PRODUCTION, CHARACTERIZATION AND UTILIZATION OF EPOXY SPHERICAL MEMBRANE FILTER PREPARED BY AN ADVANCED AQUEOUS METHOD

UNIVERSITI MALAYSIA PERLIS

Production, Characterization and Utilization of **Epoxy Spherical Membrane Filter prepared by an Advanced Aqueous Method**

1 Chisitemis protected by chisitemis c A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Materials Engineering

> **School of Materials Engineering UNIVERSITI MALAYSIA PERLIS**

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS		
DECLARATIO	ON OF THESIS	
Author's full name : Sea Bee Ing		
Date of birth : 3 JULY 1988		
	cterization and Utilization of Epoxy Spherical prepared by an Advanced Aqueous Method	
Academic Session : 2014	ANX .	
I hereby declare that the thesis becomes the pro- and to be place at the library of UniMAP. This	operty of Universiti Malaysia Perlis (UniMAP) thesis is classified as:	
CONFIDENTIAL (Contains c Secret Act	onfidential information under the Official	
	estricted information as specified by the n where research was done)*	
OPEN ACCESSI agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)		
I, the author, give permission to the Up part for the purpose of research or academic ex	niMAP to reproduce this thesis in whole or in	
years, if so requested above).	tenange only (except during a period of	
. Tell	Certified by:	
© (MI)		
A	DE POU NGOC UY LAND	
SIGNATURE	SIGNATURE SKAPER VISOR	
880703-08-5492 NEW IC NO./ PASSPORT NO.	Dr. Du Ngoc Uy Lan NAME OF SUPERVISOR	

Notes: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

Date: 22 1 2015

Date: <u>22</u>

ACKNOWLEDGEMENT

First and foremore, I feel grateful to God as a creator of our universal had provided us with plentiful and valuable natural resource and wonderful environment. God at the same time had gave me strength to complete my master research which is one of the toughest challenges in completing my degree. I would like to express my deepest gratitude to my project supervisor Dr. Du Ngoc Uy Lan for the opportunities he had gave me to learn and to complete the project under his supervision. He had been a great mentor and always opened to discussion with useful suggestions and advice. His support and guidance along the project, and an opportunity for me to progress in this project had been invaluable. I am very grateful as he shared his wealth of knowledge in polymer field especially at the field of epoxy with me.

Special thanks to Dr. Ong Hui Lin, my co-supervisor for her comments and suggestions to the project. Besides, her initiative to involve herself to the project by held group discussion on related journal. She had shared her knowledge and discussion had been carried out in this discipline during our discussion. There are many who had contributed directly or indirectly helped me in completing my studies. I would like to take this opportunity in devoting deepest thanks to all School of Material Engineering staffs who had lent their hand in my experiments. I also would like to acknowledge Ministry of Higher Education Malaysia for providing me FRGS grant (grant no: 9001-00326) that supported this project.

This study could not be realized without unconditional love and support from my family. Even though they were miles away, they were always with me. Their encouragement and concern had motivated me to carry on during this study. I would like to extend my grateful appreciation and thanks to my colleague and friends for their friendship and support and all postgraduate students of Materials Engineering, UniMAP are also acknowledge.

TABLE OF CONTENTS

12

THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	х
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xviii
LIST OF EQUATIONS	XX
ABSTRAK	xxi
ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF EQUATIONS ABSTRAK ABSTRAK	xxii
CHAPTER 1 INTRODUCTION	
1.1 Introduction	1
1.1.1.5 Porous Medium	1
1.1.2 Membrane Filtering and Separation for Wastewat Treatment	ter 4
1.2 Problem Statement	5
1.3 Objectives	7
1.4 Scope of Study	7
CHAPTER 2 LITERATURE REVIEW	
2.1 Emulsions	9
2.1.1 Emulsion Polymerization	9

