

FACE RECOGNITION USING EIGEN-FACE IMPLEMENTED ON DSP PROCESSOR

vy NAWAF HAZIM NAEF BARNOUTI (1432321194)

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science (Embedded System Design Engineering)

School of Computer and Communication Engineering

UNIVERSITI MALAYSIA PERLIS

2014

ACKNOWLEDGMENTS

First of all, I would like to thank my Supervisor Dr. Muhammad Imran Bin Ahmad, who has been very helpful to me throughout the preparation of this thesis, starting with helpful and valuable suggestions, and ending up with the preparation of this dissertation. Also I would like to thank the UniMAP and School of Computer and Communication Engineering lecturers for their support during this intake. A great deal of thanks goes to my father and mother for their endess support and encouragement, even through the most demanding phases of this research.

TABLE OF CONTENTS

THESIS DECLARATIONS	i
ACKNOWLEDGMENTS	ii
TABLE OF CONTENT	iii
LIST OF FIGURES	ix
LIST OF TABLES	xii
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	XV
ABSTRAK	xviii
ABSTRACT	xix
ACKNOWLEDGMENTS TABLE OF CONTENT LIST OF FIGURES LIST OF TABLES LIST OF SYMBOLS LIST OF ABBREVIATIONSE ABSTRAK ABSTRAK ABSTRACT HISTOP ABBREVIATIONSE CHAPTER 1 INTRODUCTION	
CHAPTER 1 INTRODUCTION	
1.1 Background	1
1.2 Face Recognition Classifications and Methods	5
1.3 Face Recognition Applications	7
1.4 Problem Statement and Motivation	9
1.5 Aims and Objectives	11
1.6 Brief Methodology	12

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction	14
2.2 Face Recognition	17
 2.2 Face Recognition 2.2.1 Human Face Recognition 2.2.2 Machine Face Recognition 	17
2.2.2 Machine Face Recognition	19
2.3 Appearance-Based (Holistic) Face Recognition	21
2.3.1 Principal Component Analysis (PCA)	23
2.3.2 Linear Discriminant Analysis (LDA)	26
2.3.3 Independent Component Analysis (ICA)	28
2.3.4 Kernel Principal Component Analysis (KPCA)	31
2.3.5 Kernel Linear Discriminant Analysis (KLDA)	31
© 2.3.6 Support Vector Machine (SVM)	32
2.3.7 Hidden Markov Model (HMM)	34
2.4 Model-Based Face Recognition	35
2.4.1 Elastic Bunch Graph Matching (EBGM)	36
2.4.2 3-D Morphable Model	37
2.5 Distance Measurement	39

2.5.1	Euclidean Distance	40
2.5.2	City Block Distance	43
2.5.3	Mahalanobis Distance	43
2.5.4	Chebyshev Distance Classifier	45
2.5.5	Hausdorff Distance Measure	45
2.6 DSP Pro	Hausdorff Distance Measure Decessor AR Eace Detektor	46
2.7 Face Da	itabase	49
2.7.1	ORL Database	49
2.7.2	FERET Database	50
2.7.3	AR Face Database	51
2.7.4	MUCT Database	51
2.7.5	CMU-PIE Database	52
2.7.6	Yale Face Database B	54
© 2.7.7	UMIST Database	54
2.7.8	Face94 Database	55
2.7.9	Indian Database	55
2.7.10	0 Grimace Database	56
2.8 Summar	ry	60

CHAPTER 3 METHODOLOGY

3.1 Introdu	ction	61
3.2 Image I	Pre-Processing	63
3.2.1	Image Cropping	63
3.2.2	Image Resize	64
3.2.3	Image Resize Gamma Intensity Correction (GIC) Changing the Brightness Histogram Equalization (HE)	66
3.2.4	Changing the Brightness	67
3.2.5	Histogram Equalization (HE)	68
3.2.6	Face Viewed as a Vector	70
3.2.7	Image Space	70
3.3 Princip	e Component Analysis (PCA)	71
3.3.1	Eigen Values and Eigen Vectors	72
\$.3.2	The Eigen-Face Approach	73
9.4 Distanc	e Measurement	84
3.4.1	Euclidean Distance Matrix	86
3.4.2	Pythagorean Theorem	87
3.4.3	The Squared Euclidean Distance	88
3.5 Hardwar	re Implementation	89
3.5.1	TMS320 DSP Processor	90

