UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS					
Author's full name	AHMAD ANAS BIN NAGOOR GUN	INY			
Date of birth	:09 FEBRUARY 1983 .				
Title	: STUDIES ON THE THIRD GENER	RATION OF IONIC LIQUIDS – HALOPHILIC			
	CELLULASE SYSTEM FOR LIGNO	CELLULOSE HYDROLYSIS			
Academic Session	: 2015/2016	i Bhi			
I hereby declare that th at the library of UniMAI	ne thesis becomes the property of Uni P. This thesis is classified as:	iversiti Malaysia Perlis (UniMAP) and to be placed			
	AL (Contains confidential inform	nation under the Official Secret Act 1972)*			
	(Contains restricted inform research was done)*	nation as specified by the organization where			
X OPEN ACCES	S I agree that my thesis is copy or on-line open access	s to be made immediately available as hard s (full text)			
I, the author, give perr research or academic e	mission to the UniMAP to reproduce exchange only (except during a period	this thesis in whole or in part for the purpose of dof years, if so requested above).			
	IS IT	Certified by:			
SIGNA	ATURE	SIGNATURE OF SUPERVISOR			
830209	9-07-5111	ASSOC. PROF. DR DACHYAR ARBAIN			
(NEW IC NO.	/ PASSPORT NO.)	NAME OF SUPERVISOR			
Date :		Date :			

ACKNOWLEDGEMENT

In the name of Allah, the Most Merciful and the Most Compassionate. All absolute praise and thanks are due to Him alone and with His blessings and guidance has enabled me to complete the study, and peace be upon our beloved prophet Muhammad (PBUH). I would like to take this opportunity to express my deepest gratitude to my respected supervisor and "sifu", Assoc. Prof. Dr. Dachyar Arbain, for thoughtful ideas, priceless and meaningful guidance, constant prayers, his encouragement and motivation, patience, never ending support and his endurance to bear with me through all the difficult times from the start of my post graduates studies until the end. This enabled me to complete the PhD program successfully. I am very grateful, proud and honoured to work with him and it was meaningful and enriching experience. Also, I would like to express my sincere appreciation to my respected cosupervisor, Prof. Dr. Parveen Jamal, from the International Islamic University Malaysia (IIUM) for her helpful advice, suggestions, guidance and co-operation throughout the study period. I would also like to thank the late Prof. Dr. Mohamed Zulkali Mohamed Daud, former co-supervisor for all his help and encouragement during the first year of PhD studies. May Allah bless his soul. Further, I could not have completed this thesis without my supervisors' skilful and scholarly assistance.

I would also like to express my special and warm gratitude to my mother for her prayers, support, blessings and encouragement not just throughout the PhD, but through my undergraduate experience. Furthermore, I would like to express my special and warm gratitude to my wife, Rafidah bt Hassan Mydin for her patience, support and prayers throughout this work.

TABLE OF CONTENTS

I would also like to thank to the Ministry of Education (MOE), Malaysia for financing this research under the Fundamental Research Grant Scheme (FRGS 9003-00391) and to the Ministry of Education (MOE) and Universiti Malaysia Perlis for their financial assistance regarding my PhD program under the scholarship scheme for academician (SLAI) scheme.

My sincere thanks also goes to Assoc. Prof. Dr. Enas Muen Nashef from the Chemical and Environmental Engineering (CEE) Masdar Institute for Science and Technology Abu Dhabi, United Arab Emirates and Mr. Ahmad Adlie Shamsuri, from the Institute of Bioscience, University Putra Malaysia for their sincere advice with regards to the preparation, synthesis and design of ionic liquids in this study.

My sincere thanks also go to Dr. Jong Bor Chyan from the Agrotechnology and Biosciences Division, Malaysian Nuclear Agency for his valuable guidance on molecular identification of fungus works and sincere thanks to the late Mr. Burhanudin, Mr. Mustaqim and Mr. Siva, technicians from the School of Chemical Science, University Science Malaysia (USM) for their assistance in the characterization of deep eutectic solvents works.

Last but not least, I would also like to express my sincere appreciation to Mr. Rizo, Mr. Azuwan, Miss Anis, Mr. Nabil, Dr. Mohiuddin, Mrs. Noor Hasyierah, Mrs. Maizatul, Mrs. Afifah, Mr. Radi, Dr. Zarina, Miss Rohazita, Mr. Zulkarnain, Mr. Shahril, Mr. Nasir, Mr. Hafizal, Mr. Humaidi, Mr Zaim, and other colleagues for the cooperation, a helping hand and kind friendship during the study. Jazaakumullahu khairan kathira (May Allah reward you all with great abundance).