2.1.2.1 Water in Oil In Water (W/O/W) Emulsion 13

2.1.2 Types of Emulsion

	2.1.3 Emulsion Stability	14
2.2	Homogenization	17
2.3	Thermoset -Epoxy	19
2.4	Curing Agent/ Hardener - Polyamide	21
2.5	Calcium Carbonate	23
2.6	Wastewater Treatment	24
2.7	Membrane	26
2.8	Porous Medium	29
	2.8.1 General Concept of Porous Medium	29
	2.8.2 Types and Properties of Porous Materials	30
	 2.8.1 General Concept of Porous Medium 2.8.2 Types and Properties of Porous Materials 2.8.3 Application of Porous Medium 	31
	2.8.3.1 Application - Filter and Separator	32
	2.8.3.2 Types of Porous Membrane for Wastewater Treatment	33
	2.8.4 Preparation and Fabrication of Porous Polymeric	35
2.9	Significant of Study	37
СНА	PTER 3 RESEARCH METHODOLOGY	
3.1	Introduction	38
3.2	Materials	38
	3.2.1 Epoxy Resin	38
	3.2.2 Epoxy Hardener/ Curing Agent	39
	3.2.3 Calcium Carbonate	40
\bigcirc	3.2.4 Distilled Water	40
	3.2.5 Filtrated/ Separating Materials	41
	3.2.5.1 Carbon Black	41
	3.2.5.2 Copper, Metal Powder	41
	3.2.5.3 Palm Oil	42
	3.2.5.4 Engine Oil	43
3.3	Preparation of Epoxy Spherical Membrane (ESM)	43
3.4	Epoxy Spherical Membrane (ESM) Testing and Characterization	44
	3.4.1 Epoxy Emulsion	44
	3.4.1.1 Emulsion Viscosity	44

	3.4.1.2 Gel Time	45
	3.4.2 Characterization and Testing on Epoxy Spherical Membrane (ESM) matrices	45
	3.4.2.1 Epoxy Spherical Membrane (ESM) Densities	45
	3.4.2.2 Morphology Characterization	46
	3.4.2.3 Thermal Analysis	47
	3.4.2.4 Mechanical Properties - Compression Test	47
-		48
Epoxy and Se	P Spherical Membrane Column (ESMC) Filtering	48
3.6.1	Particulate Filtering	49
3.6.2	Oil Separation Behavior	49
3.6.3	Effect of Type and Diameter of Column on Filtering Behavior	50
PTER 4	RESULTS AND DISCUSSION	
Introd	uction x e	52
Effect	of Calcium Carbonate Content	52
4.2.1	Emulsion Properties	53
	4.2.1.1 Emulsion Viscosity	53
	4.2.1.2 Gel Time	55
4.2.2	Epoxy Spherical Membrane (ESM) Physical Properties	56
	4.2.2.1 Morphology of Epoxy Spherical Membrane (ESM)	56
	4.2.2.2 Bulk Density, Relative Density and Total Pore Volume	58
4.2.3	Epoxy Spherical Membrane (ESM) Thermal Properties	59
	4.2.3.1 Differential Scanning Calorimetry (DSC)	59
	4.2.3.2 Thermal Gravimetric Analysis (TGA)	61
4.2.4	Epoxy Spherical Membrane (ESM) Mechanical Properties - Compression Properties	64
Effect	of Resin/ Water Ratio and Homogenization Speed	66
4.3.1	Emulsion Properties	66
	(ESM Epoxy and Se 3.6.1 3.6.2 3.6.3 PTER 4 Introd Effect 4.2.1 4.2.2 4.2.2	 3.4.2 Characterization and Testing on Epoxy Spherical Membrane (ESM) matrices 3.4.2.1 Epoxy Spherical Membrane (ESM) Densities 3.4.2.2 Morphology Characterization 3.4.2.3 Thermal Analysis 3.4.2.4 Mechanical Properties - Compression Test Preparation of Epoxy Spherical Membrane Column (ESMC) Epoxy Spherical Membrane Column (ESMC) Filtering and Separating Properties 3.6.1 Particulate Filtering 3.6.2 Oil Separation Behavior 3.6.3 Effect of Type and Diameter of Column on Filtering Behavior PTER 4 RESULTS AND DISCUSSION Introduction Effect of Calcium Carbonate Content 4.2.1 Emulsion Properties 4.2.1.1 Emulsion Viscosity 4.2.2 Gel Time 4.2.2 Epoxy Spherical Membrane (ESM) Physical Properties 4.2.2.1 Morphology of Epoxy Spherical Membrane (ESM) 4.2.2.2 Bulk Density, Relative Density and Total Properties 4.2.3 Epoxy Spherical Membrane (ESM) Thermal Properties 4.2.3 Epoxy Spherical Membrane (ESM) Thermal Properties 4.2.3 IDifferential Scanning Calorimetry (DSC) 4.2.3.2 Thermal Gravimetric Analysis (TGA) 4.2.4 Epoxy Spherical Membrane (ESM) Mechanical Properties - Compression Properties Effect of Resin/ Water Ratio and Homogenization Speed

