,	Uniform, N	$\text{Null} = [30^{\circ}, 31^{\circ},$, 149°, 150°], n	naxIter =	1000)	194
Figure	8,18:	Normaliz	ed Pattern	for	SPEA-based	Arrays
(2 <i>N</i> 20,	Uniform, N	$ull = [30^{\circ}, 31^{\circ}]$, 149°, 150°], n	naxIter =	1000)	197
Figure	8.19:	Optimal	Amplitude	for	SPEA-based	Arrays
(2N = 20,	Uniform, N	$ull = [30^{\circ}, 31^{\circ}]$, 149°, 150°], n	naxIter =	1000)	197
Figure	8.20:	Optimal	Phase	for	SPEA-based	Arrays
(2N = 20,	Uniform, N	$\text{Null} = [30^{\circ}, 31^{\circ}]$, 149°, 150°], n	naxIter =	1000)	198

LIST OF ABBREVIATIONS

ACO	ant colony optimization
AF	array factor
AGA	adaptive-parameter genetic algorithm
BBCA	big bang crunch algorithm
BGA	binary–coded genetic algorithm
CGM	conjugate gradient method
CLPSO	comprehensive learning particle swarm optimization
CS	cuckoo search
DE	differential evolution
DSP	digital signal processing
EA	evolutionary algorithm
EC	evolutionary computation
FA	firefly algorithm
FNBW	first-null beamwidth
GA	genetic algorithm
нс	hill climbing
HPBW	half-power beamwidth
IEEE	Institute of Electrical and Electronics Engineers
IFT	iterative Fourier technique
IWO	invasive weed optimization
MA	memetic algorithm
MCS	modified cuckoo search
МО	multiobjective
PS	pattern search

- PSO particle swarm optimization
- CLPSO comprehensive learning particle swarm optimization
- QoS quality of service
- RGA real-coded genetic algorithm
- SA simulated annealing
- SADE self-adaptive differential evolution
- SO
- SLL
- othisitemisprotected by original conviction SPEA
- TM
- TS

LIST OF SYMBOLS

W	CS algorithm inertia weight
P_a	CS algorithm fraction probability or discovery rate
pbest	PSO algorithm individual personal best
gbest	PSO algorithm population global best
f_{min}	minimum fitness
A_n or I_n	current excitation amplitude of the <i>n</i> th element
k	free space wavenumber
λ	wavelength
d	spacing between two consecutive elements
α_n or φ_n or ϕ_n	current excitation phase of the <i>n</i> th element
θ or θ_d or θ_0	zenith angle measured from the line of the array or direction of main lobe
R	maximum side lobe level ratio
$P_n(x)$	Legendre polynomials compact expression
$F(\alpha_p)$	Legendre transformation application to the array factor
$f(\alpha, \beta)$	Legendre polynomial of fractional order
p_c	GA crossover rate for chromosome
p_m	GA mutation rate for chromosome
V _{id}	PSO velocity of the <i>i</i> th particle and <i>d</i> th dimension
p_{id}	PSO personal best of the <i>i</i> th particle and <i>d</i> th dimension
p_{gd}	PSO global best of the population and <i>d</i> th dimension
X _{id}	PSO position of the <i>i</i> th particle and <i>d</i> th dimension
P_c	CLPSO learning probability
BW_c	calculated beamwidth
BW_d	desired beamwidth

- C_{dB} desired null level in dB
- θ_k direction of the *k*th null
- x_i^{t+1} new CS solution for the *i*th cuckoo and the t + 1 iteration
- $I_H(A)$ Pareto fronts hypervolume indicator
- *vol*(.) Lebesgue measure

o this term is protected by original copyright

Sintesis Jalur Antena Linear menerusi Pemantapan dan Hibrid Algoritma Metaheuristik Pencarian Burung Sewah