DEC	LARATION OF THESIS	i
ACK	NOWLEDGMENT	ii
ТАВ	LE OF CONTENTS	iv
LIST	T OF TABLES	xi
LIST	FOF FIGURES	xii
LIST	T OF PLATES	xiv
LIST	TOF ABBREVIATIONS	XV
ABS	TRAK	xvii
ABS	TRACT	xviii
СНА	PTER 1 INTRODUCTION	
1.1	Background	1
1.2	Problem Statement	7
1.3	Research Objectives	8
1.4	Scope of Research	9
1.5	Overview of the Research Methodology	10
	.59	
CHA	PTER 2 LITERATURE REVIEW	
2.1	Lignocelluloses	11
	2.1.1 Main components of Lignocelluloses	11
2.2	Hydrolysis of lignocelluloses	13
2.3	Pre-treatment of Lignocellulose	15
2.4	Pre-treatment of Lignocellulose using Ionic Liquids	17
	2.4.1 Factors influencing dissolutions of lignocelluloses in ionic	18
	2.4.1.1 Biomass Particle Size	18
	2.4.1.2 Biomass Loading	19
	2.4.1.3 Pre-treatment Temperature	20
	2.4.1.4 Pre-treatment Time	21
2.5	Different generations of Ionic Liquids (ILs)	21

iv

	2.5.1	First Generation	21
	2.5.2	Second generation	22
	2.5.3	Third Generation	22
2.6	Problen using II	ns / Challenges associates with lignocellulose pre-treatment	24
	2.6.1	Compatibility of enzyme and ionic liquids	24
	2.6.2	Cost of ionic liquids and pre-treatment process	25
	2.6.3	Viscosity of ionic liquids	25
	2.6.4	Stability of ionic liquids	26
2.7	Strategi liquids	es to improve the compatibility between enzyme and ionic	26
2.8	Halophi	ilic microorganism	28
2.9	Halophi	ilic cellulase	29
2.10	Improve	ement of halophilic cellulase production	31
		*eg *	
СНА	PTER 3	MATERIALS AND METHODS	
3.1	Materia	als ad Methods	34
3.2	Isolation	n and Screening of cellulases-producing microbes	34
	3.2.1	Isolation of cellulases-producing microbes using Filter paper as carbon source	34
(3.2.2	Screening of cellulases-producing microbes on carboxymethyl cellulose (CMC) agar plate using Gram's Iodine	35
3.3	Identifie	cation of cellulase-producing microbes	36
	3.3.1	Light microscope analysis	36
	3.3.2	Molecular identification of fungi	37
3.4	Capabil	ity evaluation of salt-tolerant microbes in producing salt-	37

	tolerant cellulases	31
3.5	Growth media and conditions for production of cellulase	38
3.6	Cellulases assays	39

3.7 Characterization of halophilic cellulase 39

	3.7.1	Effect of salt concentration on cellulase activity	39
	3.7.2	Effect of temperature on cellulase activity	40
	3.7.3	Stability of halophilic cellulases in the presence of Ionic Liquids	40
3.8	Determ	ination of cell dry weight	40
3.9	Produc	tion profile	41
3.10	Optimi halophi	zation of medium and process conditions for production of lic cellulase	41
	3.10.1	Evaluation of the medium and process conditions using Plackett-Burman Design	41
	3.10.2	Optimum Levels of Parameters Determined by One-factor- at-a-time (OFAT) design	43
	3.10.3	Optimization process and medium condition using Face Centered Central Composite Design (FCCCD)	43
3.11	Deep H	Eutectic Solvents	45
	3.11.1	Preparation and synthesis of Deep Eutectic Solvents (DESs)	45
	3.11.2	Characterization of DES	46
		3.11.2.1 Viscosity of DES	46
		3.11.2.2 Glass transition temperature	46
		3.11.2.3 DES decomposition temperature	46
3.12	Lignoe	ellulose material pre-treatment using selected DES	47
	3.12.1	Rice husk preparation	47
(3.12.2	Rice Husk pre-treatment for cellulose production using selected DES	47
		3.12.2.1 Determination of suitable rice husk particle size for pre-treatment process	47
		3.12.2.2 Regeneration of Cellulose	48
		3.12.2.3 Optimization of rice husk pre-treatment process conditions using face centered central composite design (FCCCD)	48
	3.12.3	Analysis of Cellulose Concentration	50
3.13	Charac	terization of DESs pre-treated lignocelluloses materials	50