		4.3.1.1 Emulsion Viscosity	66
		4.3.1.2 Gel Time	68
	4.3.2	Epoxy Spherical Membrane (ESM) Physical Properties	70
		4.3.2.2 Morphology of Epoxy Spherical Membrane (ESM)	70
		4.3.2.1 Bulk Density, Relative Density and Total Pore Volume	71
	4.3.3	Epoxy Spherical Membrane (ESM) Thermal Properties	73
		4.3.3.1 Differential Scanning Calorimetry (DSC)	73
		4.3.3.2 Thermal Gravimetric Analysis (TGA)	75
	4.3.4	Epoxy Spherical Membrane (ESM) Mechanical Properties - Compression Properties	77
4.4		of Homogenization Temperature and Epoxy/ nide Ratio	79
	4.4.1	Emulsion Properties	80
		4.4.1.1 Emulsion Viscosity	80
		4.4.1.2 Gel Time	82
	4.4.2	Epoxy Spherical Membrane (ESM) Physical Properties	83
		4.4.2.1 Morphology of Epoxy Spherical Membrane (ESM)	83
		4.4.2.2 Bulk Density, Relative Density and Total Pore Volume	84
	4.4.3	Epoxy Spherical Membrane (ESM) Thermal Properties	86
\bigcirc		4.4.3.1 Differential Scanning Calorimetry (DSC)	86
		4.4.3.2 Thermal Gravimetric Analysis (TGA)	87
	4.4.4	ESM Mechanical Properties - Compression Properties	88

CHAPTER 5 FILTRATION AND SEPARATION BEHAVIOR OF EPOXY SPHERICAL COLUMN (ESC)

5.1	Introduction	91
5.2	Effect of Epoxy Spherical Membrane (ESM) Microstructure towards Different Types of Filtrated	93
	5.2.1 Particulates Filtering	93

	5.2.1.1 Carbon Black (CB) Filtering	94
	5.2.1.2 Copper Powder (Cu) Filtering	98
	5.2.2 Oil Separation	101
	5.2.2.1 Palm Oil (PO) Separation	102
	5.2.2.1 Engine Oil (EO) Separation	104
5.3	Effect of Column Types and Diameter on Epoxy Spherical Membrane Column (ESMC) Filtering Behavior	106

CHAPTER 6 CONCLUSIONS AND RECOMMENDATION

6.1	Production of Epoxy Spherical Membrane (ESM)	112
6.2	Epoxy Spherical Membrane Column (ESMC) Filtration and Separation Application	113
6.3	Recommendation and Suggestion for Future Works	114
REFE	RENCES DF PUBLICATIONS DF AWARDS NDIX A NDIX B NDIX C	116
LIST (OF PUBLICATIONS	144
LIST (OF AWARDS	145
APPE	NDIX A	146
APPE	NDIX B	148
APPE	NDIX C	150
APPE	NDIX D	153
APPE	NDIX E	156
\odot		

LIST OF TABLES

2.1	Advantages and disadvantages of emulsion polymerization.	10
2.2	Types of emulsion breakdown phenomena.	15
2.3	Types of membrane process.	26
2.4	Applications of hierarchically structured porous materials.	31
3.1	Properties of epoxy resin 331.	38
3.2	Properties of epoxy hardener A062.	39
3.3	Physical and chemical properties.	42
3.4	Formulation of epoxy emulsion.	44
4.1	Thermal properties of epoxy spherical membrane (ESM) for different calcium carbonate content.	59
4.2	Decomposed properties of epoxy spherical membrane (ESM) under oxidative environment for different calcium carbonate content.	61
4 3	Thermal properties of epoxy spherical membrane (ESM) for different water ratio/ homogenization speed.	73
4.4	Decomposed properties of epoxy spherical membrane (ESM) under oxidative environment for different water Ratio.	75
4.5	Thermal properties of epoxy spherical membrane (ESM) for different epoxy to polyamide ratio.	86
4.6	Decomposed properties of epoxy spherical membrane (ESM) under oxidative environment for different emulsifying temperature/ epoxy to polyamide ratio.	87

NO.

- 5.1 Percentage of collected water and condition of carbon black (CB) in different epoxy spherical membrane column (ESMC) (%).
- 5.2 Percentage of collected water and condition of copper 99 powder (Cu) in different epoxy spherical membrane column (ESMC) (%).
- 5.3 Palm oil-solution (PO) filtering behaviour using 103 different epoxy spherical membrane column (ESMC) after 2 hours.
- 5.4 Engineoil-solution (EO) filtering behaviour using 105 different epoxy spherical membrane column (ESMC) after 2 hours.
- 5.5 Percentage of collected water and condition of copper powder (Cu) in different epoxy spherical membrane column (ESMC) (%).

109

LIST OF FIGURES

NO.		PAGE
2.1	Schematic representation of polymerization of an emulsion.	11
2.2	Types of emulsions.	12
2.3	Schematic representative of W/O/W emulsions	13
2.4	Flocculation, partly coalescence and coalescence in emulsion system.	14
2.5	Schematic representation of the various breakdown processes in emulsions.	16
2.6	Illustration of dispersion in using homogenization.	18
2.7	Chemical structure of Bisphenol A diglycidyl ether (DGEBA).	19
2.8	Structures of Versamids-vegetable based polyamide, where $R =$ other dimer units and amine units.	21
2.9	Reaction of amide and epoxy.	22
2.10	Types of pores.	29
3.1	V Illustration of filtering/ separation of epoxy spherical membrane column (ESMC).	48
3.2	Flow chart of preparation and characterization of epoxy spherical membrane (ESM) and epoxy spherical membrane column (ESMC).	51
4.1	Schematic of W/O/W epoxy emulsion and inner view of epoxy droplets.	53
4.2	The effect of different calcium carbonate content towards the emulsion viscosity of epoxy emulsion.	54
4.3	The effect of different calcium carbonate content towards the gel time of epoxy emulsion.	55

4.4	Scanning electron micrograph of cross-sectional area of ESM filled with different calcium carbonate content magnify at 50X: (a) 0phr, (c) 10phr, (e) 25phr, (g) 50phr and (i) 75phr calcium carbonate content; and magnify at 5000X: (b) 0phr, (d) 10phr, (f) 25phr, (h) 50phr and (j) 75phr calcium carbonate content.	56
4.5	The effect of different calcium carbonate content towards bulk density, relative density and total pore volume of epoxy spherical membrane (ESM).	58
4.6	DSC thermograph of epoxy spherical membrane (ESM) for different calcium carbonate content.	60
4.7	TGA thermograph of epoxy spherical membrane (ESM) under oxidative environment for different calcium carbonate content.	62
4.8	DTG thermograph of epoxy spherical membrane (ESM) combust under oxidative environment for different calcium carbonate content.	63
4.9	The effect of calcium carbonate content toward the compression strength and modulus of epoxy spherical membrane (ESM).	64
4.10	The effect of different calcium carbonate content towards the compressive strain at break of epoxy spherical membrane (ESM).	65
4.11	The effect of different resin to water ratio/ homogenization speed towards the emulsion viscosity of epoxy emulsion.	67
4,12	The effect of different resin to water ratio/ homogenization speed towards the gel time of epoxy emulsion.	69
4.13	Scanning electron micrograph of cross-sectional area of epoxy spherical membrane (ESM) for different resin to water ratio magnify at 100X: (a) 5R:5W, (c) 4R:6W, (e) 3R:7W and (g) 3R:7W 15k rpm; and magnify at 500X: (b) 5R:5W, (d) 4R:6W, (f) 3R:7W and (h) 3R:7W 15k rpm.	70
4.14	The effect of different resin to water ratio/ homogenization speed towards the bulk density, relative density and total pore volume of epoxy spherical membrane (ESM).	72

xi

4.15	DSC thermograph of epoxy spherical membrane (ESM) for different resin to water ratio/ homogenization speed.	74
4.16	TGA thermograph of Epoxy Spherical Membrane (ESM) under oxidative environment for different resin to water ratio.	75
4.17	DTG thermograph of epoxy spherical membrane (ESM) combust under oxidative environment for different resin to water ratio.	76
4.18	The effect of different resin to water ratio/ homogenization speed towards the compression strength and modulus of epoxy spherical membrane (ESM).	77
4.19	The effect of different resin to water ratio/ homogenization speed towards the compression strain at break of epoxy spherical membrane (ESM).	78
4.20	The effect of different emulsifying temperature/ epoxy to polaymide ratio towards the emulsion viscosity of epoxy emulsion.	80
4.21	Interaction of polyamide with water molecule.	81
4.22	The effect of different emulsifying temperature/ epoxy to polyamide ratio towards the gel time of epoxy emulsion.	82
4.23	Scanning electron micrograph of cross-sectional area of ESM magnify at 100X: (a) LT 10E:6PA, (c) RT 10E:6PA and (e) RT 10E10PA; and magnify at 1000X: (b) LT 10E:6PA, (d) RT 10E:6PA and (f) RT 10E10PA.	83
4.24	The effect of different emulsifying temperature/ epoxy to polyamide ratio towards bulk density, relative density and total pore volume of epoxy spherical membrane (ESM).	85
4.25	DSC thermograph of epoxy spherical membrane (ESM) for different epoxy to polyamide ratio.	86
4.26	TGA thermograph of epoxy spherical membrane (ESM) under oxidative environment for different emulsifying temperature/ epoxy to polyamide ratio.	88
4.27	The effect of different emulsifying temperature/ epoxy to polyamide ratio towards compression strength and modulus for epoxy spherical membrane (ESM).	89

4.28	The effect of different emulsifying temperature/ epoxy to polyamide ratio towards compression strain at break for epoxy spherical membrane (ESM).	90
5.1	Illustration of filtering mechanism of epoxy spherical membrane column (ESMC).	92
5.2	Flow rate of filtrate behavior in carbon black (CB) filtration of different Epoxy Spherical Membrane Column (ESMC).	94
5.3	Percentage of carbon black (CB) in different epoxy spherical membrane column (ESMC).	95
5.4	Optical micrograph of surface for filtered epoxy spherical membrane column ESMC with carbon black: magnification at 4X (a) ESMC-0, (b) ESMC-25 and (c) ESMC-50.	97
5.5	Cross section of filtered epoxy spherical membrane column (ESMC) with carbon black magnify at 2500X: (a) ESMC-25 and (b) ESMC-50.	97
5.6	Flow rate of filtrate behavior in copper powder (Cu) filtration of different epoxy spherical membrane column (ESMC).	98
5.7	Percentage of copper powder (Cu) in different epoxy spherical membrane column (ESMC).	100
5.8	Cross section of filtered epoxy spherical membrane column (ESMC) with copper powder magnification at 4X: (a) ESMC-0, (b) ESMC-25 and (c) ESMC-50.	101
5.9	Palm oil solution (PO) separation behavior of different epoxy spherical membrane column (ESMC).	103
5.10	Engine oil solution (EO) separation behavior of different epoxy spherical membrane column (ESMC).	105
5.11	Flow rate of filtrate behavior in copper powder (Cu) filtration of different glass types and diameter of epoxy spherical membrane column (ESMC).	107

5.12 Figure caption of column's sidewall and bottom view of glass types and diameter of epoxy spherical membrane column (ESMC) after filtered with copper powder solution: 27mm diameter PP column (a) ESMC-0, (d) ESMC-25 and (g) ESMC-50; 27mm diameter glass column (b) ESMC-0, (e) ESMC-25 and (h) ESMC-50; 37mm diameter glass column (c) ESMC-0, (f) ESMC-25 and (i) EMC-50.