3.5.2 TMS320C6713 DSP Processor	91
3.5.2.1 TMS320C6713 Features	92
3.5.2.2 TMS320C6713 Board Layout	93
3.6 Face Database	93
 3.7 Summary CHAPTER 4 RESULTS AND DISCUSSION CODVIDENT 4.1 Face Database 4.2 Face Viewed as a Vector 4.3 Image Pre-Processing CLECT 4.3.1 Image Resize 	98
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 Face Database	99
4.2 Face Viewed as a Vector	101
4.3 Image Pre-Processing	102
4.3.1 Image Resize	102
4.3.2 Change the Brightness	103
4.3.3 Image Cropping	105
4.3.4 Histogram Equalization	106
4.4 Analysis with Different Number of PCA Coefficients	107
4.5 Performance Analysis with Different Number of Training and Testing Image	109
4.6 Comparison of Euclidean Distance Processing Time Using TMS320C6713 DSP Processor	120
4.7 Summary	121

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1	Conclusion	122
5.2	Future Work	124

125

O This item is protected by original copyright

LIST OF FIGURES

	NO.	PA	GE
	1.1	Types of Biometrics	3
	1.2	Facial Features Scored the Highest Compatibility	4
	1.3	Face Identification	5
	1.4	Taxonomy of Face Recognition Algorithms Based on Pose Dependency, Face representation, and Features Used in Matching	6
	2.1	Summary of Holistic and Model Based Approaches	15
	2.2	Summary of Holistic Statistical Approaches	16
	3.1	The Overall Method Purposed in this Thesis	62
	3.2	Image Cropping	64
	3.3	Original Image Resize with Scale 0.5	65
	34115	Original Image Resize with Scale 0.25	65
(3.5	Increase Image Brightness	67
	3.6	Decrease Image Brightness	68
	3.7	The New Image After Applying the Histogram Equalization	69
	3.8	Image Space's Basis	71
	3.9	Eigen-Faces Generation Process	75
	3.10	Images will be Represented as a Column Vector	76

3.11	Testing Image	81
3.12	Compare the Test Image with the Database	82
3.13	Compare the Test Image with the Database of More than One Face of the Same Person	83
3.14	Euclidean Distance Between Test and Training Images	85
3.15	Texas Instruments TMS320 DSP Platforms	90
3.16	Texas Instruments TMS320 DSP Platforms Block Diagram C6713 DSK TMS320C6713 DSK Different Facial Expressions	91
3.17	TMS320C6713 DSK	93
3.18	Different Facial Expressions	95
3.19	ORL Database Face Image (Frontal Profile)	96
4.1	The 400 Face Images of ORL Database	100
4.2	How Images can be Presented	101
4.3	Images Resized by Scale 0.3	102
4.4	Images Resized by Scale 0.5	103
4.5	Increase Brightness by Adding 100 to Each Pixel	104
4.6	Increase Brightness by Adding 140 to Each Pixel	104
4.7	Decrease the Brightness by Subtracting 100 from Each Pixel	104
4.8	Decrease the Brightness by Subtracting 140 from Each Pixel	105
4.9	Images After Cropping	105
4.10	Images Before and After Histogram Equalization	106

4.11	Performance by Using Different PCA Coefficient on Five Training and Five Testing Images without Pre-Processing on Images	108
4.12	Performance by Using Different PCA Coefficient on Five Training and Five Testing Images with Pre-Processing on Images	108
4.13	Recognition Percentage without any Pre-Processing	115
4.14	Recognition Percentage After Resize Images by 0.3 and Increase Brightness by Adding 140 to Each Pixel	116
4.15	Recognition Percentage After Resize with Scale 0.3 and 0.5	117
4.16	Recognition Percentage After Decrease Brightness	117
4.17	Recognition Percentage After Increase Brightness	118
4.18	Recognition Percentage After Image Cropping	119
4.19	Recognition Percentage After Histogram Equalization	119
© Thi		

LIST OF TABLES

NO.		PAGE
2.1	Some Famous Databases and Properties	57
2.2	Summary of Face Recognition Methods	58
3.1	Euclidean Distance Process Between Five Training Images and and Five Testing Images Totally 200 Images for Each Training and Testing Image TMS320C6713 Properties	89
3.2	TMS320C6713 Properties	92
3.3	ORL Database Properties	97
4.1	The Recognition Percentage Before and After Pre-Processing	109
4.2	Computational Times of the Euclidean Distance Classifier When Implemented Using TMS320C6713 DSP Processor	121
\bigcirc		