	3.13.1	Thermal Gravitational Analysis (TGA)	50
	3.13.2	X-ray Diffraction (XRD)	51
	3.13.3	Fourier Transformed Infrared spectroscopy (FTIR)	51
	3.13.4	Scanning Electron Microscopy (SEM)	52
	3.13.5	Brunauer–Emmett–Teller (BET) surface area and porosity analysis	52
3.14	Compate and Dec	tibility and stability studies between commercial cellulases ep Eutectic Solvents (DESs)	53
	3.14.1	Stability of commercial cellulases in Deep Eutectic Solvents (DESs)	53
	3.14.2	Enzymatic Saccharification of Microcrystalline cellulose incubated with different concentrations of DES	53
3.15	Compar DESs a	rison studies of Lignocellulose hydrolysis using selected nd diluted alkali	54
	3.15.1	Pre-treatment and Saccharification of Rice Husk using DESs	54
	3.15.2	Pre-treatment of Rice Husk using diluted alkali	55
	3.15.3	Saccharification of Rice Husk residue treated with diluted alkali	55
	3.15.4	Calculation of glucose percentage enhancement and energy requirement for DES pre-treatment	55
	3.15.5	Effect of solid loading on glucose production rate and kinetic performance of DES	56
3.16	Compat Deep E	tibility and stability studies between halophilic cellulase and utectic Solvents (DESs)	57
	3.16.1	Stability of halophilic cellulase in DESs	57
	3.16.2	Saccharification of microcrystalline cellulose (MCC) incubated with different concentration of DESs using halophilic cellulase	57
	3.16.3	Enzymatic <i>in situ</i> saccharification of DESs and ionic liquid pre-treated rice husk	58
3.17	Compar pre-trea cellulas	rison of enzymatic saccharification of DES and ionic liquid ted rice husk using commercial cellulase and halophilic e	59

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Isolatio	on and scre	ening of cellulase-producing strain	60
4.2	Identifi	cation of c	cellulase-producing strain	62
	4.2.1	Morphol	ogical characteristic	62
	4.2.2	Molecula	ar Identification	64
4.3	Hydrol UniMA	ysis Capa AP AA-6 a	city (HC) of isolate UniMAP AA-3 and isolate t different salt concentration	65
4.4	Charac	terization	of halophilic cellulase	66
	4.4.1	Effect of	salt concentration on cellulase activity	66
	4.4.2	Effect of	temperature on cellulase activity	67
	4.4.3	Stability Liquids	of halophilic cellulase in the presence of Ionic	68
4.5	Produc UniMA	tion profile AP AA-6	e of halophilic cellulase by Aspergillus terreus	70
4.6	Optimi <i>terreus</i>	zation of h UniMAP	alophilic cellulase production from <i>Aspergillus</i> AA-6	71
	4.6.1	Screenin using Pla	g of significant medium and process conditions cket-Burman Design	71
	4.6.2	Optimum at-a-time	Levels of Parameters Determined by One-factor- (OFAT) method	73
	4.6.3	Optimiza FCCCD	tion of process and medium condition using	75
	4.6.4	Validatic productic	on of polynomial model for halophilic cellulase	80
4.7	Deep E	utectic So	lvents	81
	4.7.1	Preparati	on and synthesis of Deep Eutectic Solvents (DESs)	81
	4.7.2	Characte	rization of DES	82
		4.7.2.1	Viscosity of DES	82
		4.7.2.2	Freezing point and Thermal stability of selected DES with molar ratio 1:2	83
4.8	Lignoc	ellulose m	aterial pre-treatment using selected DES	85
	4.8.1	Rice Hus	k pre-treatment for cellulose production using DES	85
		4.8.1.1	Determination of suitable rice husk particle size	85

for pre-treatment process

		4.8.1.2	Optimization of Rice Husk Pre-treatment by Faced Centered Central Composite Design (FCCCD)	87
		4.8.1.3	Validation of Model for cellulose production	93
4.9	Charact	terization	of DESs pre-treated lignocelluloses material	94
	4.9.1	Thermal	Gravitational Analysis (TGA)	94
	4.9.2	X-ray Di	ffraction (XRD)	95
	4.9.3	Fourier T	ransformed Infrared spectroscopy (FTIR)	95
	4.9.4	Scanning	g Electron Microscopy (SEM)	97
	4.9.5	Brunauer analysis	-Emmett–Teller (BET) surface area and porosity	98
4.10	Compa and De	tibility and ep Eutectio	l stability studies between commercial cellulases c Solvents (DESs)	99
	4.10.1	Stability (DES)	of commercial cellulases in Deep Eutectic Solvents	99
	4.10.2	Enzymat	ic saccharification of MCC incubated with DESs	101
4.11	Compa DESs a	rison studi nd diluted	es of Lignocellulose hydrolysis using selected alkali	102
	4.11.1	Comparis rice husk energy co	oson of DESs-cellulase system and diluted alkali for pre-treatment based on glucose enhancement and onsumption	102
(4.11.2	Effect of kinetic pe	solid loading on glucose production rate and erformance of DES-cellulase system	104
4.12	Compa Deep E	tibility and utectic So	l stability studies between halophilic cellulase and lvents (DESs)	105
	4.12.1	Stability DES	of halophilic cellulase in GLY and EG type of	106
	4.12.2	Saccharif incubated using hal	fication of microcrystalline cellulose(MCC) d with different concentrations and types of DESs ophilic cellulase	108
	4.12.3	Enzymat pre-treate	ic <i>in situ</i> saccharification of DESs and ionic liquid ed rice husk using halophilic cellulase	110
	4.12.4	Comparis liquid pro	son of enzymatic saccharification of DES and ionic e-treated rice husk using commercial cellulase and	112

halophilic cellulase

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	CONCLUSION	114
5.2	RECOMMENDATIONS	116