o this term is protected by original copyright

LIST OF ABBREVIATIONS

10E:6PA	10 Epoxy: 6 Polyamide
10E:10PA	10 Epoxy: 10 Polyamide
3R:7W	3 Resin: 7 Water
4R:6W	4 Resin: 6 Water
5R:5W	5 Resin: 5 Water
API	4 Resin: 6 Water 5 Resin: 5 Water American Petroleum Institute
ASTM	American Standard for testing and Materials
ATRP	Atomic transfer radical polymerization
BLD	Blue dextran
BSI	British standard institute
СА	Cellulose acetate
CaCO ₃	Calcium carbonate
C _p	Specific heat capacity
DGEBA	Diglycidyl ether of bisphenol A
DSC	Different scanning calorimetric
DTGA	Derivative thermal gravimetric analysis
Е	Epoxy
ECMR	Electrocatalytic membrane reactor
EO	Engine oil solution
ESM	Epoxy spherical membrane
ESMC	Epoxy spherical membrane column

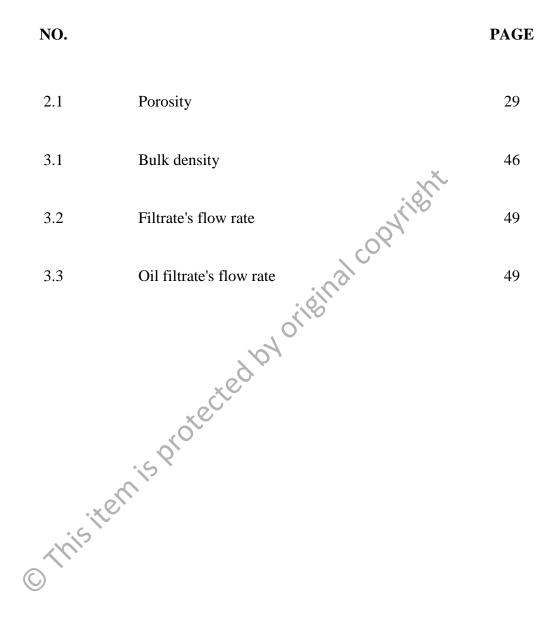
ESMC-0	Epoxy spherical membrane column without calcium carbonate
ESMC-25	Epoxy spherical membrane column filled with 25phr calcium carbonate
ESMC-50	Epoxy spherical membrane column filled with 50phr calcium carbonate
FTIR	Fourier Transform Infrared Spectroscopy
GCC	Ground calcium carbonate
GMA	Glycol methacrylate
HFP	Hexafluoropropylene High internal phase emulsion
HIPE	High internal phase emulsion
IMS	Integrated membrane systems
LRP	Living radical polymerization
LT	Low temperature
MBR	Bioreactor membrane
MF	Microfiltratiom
NIPS	Non-solvent induced phase separation
o ter	oil
O/W	Oil-in-water
0/\\vv	Oil-in-water-in oil
OSN	Organic solvent nanofiltration
РА	Polyamide
PACM	1, 4,40-methylenebiscyclohexanamine
PAN	Polyacrylonitrile
PCC	Precipitated calcium carbonate

PDMS	Polydimethylsiloxane
PE	Polyethylene
PEG	Poly (Ethylene Glycol)
PES	Polyethersulfone
PHEMA	Poly(2- hydroxyethyl methacrylate)
PIPS	Polymerization induced phase separation
PIs	Polyimides
PLA	Poly(Lactic acid)
PLGA	Poly(Lactic acid-co-Glycolic acid)
PLGA	Polyimides <i>Poly(Lactic acid)</i> Poly(Lactic acid-co-Glycolic acid) Poly (lactide-co-glycolide)
PLLA	Poly(L-lactic acid)
PMMA	Poly(methyl methacrylate)
PP	Polypropylene
PS	Polystyrene
PSU	Polysulfone
PO	Palm oil solution
PVDF	Polyvinylidene fluoride
R	Resin
RBD	Refined, bleached and deodorized
RT	Room temperature
SAE	Society of Automotive Engineers
SEM	Scanning electron microscopy
Tg	Glass transition temperature
TGA	Themalgravimetric analysis

