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Analisa Cakap-Silang dalam Isyarat Mekanomiografi Otot Lengan semasa Aktiviti 

Genggaman Kuat dan Postur Gelang Tangan Berbeza 

 

ABSTRAK 

 

Dalam mekanomiografi (MMG), cakap-silang merujuk kepada pencemaran isyarat dari 

otot yang berkepentingan oleh isyarat dari otot lain atau kumpulan otot berdekatan. 

Kajian ini menganalisa cakap-silang dalam isyarat MMG yang dihasilkan oleh otot 

digitorum ekstensor (ED), ekstensor karpi ulnaris (ECU), dan fleksor karpi ulnaris 

(FCU) semasa pengecutan isometrik submaksimal kepada maksimal genggaman kuat 

(MVIC) dan postur gelang tangan seperti fleksi (WF), lanjutan (WE) radial (RD) dan 

ulnar (UD). Dua puluh lelaki sihat bertangan kanan (min ± SD: umur = 26.25 ± 3.13 y) 

telah mengambil bahagian dalam kajian ini. Semasa setiap tindakan otot, tiga 

akselerometer mikroelektromekanikal (MEMS) tiga paksi (berskala penuh = ± 3g, 

sambutan frekuensi = 0.5-500 Hz, kepekaan = 330 mV/g) telah digunakan untuk 

mendapatkan isyarat MMG dari arah membujur (Lo), sisi (La) dan melintang (Tr) kepada 

serat otot. Pekali puncak-korelasi pada susulan masa sifar telah digunakan untuk 

pengkuantitian cakap-silang. Analisis ukuran-berulang varians (ANOVA) diikuti 

dengan ujian post hoc perbezaan paling signifikan (LSD) pada tahap signifikan = 0.05 

telah dijalankan untuk menganalisis cakap-silang. Tahap cakap-silang dalam isyarat 

MMG yang dihasilkan oleh tiga paksi otot berjulat antara R
2

xy = 27-70% bagi paksi-Lo, 

14-53% untuk paksi-La, dan 9-26% bagi paksi-Tr di mana didapati isyarat cakap-silang 

jauh lebih rendah pada paksi-Tr MMG untuk semua postur gelang tangan (p < 0.05). 

Selain itu, postur gelang tangan, kecuali RD, tidak mempengaruhi secara ketara tahap 

cakap-silang antara otot (p > 0.05). Terdapat korelasi positif yang kuat antara tahap 

cakap-silang dan aktiviti genggaman kuat oleh otot (r
2
 ≥ 0.857). Cakap-silang juga 

terhasil di dalam isyarat MMG oleh daya menggeletar (MMGTF), serat unit motor yang 

lambat-menembak (MMGSF) dan cepat-menembak (MMGFF) dengan nilai cakap-silang 

yang bersignifikan lebih besar dan lebih kecil untuk masing-masing MMGTF dan 

MMGFF (p < 0.05). Terdapat korelasi positif yang lemah antara tahap cakap-silang dan 

lilitan lengan semasa pengaktifan isyarat MMG yang maksima (r
2
 ≤ 0.216). Walau 

bagaimanapun, terdapat hubungan korelasi negatif yang lemah antara cakap-silang dan 

panjang lengan (r
2
 ≤ 0.082) dan antara cakap-silang dan ketebalan kulit (r

2
 ≤ 0.30). 

Keputusan ini boleh digunakan untuk meningkatkan pemahaman kita mengenai 

mekanisma otot-otot lengan semasa postur gelang tangan dan genggaman kuat dengan 

menggunakan teknik MMG. 
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Analyzing Cross-Talk in Mechanomyographic Signals of Forearm Muscles during 

Grip Force Task and Different Wrist Postures 

 

ABSTRACT 

 

In mechanomyography (MMG), cross-talk refers to the contamination of the signal from 

the muscle of interest by a signal from another muscle or muscle group in close 

proximity. This study analyzed the cross-talk in MMG signals generated by the extensor 

digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles 

during submaximal to maximal isometric contractions of the grip force (MVIC) and 

wrist postures of flexion (WF) and extension (WE), and radial (RD) and ulnar (UD) 

deviations. Twenty, healthy right-handed men (mean ± SD: age = 26.25 ± 3.13 y) 

participated in this study. During each muscle action, three microelectromechanical 

systems (MEMS)-based tri-axial accelerometers (full-scale range = ± 3g, typical 

frequency response = 0.5-500 Hz, sensitivity = 330 mV/g) were used to obtain the 

MMG signals from the longitudinal (Lo,), lateral (La) and transverse (Tr) directions with 

respect to muscle fibres. Peak cross-correlation coefficients at zero time lags were used 

for quantification of the cross-talk. Repeated-measures analysis of variance (ANOVA) 

followed by least significant difference (LSD) post hoc tests at a significant level = 0.05 

were performed to analyze the cross-talk. The level of cross-talk in the MMG signals 

generated by the three axes of the muscles ranged from R
2

xy = 27-70% for the Lo-axis, 

14-53% for the La-axis, and 9-26% for the Tr-axis providing significantly lower cross-

talk in the Tr-axis MMG signals for all the wrist postures (p < 0.05). Additionally, the 

wrist postures, except the RD, did not significantly influence the level of cross-talk 

between the muscles (p > 0.05). There were strong positive correlations between the 

level of cross-talk and the grip forces for the muscles (r
2
 ≥ 0.857). The cross-talk also 

occurred among the MMG signals due to force tremor (MMGTF), slow-firing (MMGSF) 

and fast-firing (MMGFF) motor unit fibres for the muscles with significantly greater and 

smaller cross-talk values for the MMGTF and MMGFF signals, respectively (p < 0.05). 

There were weak positive correlations between the level of cross-talk and circumference 

of the forearm during maximally activated MMG signals (r
2
 ≤ 0.216). However, there 

were weak negative correlations between the cross-talk and the length of forearm (r
2
 ≤ 

0.082) and the cross-talk and muscles’ skin-fold thickness (r
2
 ≤ 0.30). The results may 

be used to improve our understanding on mechanics of the forearm muscles during the 

wrist postures and gripping task for using the MMG technique. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Researchers are exploring to set suitable methods to examine muscles’ activities 

noninvasively; these methods for example, include surface electromyogram (sEMG) 

(Cho & Kim, 2012; Simoneau, Longo, Seynnes, & Narici, 2012), , sonomyogram 

(SMG) (Chen et al., 2011; Shi, Chang, & Zheng, 2010) and mechanomyogram (Cooper, 

Herda, Vardiman, Gallagher, & Fry, 2014; Ibitoye, Hamzaid, Zuniga, & Abdul Wahab, 

2014). Of these techniques, the sEMG, measures electrical activity from superficial 

muscle, has been widely accepted as a reliable tool to examine the condition of muscle 

function for kinesiological and rehabilitation purposes. However, the sEMG is also 

observed sensitive to skin impedance changes due to sweating and electrode placement 

over muscle, which is a problem in certain applications of wearable sensor fields such 

as prosthetics (Anderson, Wybo, & Bartol, 2010; Ma, 2009; Orizio, 1993). In addition, 

the sEMG is very sensitive to power line and external electrical noise interferences 

(Mercer, Bezodis, DeLion, Zachry, & Rubley, 2006; Wollaston, 1810). The sEMG is 

also observed susceptible to motion artefacts and thus provides very low Signal-to-

Noise Ratio (SNR), which demands for a low noise and high gain acquisition system to 

record a useable sEMG signal (Anderson, et al., 2010; Galiana-Merino, Ruiz-

Fernandez, & Martinez-Espla, 2013). Thus, researchers have been trying to find 

alternative to sEMG technique and discovered the surface mechanomyogram (MMG). 

Several terms including soundmyography (Orizio & Veicsteinas, 1992), 
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phonomyography (Guillaume, Guillaume, Denis, François, & Thomas, 2002 ; 

Hemmerling, Babin, & Donati, 2003), acoustic-myography (Rodriguez, Agre, Franke, 

Swiggum, & Curt, 1996), accelerometermyography (Lammert, Jorgensen, & Einer-

Jensen, 1976), and vibromyography (Matheson et al., 1997; Mealing, Long, & 

McCarthy, 1996) have been used initially to describe MMG. In 1995, the CIBA 

Foundation Symposium suggested a common term “surface mechanomyogram” to 

distinguish the MMG signal from other mechanical signals that are unrelated to muscle 

activity (Orizio, Gobbo, Diemont, Esposito, & Veicsteinas, 2003). 

According to a research published by (Beck, 2010), the MMG was first 

discovered in 1663 by Francesco Grimaldi, who claimed hearing a rumbling sound 

while he placed his thumbs tending to his ears and clenched his fists. In 1810, William 

Hyde Wollaston also observed the sound signal from a muscle during contraction 

(Wollaston, 1810). Gordon and Holbourn in 1948 made the first step in order to record 

MMG signal with a microphone. Consequently, they concluded that the surface MMG 

signal is the mechanical counterpart of the motor unit electrical activity as measured by 

sEMG (Gordon & Holbourn, 1948). Due to the advancements of electronic devices and 

digital signal processing tools, Oster and Jaffe first ensured that MMG signal was 

generated by muscle activity and the amplitude of the MMG signal increased with the 

level of muscle activity (Oster & Jaffe, 1980). 

The MMG has several potential advantages over sEMG technique. The MMG is 

less sensitive to sensor placement over muscle and provides clearer picture of motor 

unit recruitment and its firing rate for both superficial and deeper muscles (Orizio, 1993; 

Orizio, et al., 2003). The MMG, due to its mechanical nature, is insensitive to skin 

impedance changes caused by perspiration, and is very less sensitive to electrical cross-

talk between sensors caused by external noise (Barry, Leonard, Gitter, & Ball, 1986; 
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Posatskiy & Chau, 2012). Additionally, since the MMG acquisition system is simpler 

(because it uses only one transducer compared to bipolar sEMG that uses three 

electrodes), this technique is very useful for muscles that are in close proximity and 

with limited surface area for placing recording sensors (Anderson, et al., 2010; Beck, 

2010). Several studies claimed that the MMG provides higher SNR value compared to 

sEMG (C. Murphy, Campbell, Caulfield, Ward, & Deegan, 2008; M. Nolan, 2013; Y. 

Nolan & dePaor, 2004). Particularly, Murphy et al., 2008 reported that an accelerometer 

based MMG signal showed better SNR than sEMG signal (C. Murphy, et al., 2008). 

As a result, the MMG technique has recently been extensively used to examine 

the conditions of muscle functions in the clinics and rehabilitation centers. The 

applications for example include examination of muscle dystrophic process (Barry, 

Gordon, & Hinton, 1990; Orizio et al., 1997), muscle fatigue (Armstrong, 2011; Barry, 

Geiringer, & Ball, 1985; Cè, Rampichini, Limonta, & Esposito, 2013; Hendrix et al., 

2010; Xie, Guo, & Zheng, 2010), muscle stiffness (Dobrunz, Pelletier, & McMahon, 

1990; Jarocka, Marusiak, Kumorek, Jaskólska, & Jaskólski, 2012), muscle strength 

(Marek et al., 2005; Matta et al., 2005), muscle fibre composition (Herda et al., 2010; 

Šimunic et al., 2011), exercise trainings (Cramer et al., 2007; Esposito, Limonta, & Cè, 

2011; W. McKay, Vargo, Chilibeck, & Daku, 2013; W. P. McKay, Chilibeck, & Daku, 

2007), neuromuscular disorders (Madeleine & Arendt-Nielsen, 2005; Marusiak, 

Jaskólska, Kisiel-Sajewicz, Yue, & Jaskólski, 2009; Tian, Liu, Li, Fu, & Peng, 2010) 

and balance (Armstrong et al., 2010). In addition, several researchers also reported that 

the MMG may be used in movement classification (Kawakami et al., 2012; Scheeren, 

Krueger-Beck, Nogueira-Neto, Nohama, & Button, 2010),  prosthesis device and binary 

switch control (Alves, 2010; Alves & Chau, 2010; Alves, Sejdic, Sahota, & Chau, 2010; 

Barry, et al., 1986; Woodward, Gardner, Angeles, Shefelbine, & Vaidyanathan, 2014), 
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muscle-machine interface (M. Nolan, 2013) communication channel for disabled 

patients (Narayanan, Irfan, Geethanjali, & Kumar, 2012; Y. Nolan & dePaor, 2004) and 

monitoring neuromuscular blockade (Claudius & Viby-Mogensen, 2008; G. S. Murphy 

et al., 2011; Trager, Michaud, Deschamps, & Hemmerling, 2006). However, cross-talk 

between adjacent muscles limits using the MMG technique for comprehensive 

examination of muscle function (Beck, DeFreitas, & Stock, 2010; Ebersole, Housh, 

Johnson, Evetovich, & Smith, 2001). Hence, the cross-talk in the MMG signals will be 

analyzed in this study and is elaborated in the next chapter. 

 

1.2 Problem Statement and its Significance 

 

As mentioned previously, the MMG technique has been applied in both clinics 

and rehabilitation centers. By this time, many investigators have addressed some 

technical factors such as sensor type (Beck et al., 2006), sensor orientation and fixation 

over muscle (Barry, 1987; Bolton, Parkes, Thompson, Clark, & Sterne, 1989; Farina, