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Penghancuran  Tiub Kon Aluminium Diisi Busa Terhadap Bebanan Paksi dan 
Serong Dinamik  

 

ABSTRAK 

 

Kajian ini dijalankan dengan matlamat untuk menyelidiki tindakbalas tiub kon 
aluminium terhadap bebanan paksi dan serong dinamik. Kesan pengisian busa terhadap 
penyerapan tenaga untuk perubahan geometri, bahan tiub dan ketumpatan pengisi 
dinilai  dan dibincangkan. Kajian ini menggunakan model unsur terhingga tak lelurus 
yang telah disahkan dengan data eksperimen. Pola utama yang ditunjukkan oleh 
keputusan eksperimen telah berjaya diperolehi dalam keputusan unsur terhingga untuk 
bebanan paksi dan serong dinamik. Walau bagaimanapun, didapati terdapat perbezaan 
antara keputusan eksperimen dan unsur terhingga terhadap bebanan serong adalah 
sehingga 35.4 % terutamanya untuk tenaga yang diserap.  Perbezaan ini 
berkemungkinan disebabkan oleh ketebalan yang tidak seragam dan ketidakmampuan 
untuk mengekang pergerakan tiub pada hujung yang ditetapkan (seperti dalam simulasi) 
ketika eksperimen. Model yang telah disahkan kemudiannya digunakan untuk menaksir 
faedah pengisian busa terhadap perubahan geometri, bahan tiub dan ketumpatan 
pengisi. Pengenalpastian titik efektif kritikal yang mana mewakili jumlah jisim tiub 
kritikal dan ketumpatan pengisi kritikal di samping pendekatan yang diambil dalam 
merubah sudut dan mengekalkan diameter bawah dalam keadaan malar terbukti 
meningkatkan Tenaga Penyerapan Spesifik ( SEA) tiub diisi busa berbanding tiub 
kosong. Walau bagaimanapun, pendekatan ini hanya tergunapakai kepada gabungan 
parameter geometri, bahan tiub dan ketumpatan pengisi yang tertentu sahaja. Manakala, 
SEA  tiub ysng diisi didapati telah kehilangan prestasi pada 240 mm diameter bawah. 
Tambahan pula, SEA maksimum tidak semestinya dapat dicapai apabila SEA tiub diisi 
meningkat melebihi tiub kosong. Penemuan ini menegaskan betapa pentingnya 
pemilihan parameter yang bersesuaian seterusnya menunjukkan bahawa parameter ini 
dapat dikawal dan membolehkan lesapan yang lebih berkesan oleh penyerap tenaga dan 
bermanafaat untuk aplikasi  hentaman. Dengan tujuan untuk mencapai peningkatan 
prestasi tiub kon aluminium diisi busa, pengoptimuman berbilang-objektif telah dikaji 
untuk mencapai fungsi berbilang objektif iaitu SEA dan puncak daya mula di bawah 
pelbagai bebanan. Didapati bahawa tiub aluminium yang lurus dan diisi busa lebih 
berkemampuan untuk mencapai rekabentuk optimum di bawah bebanan paksi dinamik 
sementara tiub kon kosong lebih berkelebihan di bawah bebanan serong dinamik. 
Maklumat yang diperolehi menyediakan asas untuk peningkatan penyerap tenaga 
aluminium di masa hadapan. 
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Dynamic Axial and Oblique Crushing of Foam-filled Aluminium Conical Tubes 
 
 

ABSTRACT 

 

The aim of this study was to investigate the response of conical aluminium tubes 
subjected to dynamic axial and oblique loading. The effect of foam filling on the energy 
absorption for variation in geometry, tube material and filler density was evaluated and 
discussed. This study employs a nonlinear finite element model which was validated 
against experimental data. Main trends in the experimental results are well captured by 
the FE results under dynamic axial and oblique loading. Nevertheless, the differences 
observed under oblique loading between experimental and FE results are as high as 35.4 
% particularly for energy absorption. These differences may due to uneven thickness 
and inability to constraint the movement of the tube at the fixed end (as per simulation) 
during experiment. The validated model was subsequently used to assess the beneficial 
of foam filling with respect to the variation of geometry, tube material and filler 
density. The identification of critical effective point which signifies the critical total 
tube mass and critical filler density with the approach taken in varying the semi apical 
angle and by keeping the bottom diameter constant proved to enhance the Specific 
Energy Absorption ( SEA) of foam-filled tube over that of empty tube. However, these 
approaches apply to only particular combination of geometrical parameters. Moreover, 
SEA  of foam-filled tubes is found to loss its performance at a bottom diameter of 240 
mm.  On top of this, the maximum SEA is not necessarily obtained with achieving 
higher SEA of foam-filled tube over that of empty tube. These findings highlight the 
importance of appropriate selection of these parameters thus showing that these 
parameters can be controlled and hence permits an efficient dissipation of energy 
absorber which is beneficial for impact applications. With the intention of achieving 
enhanced performance foam-filled conical aluminium tube, multi-objective 
optimization is explored to search for multiple objective functions namely SEA and 
initial peak force under various loading. It is found that foam-filled straight aluminium 
tube is favoured in achieving optimum design under dynamic axial loading whilst 
empty conical tube is preferable under dynamic oblique loading. The information 
gained serves as a basis for future enhancement of aluminium tube energy absorber. 
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CHAPTER  1  

INTRODUCTION 

1.1 Introduction 

 

The growth in population and economy has led to an increase in traffic 

worldwide. The number of vehicles has continuously increasing from year to year 

hence increases the number of traffic accidents. In 2010, road accidents are one of the 

leading causes of death in the world (World Health Organization, 2013). 

In Malaysia, according to The Malaysian Institute of Road Safety Research 

[MIROS] (2014), a total of 462 423 road traffic accidents were reported in 2012, 

leading to 6 917 fatalities. Projections show that, road traffic death will increase 

substantially to 8 760 fatalities in 2015 and by 2020, road traffic death is predicted to be 

10 716 (MIROS, 2012). Figure 1.1 shows the breakdown of road traffic accidents for 

road users in 2012 (Ministry of Works Malaysia [KKR], 2013). It is shown that cars 

account for 30.5 % of the total accidents.  

 

 

Figure 1.1: Total road traffic accidents in Malaysia for the year of 2012 (Road Safety 
Situation In Malaysia, 2013). 
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Various factors may contribute to those numbers. Human error, road 

infrastructures and vehicle conditions are among factors causing road accidents. Despite 

all these factors, they are preventable. The enhancement of infrastructures and the 

motor vehicles become the main focus in crashworthiness study nowadays. 

Crashworthiness refers to the quality of response of a structure during an impact to 

protect the system under consideration. For motor vehicle, improving crashworthiness 

may as important as the needs for lighter vehicles as mass reduction allows higher fuel 

efficiency at minimum cost. However, increasing the safety and achieving mass 

reduction are two criteria that unquestionably conflict each other. Therefore, extensive 

research and development in design geometry and applications of new materials seem 

to be the alternatives to satisfy these constraints.  

 

1.2 Thin-walled tubes and foam as energy absorbers 

 

In vehicle crashworthiness, the enhancement work focuses in several aspects; 

crash avoidance technology, structural crashworthiness and occupants protection 

devices. For structural crashworthiness, the application of a collapsible energy absorber 

allows an undesirable response during an impact to be dissipated in a controlled 

manner. During impact, the kinetic energy is converted into internal energy or strain 

energy through plastic deformation whilst at the same time preventing permanent 

deformations into the rest of the vehicle components.  Hence protect the system under 

consideration. For vehicle, collapsible energy absorber or also known as crash box is 

connected to the bumpers, located in the front and rear end of the body structure 

(Reyes, Langseth, & Hopperstad, 2003). However, an energy absorber structure is 

rarely subjected to pure axial or pure bending loads, but rather a combination of both in 
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real impact event. In such condition, it will be likely to deform in a combination of axial 

and global bending modes.  

Various structures have been developed and continuously being investigated 

such as cellular materials, sandwich, lattice structures, composites and thin-walled 

tubes. Among these structures, thin-walled tubes have been widely used as energy 

absorber in multidisciplinary fields including automotive and shipping industries due to 

their impact energy-absorbing capability and manufacturability. The potential of thin-

walled tube is further explored by investigating the influence of geometrical and 

loading parameters on its energy absorption capacity.  

Previous studies have shown that tapered and conical tubes would have more 

stable force-deformation curve under quasi-static and dynamic loading (Mamalis, 

Manolakos, Ioannidis, & Kostazos, 2005; Nagel & Thambiratnam, 2004; Reid & 

Reddy, 1986b). Therefore, it is considered preferable than that of straight tube. In 

addition to that, the introduction of taper and semi apical angle to the straight tubes 

minimises the chances of collapse by global buckling  under oblique loading (Ahmad, 

Thambiratnam, & Tan, 2010; Nagel & Thambiratnam, 2006). As is seen in Fig. 1.2, 

conical tube has been applied as an energy absorber by Peugot for 3008 model in 2011 

(Peugeot, March 2014). The two conical energy absorbers have been positioned 

between the car beam and the chassis leg for energy absorption enhancement and in 

order to achieve deformation in more controlled manner.  

In addressing the mass reduction as part of crashworthiness goal, a combination 

of cellular material and thin-walled tubes seems advantageous to further improve the 

energy absorption capacity of thin-walled tubes. Foam is an example of cellular 

material that demonstrates good energy absorption capacity. It exhibits an almost 

constant stress plateau and a long stroke of deformation (Lu & Yu, 2003). Honeycombs, 
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polyurethane, polystyrene and metal foams can be suitable as fillers in thin-walled 

tubes.  

 

 

Figure 1.2 : Introduction of Boge impact absorber to Peugeot 3008 model (Peugeot, 
March 2014). 

 
In order to further improving the energy absorption capacity of thin-walled 

tubes, extensive investigations have been carried out on the response of foam-filled 

tubes, numerically and experimentally. The energy absorption has notably increased 

under quasi-static and dynamic loading particularly when filling the tubes with metallic 

foam (Seitzberger, Rammerstorfer, Gradinger, & Degischer, 2000; Zhang, Feng, & 

Zhang, 2010). The increase in energy absorption is due to interaction effect which 

occurs between the filler and the tube wall, and the strength of the filler itself 

contributes to the stability of the structure. The interaction effect occurs when the 

impingement of the tube wall into the filler results in additional compression to the 

filler. Furthermore, the mode of deformation of foam-filled tube shows a greater 

tendency to shift from diamond to concertina mode (Güden & Kavi, 2006; Yamada, 

Banno, Xie, & Wen, 2005). For the same length of deformation, foam-filled tubes 
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