REFERENCES

117

x

APPENDICES

Appendix A	The list of chemicals which were used in the experiment	131
Appendix B	Cellulases assay method	133
Appendix C	Analysis of Cellulose Concentration	138
Appendix D	Microbial sample identity based on Internal transcribed spacer sequences	141
Appendix E	Freezing point/ Glass transition temperature of DES	147
Appendix F	Thermal Stability (Thermal Decomposition Temperaure of DES	150
Appendix G	XRD profile of MCC subjected with DESs pretreatment	153
Appendix H	BET analysis results of MCC subjected with DESs	
	pretreatment	156
Appendix I	Calculation of Energy Consumption	159
LIST OF PU	BLICATIONS AND AWARDS	160

LIST OF TABLES

NO.		PAGE
2.1	Advantages and disadvantages of existing lignocellulose pre- treatment	16
3.1	Composition of CMC Agar Media	35
3.2	Plackett-Burman design of 11 variables with coded value	42
3.3	The experimental variables and their levels for the FCCCD	44
3.4	DESs compositions	45
3.5	The experimental levels of three independent variables.	49
4.1	Experimental design using FCCCD showing actual values along with the experimental data for halophilic cellulase production	76
4.2	ANOVA for FCCCD for halophilic cellulase production	77
4.3	Model Validation for Halophilic cellulase production	80
4.4	Viscosity of DES from combination of choline chloride and various hydrogen bond donors with varying the molar ratio of DES's constituent	83
4.5	Freezing Point and Thermal Decomposition temperatures of selected DES	84
4.6	Cellulose obtained from DES pre-treated rice husk under different conditions	87
4.7	ANOVA for FCCCD for cellulose production	89
4.8	Validation of polynomial model for cellulose production	93
4.9	Result of XRD, FTIR and TGA analysis for DES-treated sample and untreated	95
4.10	Result of BET surface area and porosity analysis for DES- treated and untreated sample	98
4.11	Glucose percentage enhancement and energy consumption for GLY, EG and diluted NaOH pre-treatment method	104

LIST OF FIGURES

NO.		PAGE
1.1	Overview of the research methodology	10
2.1	Spatial arrangement of cellulose, hemicellulose and lignin in the cell walls of lignocellulosic biomass	12
2.2	Intra- and intermolecular hydrogen bonds in cellulose	12
2.3	A flow diagram of ligonocellulosic biomass-to-desired products bioprocessing	14
2.4	Mechanism for cellulose dissolve in conventional Ls	17
2.5	Interaction of a HBD with the quaternary ammonium salt choline chloride	23
4.1	Neighbor joining phylogenetic tree showing the position of fungal samples UniMAP AA-3 and UniMAP AA-6 relative to members of related genus. The accession numbers for the sequences used are shown in parentheses after the strain designation. Bootstrap values are shown for each node that had >50% support in a bootstrapanalysis of 1000 replicates. The scale bar indicates 0.01 substitutions per site.	64
4.2	Hydrolysis capacity value of isolates at different salt concentrations	65
4.3	Relative cellulase activity of <i>A. terreus</i> UniMAP AA-6 at different saltconcentrations after 1 h and 24 h incubation time	67
4.4 m	Stability of halophilic cellulase at various temperatures in different salt concentrations.	68
4.5	Effect on cellulases activity incubate at different concentrations on different types of ionic liquids	69
4.6	Production profile of halophilic cellulases by <i>Aspergillus</i> terreus UniMAP AA-6	70
4.7	Main effects of medium and process conditions on the Plackett–Burman design experiment result. (A: KH ₂ PO ₄ ; B; KOH; C: yeast extract; D: MgSO ₄ ·7H ₂ O; E: FeSO ₄ ·7H ₂ O; F: NaCl; G: peptone and H: CMC; J: growth temperature; K: agitation speed and L: inoculums size)	72
4.8	Effect of (A) inoculum size and (B) temperature on halophilic cellulase production by <i>Aspergillus terreus</i> UniMAP AA-6	74

