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KAJIAN MENGENAI SISTEM GENERASI KETIGA CECAIR IONIK –

SELULASE HALOFILIK UNTUK HIDROLISIS LIGNOSELULOSA 

 

ABSTRAK 

Penukaran biojisim lignoselulosa menjadi produk bernilai tambah memerlukan tiga 

proses iaitu pra-rawatan, hidrolisis dan juga penukaran gula ringkas menjadi produk 

akhir. Faktor yang mengehadkan ketiga-tiga proses tersebut terletak pada proses pra-

rawatan. Kaedah pra-rawatan konvensional biasanya menggunakan asid kuat atau alkali 

yang yang mengundang masalah pencemaran. Kaedah pra-rawatan terkini 

menggunakan generasi ketiga Cecair Ionik (ILs) yang juga dikenali sebagai Pelarut 

“Deep Eutectic”  (DESs) yang dikenalpasti sebagai mesra alam dan kos efektif. Walau 

bagaimanapun, kelemahan utama kaedah  pra-rawatan ini ialah tidak serasi sepenuhnya 

dengan enzim yang diperlukan dalam proses hidrolisis. Isu keserasian telah ditangani 

dalam kajian ini dengan menghasilkan enzim yang toleran dengan garam (enzim 

halofilik) dan juga penyediaan pelarut DES yang mempunyai kelikatan yang rendah dan 

tahan haba. Enzim tersebut dihasilkan dari kulat halofilik yang baharu dipencilkan dan 

dikenalpasti sebagai Aspergillus terreus UniMAP AA-6 sementara DESs telah disintesis 

dan dipilih menggunakan choline klorida sebagai penerima ikatan hidrogen dan asid 

karboksilik dan alkohol poliol yang terpilih sebagai penderma ikatan hidrogen. 

Keserasian antara selulase halofilik dan DESs dinilai dengan memantau kestabilan 

selulase halofilik terhadap kepekatan ILs komersial dan DESs. Kesesuaian sistem DES-

selulase untuk hidrolisis lignoselulosa dinilai berdasarkan pengeluaran glukosa, 

penggunaan tenaga dan prestasi kinetik. Daripada kajian didapati, selulase halophilic 

menunjukkan kestabilan yang lebih tinggi terhadap 10 % (v/v) ILs dan juga stabil dan 

mengekalkan 90 % daripada aktiviti asalnya terhadap 10 % (v/v) DESs. Sistem DESs-

sellulase mempamerkan peningkatan peratusan glukosa yang lebih tinggi dan 

penggunaan tenaga yang lebih rendah berbanding dengan sistem alkali cair manakala 

dari segi prestasi kinetik, DES mempamerkan prestasi kinetik baik yang mencerminkan 

keupayaan DESs untuk bertindak sebagai media untuk hidrolisis yang mana ini sangat 

baik untuk aplikasi di dalam sistem DES-selulase. Akhir sekali, berkaitan dengan aspek 

pengeluaran glukosa, sekam padi yang dirawat dengan sistem DESs-selulase halofilik 

menunjukkan setanding dengan kaedah ILs yang biasa diaplikasikan dalam pra-rawatan 

tetapi dengan faedah tambahan dari segi aspek kos dan tidak mencemarkan alam sekitar. 

Penemuan ini telah membuka laluan yang lebih baik dan pendekatan untuk “in situ 

saccharification” yang menggunakan lignoselulosa yang telah dirawat oleh DESs. 
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STUDIES ON THE THIRD GENERATION OF IONIC LIQUIDS – 

HALOPHILIC CELLULASE SYSTEM FOR LIGNOCELLULOSE 

HYDROLYSIS 

 

ABSTRACT 

The conversion of lignocellulosic biomass into value-added products requires pre-

treatment, hydrolysis (saccharification) and the conversion of simple sugar into end 

products. The limiting factor of these three processes lies in the pre-treatment steps. 

Conventional pre-treatment methods normally use strong acids or alkali which pose 

environmental problems. Recently pre-treatment using the third generation of Ionic 

Liquids (ILs), also known as Deep Eutectic Solvents (DESs) has been considered green 

and cost-effective. However, the main drawback of DESs pre-treatment is that it is not 

fully compatible with the enzyme required in saccharification. This compatibility issue 

was addressed in the present study by producing a salt tolerant enzyme (halophilic 

enzyme) and formulating low viscosity, thermal stable DES. The halophilic enzyme was 

produced from a newly isolated halophilic fungus, identified as Aspergillus terreus 

UniMAP AA-6; DESs were synthesized and screened using choline chloride as a 

hydrogen bond acceptor and selected carboxylic acids and polyol alcohols as hydrogen 

bond donors. The compatibility between halophilic cellulase and DESs was evaluated 

by monitoring the stability of halophilic cellulase in the presence of various 

concentrations of commercial ILs and DESs. The applicability of the DES-cellulase 

system for lignocelluloses hydrolysis was evaluated based on glucose production, 

energy consumption and kinetic performance. It was found that halophilic cellulase 

showed higher stability in the presence of 10% (v/v) ILs and also was stable and 

retained 90 % of its original activity in the presence of 10% (v/v) DESs. The DESs-

Cellulase system exhibited higher glucose percentage enhancement and lower energy 

consumption as compared to diluted alkali system, while in terms of kinetic 

performance, DES exhibited good kinetic performance, which reflects the ability of 

DESs to serve as good saccharification media for the DESs-cellulase system. Finally, 

with regard to glucose production, rice husk treated with DESs-halophilic cellulase 

system were as good as the typical IL pre-treatment method but with extra benefits in 

terms of cost and environmental aspects. These findings have demonstrated a better 

approach for the in situ saccharification of DESs pre-treated lignocelluloses. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Lignocellulosic biomass is one of the most abundant biopolymer and renewable 

energy resources for the production of biofuel and other bio-products (Pande & 

Bhaskarwar, 2012; Tadesse & Luque, 2011). The major components of lignocellulosic 

biomass are polymeric carbohydrates which consist of cellulose (30-50 wt %), 

hemicelluloses (15-35 wt %) and lignin (10-30 wt %) (Kumar, Barrett, Delwiche, & 

Stroeve, 2009; Lynd, Weimer, van Zyl, & Pretorius, 2002). Cellulose represents the 

largest part of lignocellulose which can be hydrolysed to generate monomeric sugars 

units. These sugars can be converted via the bio-processing approach to a wide range of 

value-added chemicals.  

In  general, the conversion of lignocellulosic biomass to desired products 

consists of three major steps: 1) Lignocellulose is pre-treated  to bring the sugar 

polymers into a form suitable for hydrolysis, 2) The enzymatic hydrolysis of cellulose 

to fermentable sugar and 3) The fermentation of simple sugar into desired products (C.-

Z. Liu, Wang, Stiles, & Guo, 2012). However, the physicochemical and compositional 

features of lignocelluloses limit their enzymatic hydrolysis process. Structural 

complexity a major barrier for green and cost effective technology for processing 

lignocellulosic materials to sugars and other bio-products (Vancov, Alston, Brown, & 

McIntosh, 2012). Thus, the pre-treatment process of lignocelluloses is a crucial step in 

this conversion. 
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Typically, the pre-treatment of lignocelluloses is classified into physical, 

chemical, physico-chemical and biological pre-treatments. Different pre-treatment 

methods adopted different strategies and mechanism for the deconstruction of highly 

recalcitrant lignocellulosic biomass structures. However, conventional pre-treatment 

methods have some environmental issues and drawbacks. These include the use of 

hazardous chemicals and the emission  of hazardous byproducts from conventional 

biomass pre-treatment methods. In addition, some of the methods need to be operated in 

severe conditions and have a high energy demand like high pressures, temperatures, 

acidic and alkaline conditions. This can make the pre-treatments environmentally 

detrimental and expensive (Mäki-Arvela, Anugwom, Virtanen, Sjöholm, & Mikkola, 

2010). Consequently, more efficient and environmentally benign pre-treatments 

methods are deemed necessary.  

The use of Ionic liquids (ILs) for the pre-treatment of lignocelluloses has 

increased over the past few years (Badgujar & Bhanage, 2014; Brandt, Grasvik, Hallett, 

& Welton, 2013; Tadesse & Luque, 2011). ILs are salts that are emitted in a liquid form 

at room temperature. ILs offer several unique beneficial properties such as recyclability 

(X. Wang, Li, Cao, & Tang, 2011), non flammability (V. V. Singh, Boopathi, Ganesan, 

Singh, & Vijayaraghavan, 2010), non-corrosive (Hermanutz, Gähr, Uerdingen, Meister, 

& Kosan, 2008), high thermal stability (Domańska & Bogel-Łukasik, 2005) and non-

volatility i.e., low vapour pressure (Brennecke & Maginn, 2001). Due to these features 

and properties, ILs are considered as green solvents. In addition, ILs are also known as 

“Designer Solvents” because they consist of anion and cation, whereby these features 

enable ILs ion properties and chemistry to be designed and tailored for desired 

applications (Plechkova & Seddon, 2008; Sheldon, 2005). 
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 The dissolving power of ionic liquids has been typically attributed to the 

interaction between the charged species of ILs and hydroxyl groups on the cellulose via 

strong hydrogen-bonding (Brandt et al., 2013). A possible dissolution mechanism 

suggests that ionic liquids compete with lignocellulosic components for hydrogen 

bonding, thus disrupting its three dimensions network. Tadesse and Luque (2011) 

explained these hydrogen bonds are broken upon interaction of the cellulose-OH and 

ILs, which in turn rendered more opened cellulose molecular chains. This interaction 

ultimately leads to cellulose dissolution. 

Since the pioneering work on the excellent role of ionic liquids (ILs) for the 

dissolution of cellulose (Swatloski, Spear, Holbrey, & Rogers, 2002), extensive research 

has been done on the application of ILs for lignocellulosic biomass pre-treatment (Hou, 

Smith, Li, & Zong, 2012; Tadesse & Luque, 2011). Nevertheless, IL technologies for 

industrial scale applications still have drawbacks and limitations in terms of 

environmental and economical factors. Several ILs are toxics because of their release in 

the soil and water may threaten its inhabitants (Shamsuri & Abdullah, 2010). 

Decomposition of ILs like [Bmim]BF4 and [Bmim]PF6 in the presence of water can 

cause severe water pollution when exposed to the environment due to the formation of 

hydrofluoric and phosphoric acid (Zhu et al., 2009). Another environmental problem 

associated with ILs is that of poor biodegradability. Most synthesized ILs are not 

readily biodegradable. They persist in the environment and may lead to environment 

damage (Morrissey et al., 2009). In addition, most ILs are highly viscous at room 

temperature and are difficult to purify (Kunz et al., 2011). These factors make ILs 

processes expensive, which in turn affects the overall cost of large scale applications. 

Therefore, environmental and economical factors need to be considered for ionic liquids 

to be more feasible for industrial applications. 
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  Mäki-Arvela et al. (2010) have stated several requirements that have to be 

considered prior to choosing ionic liquid for the pre-treatment process. The ionic liquids 

should be made of renewable and natural components which are non-toxic, non-

odorous, inexpensive and biodegradable. 

In short, as an alternative to conventional ILs, Abbott, Capper, Davies, Rasheed, 

and Tambyrajah (2003) introduced a third generation of ILs known as Deep Eutectic 

Solvents (DESs). This third generation of ILs have similar properties to conventional 

ILs but with additional advantages which have come up as a promising alternative for 

conventional ILs. They introduced new types of solvents which are formed by a 

combination of urea as hydrogen bond donor and choline chloride as quaternary 

ammonium salt. The combination of these materials produced a eutectic mixture that 

was liquid at ambient temperature. Hydrogen-bonding interactions between these 

components are the main cause of the deep freezing-point depression of the mixture. 

Moreover, DESs are also called Low-Transition-Temperature Mixture (LTTMs) by 

several authors (María Francisco, van den Bruinhorst, & Kroon, 2013) because most of 

the DESs showed low glass transitions temperature instead of melting points. 

Similar to conventional ILs, DESs exhibit low volatility and high thermal 

stability. In addition, similar to conventional ILs, DESs are known as designer solvents 

which consist of hydrogen bond donor and quaternary ammonium salt. These properties 

allow DES components to be designed and tailor-made for various applications. 

However, unlike most conventional ILs, DESs are made from natural components 

which are biodegradable, non-toxic and cheap. In addition, they are very easy to prepare 

by simply mixing two components, thus avoiding all the problems of purification and 

waste disposal generally associated with ILs (María Francisco et al., 2013; Q. Zhang, 

Vigier, Royer, & Jérôme, 2012). 
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Due to the advantages of DESs as green solvents and their versatility as designer 

solvents, DESs can be widely applied in such applications as organic synthesis (Azizi & 

Manocheri, 2012), separations (H. Zhao, Baker, & Holmes, 2011), catalysis (B. Singh, 

Lobo, & Shankarling, 2011) and electrochemistry (Abbott, Capper, McKenzie, & 

Ryder, 2007). 

Inspired by the potential advantages brought by DES in various fields, DESs are 

used in lignocellulosic biomass processing (Maria Francisco, van den Bruinhorst, & 

Kroon, 2012; Q.-P. Liu, Hou, Li, & Zong, 2012; Q. Zhang, Benoit, De Oliveira Vigier, 

Barrault, & Jérôme, 2012). However, most of the current publications on the application 

of DESs in biomass processing mainly discuss the capability and role of DESs in 

lignocellulose solubilisation and decrystallization, neglecting the suitability and 

compatibility of DESs for the subsequent hydrolysis/saccharification process.  

Similar to ILs, DESs components consist of salt, which is incompatible with the 

subsequent enzymatic process which uses an ordinary cellulase enzyme. The charged 

groups on the enzyme surface will interact with ionic groups in the solution to cause 

deformation of the enzyme molecular structure.  Due to this behaviour, cellulases have 

been reported to become inactivate in the presence of low ILs concentration (Sayantan 

Bose, Armstrong, & Petrich, 2010; M. B. Turner et al., 2003). Therefore, a washing 

process is required to remove residual ILs after the pre-treatment process. Large scale 

washing requires extra energy, thus incurring a greater processing cost (Engel, 

Mladenov, Wulfhorst, Jager, & Spiess, 2010; T. Zhang et al., 2011). In addition, the 

cleaning protocol is lengthy and burdensome. To avoid the extensive clean-up process, 

it is critical to develop a compatible IL-cellulase systems in which the IL is able to 

process lignocelluloses and at the same time cellulases still remain stable and highly 

active in the presence of ILs. This system can be exploited and projected for the in situ 
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saccharifcation of lignocelluloses pre-treated DESs. This idea was introduced by 

Kamiya et al. (2008), whereby the pre-treatment and saccharification process is 

performed in a single-pot, as a result skipping expensive cellulose regeneration and ILs 

residual washing steps. 

This idea can be effectively utilized if cellulases tolerant to DESs are used. In 

the light of this discussion, it is important to produce cellulases which are compatible 

with the saline condition of DESs. The enzyme can be produced from halophilic 

microorganisms (salt tolerant microbes) relying on their capability to secrete enzymes 

which are active in a high saline environment (Oren, 2010). 

Therefore, the design and preparation of cheaper, non-toxic, enzyme-compatible 

ILs which are capable of lignocelluloses pre-treatment is  considered to be one of the 

major challenges in ILs-biomass processing industries (Badgujar & Bhanage, 2014; L. 

Li et al., 2012). Apart from that, generally, most DESs exhibit high viscosity, which is 

not preferable in industry as it is difficult to handle, require additional force to pump in 

the solvent and thus affect the operating cost in industrial applications (Q. Zhang, K. D. 

O. Vigier, et al., 2012). Additionally, harsh conditions such as high temperature may 

affect the DES stability (Badgujar & Bhanage, 2014). Hence, the design of low 

viscosity and thermally stable DESs is an important feature that needs to be considered 

when selecting DESs as a solvent for lignocelluloses pre-treatment. Furthermore, 

glucose production enhancement, energy consumption and kinetic performance of the 

DES-cellulase system are important parameters when considering the evaluation of the 

DES-halophilic cellulase system in hydrolyzing simple cellulose and complex cellulose.  
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