LIST OF SYMBOLS

d	Distance
S _W	With-in class scatter matrix
S _B	Between class scatter matrix
D_E	Euclidean distance
D _C	Between class scatter matrix Euclidean distance City block distance Mahalanobis distance Total number of images Image Height
D _M	Mahalanobis distance
М	Total number of images
Ι	Image
h	Height
w • x Q	Weight
h w av thiste	Average
A	Zero mean image
Covar	Covariance matrix
Evec	Eigenvector
Eval	Eigenvalue
W	Weight space
norm	Normalization
Р	Projected features of training samples

- *Tr* Train image
- Ts Test image

o This item is protected by original copyright

LIST OF ABBREVIATIONS

PCA	Principle Component Analysis
ORL	Olivetti Research Laboratories
ED	Euclidean Distance
LDA	Linear Discriminant Analysis Independent Component Analysis
ICA	Independent Component Analysis
KPCA	Kernel Principal Component Analysis
KLDA	Kernel Linear Discriminant Analysis
MPCA	Multilinear Principal Component Analysis
SVM	Support Vector Machines
НММ	Hidden Markov Model
EBGM	Elastic Bunch Graph Matching
HD	Hausdorff distance
HE	Histogram Equalization
EDM	Euclidean Distance Matrix
MRTD	Machine Readable Travel Documents
RBF	Radial Basis Function
DCT	Discrete cosine transform
CG	Coarse grained

FERET	Face Recognition Technology
DARPA	Defense Advanced Research Projects Agency
NIST	National Institute of Standards and Technology
AR	Aleix Martinez and Robert Benavente
RGB	Red, Green, Blue
JPEG	Joint Photographic Experts Group
CVC	Computer Vision Center
1-D	Red, Green, Blue Joint Photographic Experts Group Computer Vision Center One Dimensional
2-D	Two Dimensional
3-D	Three Dimensional
MUCT	Milborrow / University of Cape Town
UMIST	University of Manchester Institute of Science and Technology
HCKHIS	Human-Computer Interaction
ATM	Automated Teller Machine
ANN	Artificial Neural Networks
ID	Identification Card
PIN	Personal Identification Number
SSS	Small Sample Space

- PC Principal Components
- BSS Blind Source Separation
- DSP Digital Signal Processing
- ΤI **Texas Instruments**

OTHIS HEMIS Protected by original copyright

Pengecaman Wajah Menggunakan Eigen-Face Dilaksanakan oleh Pemproses DSP

ABSTRAK

Sistem pengecaman wajah adalah bidang penyelidikan yang semakin berkembang di dalam sistem pengecaman biometrik dan telah digunakan secara meluas dalam sistem keselamatan. Sistem pengecaman wajah adalah suatu pemprosesan fisiologi maklumat biometrik berdasarkan imej dua dimensi muka. Fokus tesis ini adalah untuk membangunkan pengecaman muka automatik menggunakan ciri-ciri holistik yang diambil daripada imej muka. Ciri holistik diekstrak menggunakan kaedah eigenface dimana teknik unjuran linear seperti PCA digunakan untuk mendapatkan data penting yang terdapat dalam imej tersebut. Imej muka mempunyai maklumat frekuensi rendah seperti bentuk mulut, mata, dan hidung yang mempunyai kuasa diskriminasi yang tinggi. Dengan menggunakan kaedah PCA, hanya beberapa vektor eigen yang mempunyai nilai eigen yang tinggi dipilih untuk digunakan. Ruang rendah dimensi yang dihasilkan oleh PCA dikelaskan dengan menggunakan pengelasan jarak. Klasifikasi jenis ini digunakan untuk mengira persamaan di antara dua titik data dalam ruang PCA berdasarkan kepada jarak dua vektor. Kaedah yang digunakan diuji menggunakan dataset ORL yang mempunyai 400 imej daripada 40 individu. Kadar pengecaman terbaik adalah 97.5% apabila diuji menggunakan 9 imej latihan yang diwakili oleh 35 pekali PCA. Menggunakan pekali PCA yang sedikit membolehkan pengelasan jarak dilaksahakan menggunakan perkakasan seperti pemproses DSP. Pengelasan jarak diuji dengan menggunakan pemproses DSP TMS320C6713. Masa othisiten is pengiraan dapat dikurangkan berbanding simulasi menggunakan komputer.