4.9	3D surface plot showing the effect of the interaction between ; A) CMC and NaCl; B)FeSO ₄ 7H ₂ O and NaCl; C)FeSO ₄ 7H ₂ O and CMC on the production of Halophilic Cellulase	79
4.10	Cellulose obtained from rice husk pre-treated with different particle sizes using GLY	86
4.11	The three-dimensional plot graph of biomass loading and pre-treatment time on cellulose recovery	90
4.12	The three dimensional plot graph of biomass loading and pre-treatment temperature on cellulose recovery.	91
4.13	The three dimensional plot graph of pre-treatment time and temperature on cellulose recovery.	92
4.14	TGA profile of MCC subjected to treatment with different type of selected DESs	94
4.15	FTIR spectra of samples: 'a' represent untreated MCC while 'b', 'c' and 'd' represent the MCC treated with MA, GLY and EG respectively.	96
4.16	SEM of A) Untreated MCC and MCC treated with B) GLY C) EG and D) MA respectively	97
4.17	Cellulase activity in the presence of different DESs at various concentrations after A) 24 hour and B) 48 hour incubation times	100
4.18	Cellulase-catalyzed hydrolysis of MCC in the presence of 10% (v/v) DESs	102
4.19	Cellulase-catalyzed hydrolysis of Rice Husk treated with DESs and diluted NaOH	103
4.20	Effect of solid loading on saccharification kinetics under different pre-treatment methods	105
4.21	Halophilic cellulase incubated in different type of DESs after A) 1hour; B) 24 hour and C)48 hour of incubation time	107
4.22	Result of saccharification of MCC incubated with different concentration of A) EG and B)GLY	109
4.23	<i>In situ</i> saccharification of DESs and ionic liquid pre-treated rice husk using halophilic cellulase	111
4.24	Enzymatic saccharification of DES and ionic liquid pre- treated rice husk using commercial cellulase and halophilic cellulase	113

LIST OF PLATES

NO.		PAGE
4.1	Appearance of growth media which filter paper as carbon source after inoculated with isolate UniMAP AA-3(A) and isolate UniMAP AA-6 (B)	60
4.2	Effect of Gram's iodine on cellulolytic zone in CMC agar plates. A) Inoculated with strain UniMAP AA-3; B) Inoculated with strain UniMAP AA-6	61
4.3	A) Growth of isolate UniMAP AA-3; B) Growth of isolate UniMAP AA-6 on Malt Extract Agar (MEA) plate after 6 days at 30°C	62
4.4	Microscopic observation and characteristics of UniMAP AA-3 strain which are common to <i>Penicillium</i> sp.	63
4.5	Microscopic observation and characteristics of UniMAP AA-6 strain which are common to <i>Aspergillus</i> sp	63
4.6	From left to right: GLY (ChCI: glycerol); with molar ratio 2:1 exist in solid formed, with molar ratio 1:1 exist in solid formed, with molar ratio 1:2 exist in liquid formed, with molar ratio 1:3 exist in liquid formed and with molar ratio 1:4 exists in liquid formed.	81
\bigcirc		

LIST OF ABBREVIATIONS

A.niger	Aspergillus niger
A.terreus	Aspergillus terreus
ANOVA	Analysis of variance
BET	Brunauer–Emmett–Teller
BLAST	Basic Local Alignment Search Tool
CCD	Central composite design
СМС	Carboxymethyl cellulose
cP	Centipoise
CrI	Crystallinity index
DES	Deep Eutectic Solvent
DNA	Deoxyribonucleic acid
DNS	Dinitrosalicylic acid
DOE	Department of Environment
EG	Choline chloride: Ethylene glycol (1:2)
FCCCD	Face Centered Central Composite Design
FTIR	Fourier transform infrared spectroscopy
FeSO ₄ .7H ₂ O	Ferrous Sulphate Heptahydrate
GLY	Choline chloride: Glycerol (1:2)
HBA	Hydrogen Bond Acceptor
HBD	Hydrogen Bond Donor
ILs	Ionic liquids
ITS	Internal transcribed spacer
Ks	Kinetic constant
LOI	Lateral order index
МА	Choline chloride: Malonic acid (1:2)

MCC	Microcrystalline of cellulose
MgSO ₄ .7H ₂ O	Magnesium Sulphate Heptahydrate
MEA	Malt extract agar
NCBI	National Center for Biotechnology Information
OFAT	one-factor-at-a-time
RH	Rice husk
RSM	Response surface methodology
SD	Standard deviation
SEM	Scanning electron microscopy
TGA	Thermal Gravitational Analysis
U/ml	One unit is the amount of enzyme activity which will catalyse 1 micromole of the substrate per minute under standard conditions
UniMAP	Universiti Malaysia Perlis
XRD	X-ray Diffraction