THF Tetrahydrofuran

Thermally induced phase separation TIPS

- UF Ultrafiltration
- UV Ultraviolet
- W Water
- W/O Water-in-oil


o this term is protected by original copyright

LIST OF SYMBOLS

%	Percentage
${}^{\mathbf{C}}$	Celcius
Al	Aluminium
Al_2O_3	Aluminium oxide
CaCO ₃	Calcium carbonate
Ca ²⁺	Calcium ion
cm ³	Aluminium oxide Calcium carbonate Calcium ion Centimeter cubic Equivalent Example Gram Mililitre
eq	Equivalent
eg	Example
g	Gram
g/ml	Gram/ Mililitre
hrs	Hours
g/mi hrs J kg	Joule
kg	Kilogram
kN	Kilo Newton
kV	Kilo Volt
MgCl ₂	Magnesium chloride
MgSO ₄	Magnesium sulfate
mM	Mili Molar
mm	Mili Meter
mmol	Mili Moles

Ра	Pascal
S	Second
Ν	Newton
NaCl	Sodium Chloride
nm	Nanometer
pH	Potential Hydrogen
phr	Parts Per Hundred
ppm	Parts Per Million
rpm	Parts Per Hundred Parts Per Million Rotation Per Minute Titanium Oxide Weight Volume
TiO ₂	Titanium Oxide
wt.	Weight
vol.	Volume
Zn	Zinc
ZrO ₂	
μm	Micrometer
ZrO2 µm C this terning	

LIST OF EQUATIONS

Penghasilan, Pencirian dan Penggunaan Penapis Membran Sfera Epoksi disediakan dengan Kaedah Akueus Termaju

ABSTRAK

Zaman sekarang, masyarakat mula mempersoalkan keselamatan air. Bahan pencemar berbahaya dalam air dapat mengancam nyawa hidupan dan ia tidak boleh diabaikan Walaupun banyak produk yang canggih telah dicipta digunakan dalam terapi air sisa, tetapi kos pengendalian membran yang tinggi dan kekurangan bekalan mengehadkan perkembangan aplikasi tersebut. Dengan itu, idea baru untuk membran sfera epoksi (ESM) yang mempunyai liang berskala mikro dihasil untuk industri rawatan air sisa. Dalam kajian tersebut, kaedah akueus lanjutan digunakan untuk menghasilkan ESM berdasarkan teknik emulsi air di dalam minyak dalam air (W/O/W). Kaedah ini mudah dan mesra alam kerana tiada pelarut digunakan dan tiada pelepasan produk yang meruap. ESM sesuai dihasilkan dalam kuatiti yang besar. Epoksi dan poliamida berada dalam bentuk cecair bawah suhu bilik membolehkan emilsifikasi berlaku. Poliamida yang reaktif berasal daripada minyak sayur dipilih di mana ia bertemu dengan semua syarat untuk membolehkan proses emulsifikasi tanpa kehadiran surfaktan dan pengemulsi. Kalsium karbonat diisi dalam ESM sebagai penggalak pengemulsi untuk menghasilkan zarah epoksi yang halus. Ia dapat meningkatkan sifat-sifat mekanikal, kestabilan terma, keupayaan koagulan minyak semasa penapisan dan dapat kurangkan kos pembuatan. Air suling bertindak sebagai fasa tersebar dalam titisan epoksi dan fasa berterusan dalam sistem emulsi. Air suling sebagai template dalam ESM dan mengewap mewujudkan liang yang kompleks dalam ESM ketika mengawetan. Membran sfera epoksi turus (ESMC) dibina daripada zarah-zarah epoksi dengan struktur liang yang kompleks membolehkan prinsip membran sfera diaplikasi untuk penapisan dan pemisahan. ESMC didapati berkesan dalam penapisan karbon hitam dan serbuk tembaga dengan kadar aliran efluen yang rendah. Pemisahan minyak kelapa sawit dengan air dan minyak enjin dengan air berjaya dipisahkan dengan daya graviti di mana air jernih mengalir keluar dahulu kemudian diikuti dengan minyak. Ruang turas kaca mempersembahkan kecekapan penapisan yang lebih baik daripada ruang turas PP. Diameter ruang turus yang lebih besar membenarkan kadar aliran yang pantas tetapi kekurangan keberkesanan penapisan.