Face Recognition Using Eigen-Face Implemented on DSP Processor

ABSTRACT

Face recognition is the established research area in 2D biometric recognition system and broadly used in a security system. Face recognition system is a physiological biometric information processing based on the two dimensional face image. This thesis focus to develop an automatic face recognition using holistic features extracted that use the global features represented by low frequency data from face image. Holistic features are extracted using eigenface method where a linear projection technique such as PCA is used to capture the important information in the image. Face image has low frequency information such as shape of mouth, eye, and nose which has high discrimination power. By using PCA, only several number of eigenvector is preserved which belong to these features. A low dimensional feature space is classified using distance classifier. Distance classifier is used to calculate the similarity between two data points in the feature space based on the distance of two vectors. Euclidean distance is used for matching process. The propose method is tested using a benchmark ORL dataset that has 400 images of 40 persons. The best recognition rate is 97.5% when tested using 9 training images and 1 testing image represented with 35 PCA coefficients. Using less number of PCA coefficients is able for the classifier module to be implemented using hardware such as DSP processor. Euclidean distance classifier is tested using the TMS320C6713 digital signal processor (DSP). The computational time is less compared othisitemise with the offline simulation using PC based.

CHAPTER 1

INTRODUCTION

1.1 Background

Face recognition, one of the most relevant applications of image analysis and computer vision, has become an increasingly important and active research topic in recent years because of its numerous applications in different domains (Sharma & Dubey, 2014). Using the face for biometric applications seems logical because it is the body part with the most obvious and important role in numan communication and identification (Delac et al., 2008). Facial biometric is among the fastest growing biometric areas, but building an automated system for human face recognition is a challenge because humans are not well skilled in recognizing numerous unknown faces (Li & Jain, 2004; Parmar & Metra, 2013). In recent years, much work has been carried out in face recognition, which has become successful in actual applications. Face recognition can be divided into two main methods: two dimensional (2D) and three dimensional (3D). 2D and 3D refer to the actual dimensions in a computer workspace. 2D is "flat", using the horizontal and vertical (X and Y) dimensions, the image has only two dimensions. While 3D adds the depth (Z) dimension. This third dimension allows for rotation and visualization from multiple perspectives.

Many face recognition methods, including their modifications, have been developed. Face recognition has gained considerable attention recently. Identifying whether a face is known or unknown can be accomplished by comparing a person's face from a database of faces. Research interest in face recognition is rapidly increasing given the many laws and commercial applications of face recognition (Christy et al., 2014).

Face recognition has special advantages over other system characteristics because it is a non-contact process that can identify a person from a distance. The identification process does not require interacting with the person. People are not required to place their hands on a reader or their eyes in from of a scanner in a specific position, processes that can sometimes be sources of disease transfer and may not be acceptable in some cultures. Face recognition also aids in crime prevention because face images that are recorded and archived can later help identify a person (Parmar & Mehta, 2013). Different biometric indicators are appropriate for various kinds of identification applications because of the varying cost, intrusiveness, ease of sensing, and accuracy of these applications.

Biometric-based methods became the most promising face recognition option. Biometrics is a user-friendly authentication method that utilizes biological data to identify a person. Instead of certifying people and allowing them access to physical and virtual domains based on smart cards, passwords, PINs, plastic cards, keys, and tokens, these methods examine the physiological and/or behavioral characteristics of a person to verify identity. Biometric-based methods identify based on physiological characteristics (e.g., face recognition, finger geometry, fingerprints, palm prints, hand veins, hand geometry, ears, voice pattern, iris, and retina) and behavioral traits (e.g., keystroke dynamics, gait, and signature). Passwords and PINs can be guessed or stolen and are difficult to remember; cards, keys, and tokens can be misplaced, forgotten, or duplicated; and magnetic cards can be damaged and corrupted. However, biological traits cannot be forged, misplaced, forgotten, or stolen (Shah et al., 2014; Parmar & Mehta, 2013). Figure 1.1 shows the most important biometrics types.