KAJIAN MENGENAI SISTEM GENERASI KETIGA CECAIR IONIK – SELULASE HALOFILIK UNTUK HIDROLISIS LIGNOSELULOSA

ABSTRAK

Penukaran biojisim lignoselulosa menjadi produk bernilai tambah memerlukan tiga proses iaitu pra-rawatan, hidrolisis dan juga penukaran gula ringkas menjadi produk akhir. Faktor yang mengehadkan ketiga-tiga proses tersebut terletak pada proses prarawatan. Kaedah pra-rawatan konvensional biasanya menggunakan asid kuat atau alkali yang mengundang masalah pencemaran. Kaedah pra-rawatan terkini vang menggunakan generasi ketiga Cecair Ionik (ILs) yang juga dikenali sebagai Pelarut "Deep Eutectic" (DESs) yang dikenalpasti sebagai mesra alam dan kos efektif. Walau bagaimanapun, kelemahan utama kaedah pra-rawatan ini ialah tidak serasi sepenuhnya dengan enzim yang diperlukan dalam proses hidrolisis. Isu keserasian telah ditangani dalam kajian ini dengan menghasilkan enzim yang toleran dengan garam (enzim halofilik) dan juga penyediaan pelarut DES yang mempunyai kelikatan yang rendah dan tahan haba. Enzim tersebut dihasilkan dari kulat halofilik yang baharu dipencilkan dan dikenalpasti sebagai Aspergillus terreus UniMAP AA-6 sementara DESs telah disintesis dan dipilih menggunakan choline klorida sebagai penerima ikatan hidrogen dan asid karboksilik dan alkohol poliol yang terpilih sebagai penderma ikatan hidrogen. Keserasian antara selulase halofilik dan DESs dinilai dengan memantau kestabilan selulase halofilik terhadap kepekatan ILs komersial dan DESs. Kesesuaian sistem DESselulase untuk hidrolisis lignoselulosa dinilai berdasarkan pengeluaran glukosa, penggunaan tenaga dan prestasi kinetik. Daripada kajian didapati, selulase halophilic menunjukkan kestabilan yang lebih tinggi terhadap 10 % (v/v) ILs dan juga stabil dan mengekalkan 90 % daripada aktiviti asalnya terhadap 10 % (v/v) DESs. Sistem DESssellulase mempamerkan peningkatan peratusan glukosa yang lebih tinggi dan penggunaan tenaga yang lebih rendah berbanding dengan sistem alkali cair manakala dari segi prestasi kinetik, DES mempamerkan prestasi kinetik baik yang mencerminkan keupayaan DESs untuk bertindak sebagai media untuk hidrolisis yang mana ini sangat baik untuk aplikasi di dalam sistem DES-selulase. Akhir sekali, berkaitan dengan aspek pengeluaran glukosa, sekam padi yang dirawat dengan sistem DESs-selulase halofilik menunjukkan setanding dengan kaedah ILs yang biasa diaplikasikan dalam pra-rawatan tetapi dengan faedah tambahan dari segi aspek kos dan tidak mencemarkan alam sekitar. Penemuan ini telah membuka laluan yang lebih baik dan pendekatan untuk "in situ saccharification" yang menggunakan lignoselulosa yang telah dirawat oleh DESs.

STUDIES ON THE THIRD GENERATION OF IONIC LIQUIDS – HALOPHILIC CELLULASE SYSTEM FOR LIGNOCELLULOSE HYDROLYSIS

ABSTRACT

The conversion of lignocellulosic biomass into value-added products requires pretreatment, hydrolysis (saccharification) and the conversion of simple sugar into end products. The limiting factor of these three processes lies in the pre-treatment steps. Conventional pre-treatment methods normally use strong acids or alkali which pose environmental problems. Recently pre-treatment using the third generation of Ionic Liquids (ILs), also known as Deep Eutectic Solvents (DESs) has been considered green and cost-effective. However, the main drawback of DESs pre-treatment is that it is not fully compatible with the enzyme required in saccharification. This compatibility issue was addressed in the present study by producing a salt tolerant enzyme (halophilic enzyme) and formulating low viscosity, thermal stable DES. The halophilic enzyme was produced from a newly isolated halophilic fungus, identified as Aspergillus terreus UniMAP AA-6; DESs were synthesized and screened using choline chloride as a hydrogen bond acceptor and selected carboxylic acids and polyol alcohols as hydrogen bond donors. The compatibility between halophilic cellulase and DESs was evaluated by monitoring the stability of halophilic cellulase in the presence of various concentrations of commercial IIs and DESs. The applicability of the DES-cellulase system for lignocelluloses hydrolysis was evaluated based on glucose production, energy consumption and kinetic performance. It was found that halophilic cellulase showed higher stability in the presence of 10% (v/v) ILs and also was stable and retained 90 % of its original activity in the presence of 10% (v/v) DESs. The DESs-Cellulase system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system, while in terms of kinetic performance, DES exhibited good kinetic performance, which reflects the ability of DESs to serve as good saccharification media for the DESs-cellulase system. Finally, with regard to glucose production, rice husk treated with DESs-halophilic cellulase system were as good as the typical IL pre-treatment method but with extra benefits in terms of cost and environmental aspects. These findings have demonstrated a better approach for the *in situ* saccharification of DESs pre-treated lignocelluloses.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Lignocellulosic biomass is one of the most abundant biopolymer and renewable energy resources for the production of biofuel and other bio-products (Pande & Bhaskarwar, 2012; Tadesse & Luque, 2011). The major components of lignocellulosic biomass are polymeric carbohydrates which consist of cellulose (30-50 wt %), hemicelluloses (15-35 wt %) and lignin (10-30 wt %) (Kumar, Barrett, Delwiche, & Stroeve, 2009; Lynd, Weimer, van Zyl, & Pretorius, 2002). Cellulose represents the largest part of lignocellulose which can be hydrolysed to generate monomeric sugars units. These sugars can be converted via the bio-processing approach to a wide range of value-added chemicals.