ABSTRAK

Sintesis geometri berperanan penting menentukan susunatur fizikal sesuatu susunan antena untuk penjanaan polar radiasi menyerupai polar radiasi sebenar yang diperlukan. Sintesis dapat direalisasikan dengan mengenalpasti lokasi elemen-elemen susunan antena serta menentukan amplitud dan fasa pengujaan arus sesuai digunakan pada elemen-elemen susunan antena. Pelbagai teknik sintesis dilakukan untuk mengecilkan tahap sisi cuping (SLL) dan/atau mengurangkan nol sambil mengekalkan atau meningkatkan intensiti radiasi cuping utama. Banyak kajian menunjukkan pelbagai teknik konvesional analitikal, numerikal, dan algoritma evolusi (EA) atau pengiraan evolusi (EC) moden mempunyai kelemahan tertentu di dalam sintesis geometri susunan antena. Ini termasuk, pengembangan lebar rasuk dan ketepuan pengarahan di dalam runcingan amplitud, kelemahan pencarian menyeluruh di dalam kaedah analitikal, kurang keseimbangan di antara pemecut-pemecut pencarian lokal dan global di dalam pengoptimuman sekumpulan partikel (PSO), dan kelemahan pengeoperasi-pengeoperasi pindah silang dan mutasi di dalam algoritma genetik (GA). Tesis ini membentangkan pembangunan berperingkat algoritma metaheuristik dimantap dan hibrid pencarian burung sewah (CS) sebagai kaedah alternatif teknik EA/EC untuk sintesis susunan antena linear bersimetri. Pertamanya, cadangan algoritma diubahsuai CS (MCS) melalui integrasi dengan pengoperasi pemilihan roda Roulette, pemberat inersia dinamik dan kadar penemuan penyelesaian dinamik bagi mengawal eksplorasi penyelesaian terbaik untuk pengoptimuman fungsi satu objektif (SO). Keduanya, memperkenalkan algoritma hibrid MCS dengan PSO (MCSPSO) dan hibrid MCS dengan GA (MCSGA) digunakan di dalam kaedah-kaedah pengoptimuman fungsi SO dan fungsi pelbagai objektif (MO) berasaskan campuran pemberat. Ketiganya, dicadangkan juga hibrid algoritma MCS dengan algoritma evolusi kekuatan Pareto (MCSSPEA), hibrid pencarian dakian bukit (HC) dengan algoritma MCSSPEA (MCSHCSPEA), dan hibrid PSO dengan algoritma MCSSPEA (MCSPSOSPEA) dilengkapi dengan rumusan pengembangan jarak untuk mengurangkan masalah perangkap lokal. Ini adalah teknik-teknik terbaru khas pengoptimuman Pareto fungsi MO untuk mencari penyelesaian yang dominan meliputi lokasi, pengujaan amplitud dan pengujaan fasa arus. Kesemua pembangunan algoritma yang diuji, penulisan kod sumber dan penjanaan keputusan dibuat menggunakan perisian saintifik MATLAB. Penyelesaian-penyelesaian optimum simulasi kemudiannya dibandingkan dengan penyelesaian-penyelesaian lain yang setara. Berdasarkan keputusan simulasi, algoritma cadangan MCSPSO mengatasi lain-lain algoritma SO dan MO berasaskan campuran pemberat, manakala algoritma cadangan MCSPSOSPEA mengatasi lain-lain algoritma MO berasaskan Pareto yang diuji untuk pengecilan SLL dan/atau pengurangan nol di samping mencapai kearahan antena linear yang tinggi dan lebar berkas sinar (HPBW) vang kecil pada cuping utama.

Linear Antenna Array Synthesis using the Enhanced and Hybrid Cuckoo Search Metaheuristic Algorithm

ABSTRACT

The antenna geometry synthesis plays an important role to determine the physical layout of the antenna array, which produces the radiation pattern closest to the actual desired pattern. The synthesis can be realized by defining the location of antenna array elements, and by choosing suitable excitation of amplitude, and excitation phase applied on the antenna array elements. Many synthesis techniques are done through suppressing the side lobe level (SLL) and/or mitigating prescribed nulls while simultaneously maintaining or improving the major lobe radiation intensity. Studies show that some conventional analytical, numerical, and modern evolutionary algorithm (EA) or evolutionary computation (EC) techniques have certain limitations in antenna This includes beamwidth expanding and directivity array geometry synthesis. saturation in amplitude tapering, exhaustive checking impairment in analytical method, disparity predicament between local and global search accelerators in particle swarm optimization (PSO), and drawbacks of crossover and mutation operators in genetic algorithm (GA). This thesis presents the sequential development of enhanced and hybrid versions of cuckoo search (CS) metaheuristic algorithm as an alternative of EA/EC technique for symmetric linear antenna array synthesis. Firstly, the proposal of the modified CS (MCS) algorithm through the integration with the Roulette wheel selection operator, dynamic inertia weight, and dynamic discovery rate controlling the best solutions exploration for a single objective (SO) optimization. Secondly, there is the hybridization of MCS with PSO (MCSPSO), and MCS with GA (MCSGA) in both SO and weighted-sum multiobjective (MO) approaches. Thirdly, the proposed amalgamation of MCS with strength Pareto evolutionary algorithm (MCSSPEA), hill climbing (HC) stochastic method within MCSSPEA algorithm (MCSHCSPEA), and PSO within MCSSPEA algorithm (MCSPSOSPEA) equipped with distance expansion formulae to reduce local trap problem. These newly techniques are specifically for Pareto MO optimization to find non-dominated solutions including element location, excitation amplitude, and excitation phase. All the tested algorithms development, source code writing, and results execution are performed using MATLAB scientific software. The optimal solutions are then compared against corresponding counterparts. Based on simulation results, the proposed MCSPSO outperforms other SO and weighted-sum MO algorithms whereas the proposed MCSPSOSPEA algorithm surpasses other tested Pareto MO algorithms in SLL suppression and/or nulls mitigation whilst achieving a high linear antenna directivity, and small half-power beamwidth (HPBW), respectively.

CHAPTER ONE

INTRODUCTION

1.1 Research Background

Many studies have been done extensively for developing methods to improve wireless systems performance. These includes "smart antenna" or "intelligent antenna" design, which becomes as one of the leading technologies to achieve high efficiency networks, maximize capacity and improve quality of service (QoS) and increase coverage (Balanis & Ioannides, 2007). Generally, there are two categories of smart antennas, which are "switched–beam antennas" and "adaptive antenna arrays" (Mouhamadou & Vaudon, 2006 and Jain, Katiyar & Agrawal, 2011).

The switched-beam antenna forms several fixed beam patterns, which could heighten sensitivity in particular directions. The switched-beam antenna detects signal strength, choose from one of several predetermined, fixed beams, and switch from one beam to another as the receiver moves throughout the sector. Although this approach does not provide complete flexibility, it simplifies the smart antenna design and provides sufficient level of adaptation for many applications.

On the other hand, the adaptive antennas signify the most advanced smart antenna approach to date. Adaptive antenna differs from the conventional antenna in the sense capable of adjusting antenna array weights automatically to generate an optimal radiation pattern for user (Banerjee & Dwivedi, 2013). Through a variety of new digital signal processing (DSP) algorithms, the adaptive antenna exploits its capability to locate and track various types of signals effectively. In this case, the