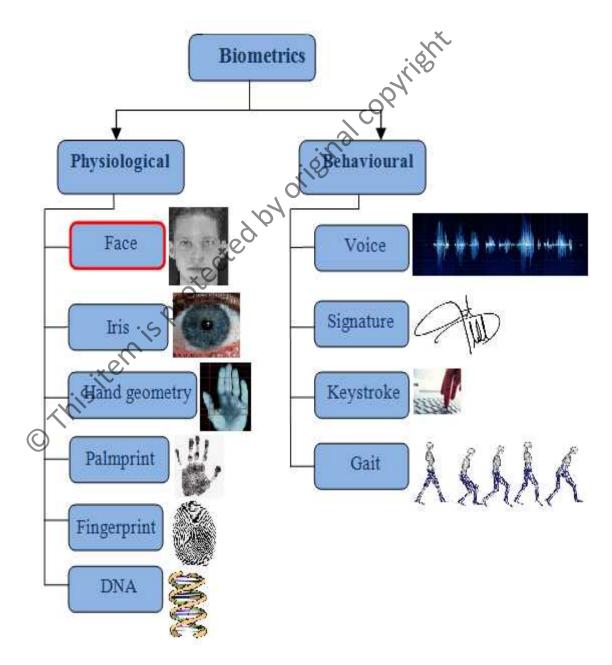


Figure 1.1: Types of Biometrics.

Face biometric systems have the highest possible collectability and acceptability. These systems use images that are acquired quite easily. In addition, using face images for identifications in daily activities, such as in passports and national identification cards, is readily accepted by people. Figure 1.2 shows that facial features is nearly 97% and have the highest possible compatibility than biometric indicators because it is a non-contact process that can identify a person from a distance (Li & Jain, 2004).

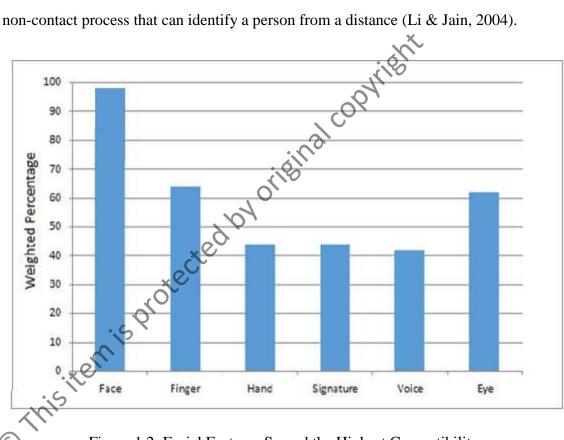


Figure 1.2: Facial Features Scored the Highest Compatibility.

Face detection is the strategy of determining whether a face in a given image (usually in gray scale) exists or not, and returning the image location and content of each existing face detected. This strategy is the starting point of any fully automatic system that analyzes facial information (e.g., identity, gender, expression, age, race, and pose).

1.2 Face Recognition Classifications and Methods

A face recognition system falls under two classifications: verification and identification (Jafri & Arabnia, 2009).

- 1. Face Verification (one-to-one matching) that compares the face images against a template face images whose identity is being claimed.
- 2. Face Identification (one-to-many matching) that compares a query face image

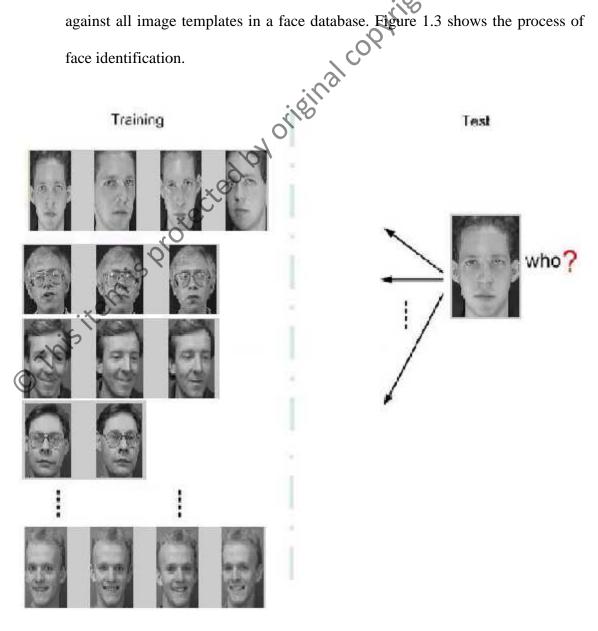


Figure 1.3: Face Identification.