In general, the conversion of lignocellulosic biomass to desired products consists of three major steps: 1) Lignocellulose is pre-treated to bring the sugar polymers into a form suitable for hydrolysis, 2) The enzymatic hydrolysis of cellulose to fermentable sugar and 3) The fermentation of simple sugar into desired products (C.-Z. Liu, Wang, Stiles, & Guo, 2012). However, the physicochemical and compositional features of lignocelluloses limit their enzymatic hydrolysis process. Structural complexity a major barrier for green and cost effective technology for processing lignocellulosic materials to sugars and other bio-products (Vancov, Alston, Brown, & McIntosh, 2012). Thus, the pre-treatment process of lignocelluloses is a crucial step in this conversion. Typically, the pre-treatment of lignocelluloses is classified into physical, chemical, physico-chemical and biological pre-treatments. Different pre-treatment methods adopted different strategies and mechanism for the deconstruction of highly recalcitrant lignocellulosic biomass structures. However, conventional pre-treatment methods have some environmental issues and drawbacks. These include the use of hazardous chemicals and the emission of hazardous byproducts from conventional biomass pre-treatment methods. In addition, some of the methods need to be operated in severe conditions and have a high energy demand like high pressures, temperatures, acidic and alkaline conditions. This can make the pre-treatments environmentally detrimental and expensive (Mäki-Arvela, Anugwon, Virtanen, Sjöholm, & Mikkola, 2010). Consequently, more efficient and environmentally benign pre-treatments methods are deemed necessary.

The use of Ionic liquids (ILs) for the pre-treatment of lignocelluloses has increased over the past few years (Badgujar & Bhanage, 2014; Brandt, Grasvik, Hallett, & Welton, 2013; Tadesse & Luque, 2011). ILs are salts that are emitted in a liquid form at room temperature. ILs offer several unique beneficial properties such as recyclability (X. Wang, Li, Cao, & Tang, 2011), non flammability (V. V. Singh, Boopathi, Ganesan, Singh, & Vijayaraghavan, 2010), non-corrosive (Hermanutz, Gähr, Uerdingen, Meister, & Kosan, 2008), high thermal stability (Domańska & Bogel-Łukasik, 2005) and nonvolatility i.e., low vapour pressure (Brennecke & Maginn, 2001). Due to these features and properties, ILs are considered as green solvents. In addition, ILs are also known as "Designer Solvents" because they consist of anion and cation, whereby these features enable ILs ion properties and chemistry to be designed and tailored for desired applications (Plechkova & Seddon, 2008; Sheldon, 2005). The dissolving power of ionic liquids has been typically attributed to the interaction between the charged species of ILs and hydroxyl groups on the cellulose via strong hydrogen-bonding (Brandt et al., 2013). A possible dissolution mechanism suggests that ionic liquids compete with lignocellulosic components for hydrogen bonding, thus disrupting its three dimensions network. Tadesse and Luque (2011) explained these hydrogen bonds are broken upon interaction of the cellulose-OH and ILs, which in turn rendered more opened cellulose molecular chains. This interaction ultimately leads to cellulose dissolution.

Since the pioneering work on the excellent role of ionic liquids (ILs) for the dissolution of cellulose (Swatloski, Spear, Holbrey, & Rogers, 2002), extensive research has been done on the application of ILs for lignocellulosic biomass pre-treatment (Hou, Smith, Li, & Zong, 2012; Tadesse & Luque, 2011). Nevertheless, IL technologies for industrial scale applications still have drawbacks and limitations in terms of environmental and economical factors. Several ILs are toxics because of their release in the soil and water may threaten its inhabitants (Shamsuri & Abdullah, 2010). Decomposition of ILs like [Bmim]BF₄ and [Bmim]PF₆ in the presence of water can cause severe water pollution when exposed to the environment due to the formation of hydrofluoric and phosphoric acid (Zhu et al., 2009). Another environmental problem associated with ILs is that of poor biodegradability. Most synthesized ILs are not readily biodegradable. They persist in the environment and may lead to environment damage (Morrissey et al., 2009). In addition, most ILs are highly viscous at room temperature and are difficult to purify (Kunz et al., 2011). These factors make ILs processes expensive, which in turn affects the overall cost of large scale applications. Therefore, environmental and economical factors need to be considered for ionic liquids to be more feasible for industrial applications.

Mäki-Arvela et al. (2010) have stated several requirements that have to be considered prior to choosing ionic liquid for the pre-treatment process. The ionic liquids should be made of renewable and natural components which are non-toxic, nonodorous, inexpensive and biodegradable.

In short, as an alternative to conventional ILs, Abbott, Capper, Davies, Rasheed, and Tambyrajah (2003) introduced a third generation of ILs known as Deep Eutectic Solvents (DESs). This third generation of ILs have similar properties to conventional ILs but with additional advantages which have come up as a promising alternative for conventional ILs. They introduced new types of solvents which are formed by a combination of urea as hydrogen bond donor and choline chloride as quaternary ammonium salt. The combination of these materials produced a eutectic mixture that was liquid at ambient temperature. Hydrogen-bonding interactions between these components are the main cause of the deep freezing-point depression of the mixture. Moreover, DESs are also called Low-Transition-Temperature Mixture (LTTMs) by several authors (María Francisco, van den Bruinhorst, & Kroon, 2013) because most of the DESs showed low glass transitions temperature instead of melting points.

Similar to conventional ILs, DESs exhibit low volatility and high thermal stability. In addition, similar to conventional ILs, DESs are known as designer solvents which consist of hydrogen bond donor and quaternary ammonium salt. These properties allow DES components to be designed and tailor-made for various applications. However, unlike most conventional ILs, DESs are made from natural components which are biodegradable, non-toxic and cheap. In addition, they are very easy to prepare by simply mixing two components, thus avoiding all the problems of purification and waste disposal generally associated with ILs (María Francisco et al., 2013; Q. Zhang, Vigier, Royer, & Jérôme, 2012).

Due to the advantages of DESs as green solvents and their versatility as designer solvents, DESs can be widely applied in such applications as organic synthesis (Azizi & Manocheri, 2012), separations (H. Zhao, Baker, & Holmes, 2011), catalysis (B. Singh, Lobo, & Shankarling, 2011) and electrochemistry (Abbott, Capper, McKenzie, & Ryder, 2007).

Inspired by the potential advantages brought by DES in various fields, DESs are used in lignocellulosic biomass processing (Maria Francisco, van den Bruinhorst, & Kroon, 2012; Q.-P. Liu, Hou, Li, & Zong, 2012; Q. Zhang, Benoit, De Oliveira Vigier, Barrault, & Jérôme, 2012). However, most of the current publications on the application of DESs in biomass processing mainly discuss the capability and role of DESs in lignocellulose solubilisation and decrystallization, neglecting the suitability and compatibility of DESs for the subsequent hydrolysis/saccharification process.

Similar to ILs, DESs components consist of salt, which is incompatible with the subsequent enzymatic process which uses an ordinary cellulase enzyme. The charged groups on the enzyme surface will interact with ionic groups in the solution to cause deformation of the enzyme molecular structure. Due to this behaviour, cellulases have been reported to become inactivate in the presence of low ILs concentration (Sayantan Bose Armstrong, & Petrich, 2010; M. B. Turner et al., 2003). Therefore, a washing process is required to remove residual ILs after the pre-treatment process. Large scale washing requires extra energy, thus incurring a greater processing cost (Engel, Mladenov, Wulfhorst, Jager, & Spiess, 2010; T. Zhang et al., 2011). In addition, the cleaning protocol is lengthy and burdensome. To avoid the extensive clean-up process, it is critical to develop a compatible IL-cellulase systems in which the IL is able to process lignocelluloses and at the same time cellulases still remain stable and highly active in the presence of ILs. This system can be exploited and projected for the *in situ*

saccharifcation of lignocelluloses pre-treated DESs. This idea was introduced by Kamiya et al. (2008), whereby the pre-treatment and saccharification process is performed in a single-pot, as a result skipping expensive cellulose regeneration and ILs residual washing steps.

This idea can be effectively utilized if cellulases tolerant to DESs are used. In the light of this discussion, it is important to produce cellulases which are compatible with the saline condition of DESs. The enzyme can be produced from halophilic microorganisms (salt tolerant microbes) relying on their capability to secrete enzymes which are active in a high saline environment (Oren, 2010).

Therefore, the design and preparation of cheaper, non-toxic, enzyme-compatible ILs which are capable of lignocelluloses pre-treatment is considered to be one of the major challenges in ILs-biomass processing industries (Badgujar & Bhanage, 2014; L. Li et al., 2012). Apart from that, generally, most DESs exhibit high viscosity, which is not preferable in industry as it is difficult to handle, require additional force to pump in the solvent and thus affect the operating cost in industrial applications (Q. Zhang, K. D. O. Vigier, et al., 2012). Additionally, harsh conditions such as high temperature may affect the DES stability (Badgujar & Bhanage, 2014). Hence, the design of low viscosity and thermally stable DESs is an important feature that needs to be considered when selecting DESs as a solvent for lignocelluloses pre-treatment. Furthermore, glucose production enhancement, energy consumption and kinetic performance of the DES-cellulase system are important parameters when considering the evaluation of the DES-halophilic cellulase system in hydrolyzing simple cellulose and complex cellulose.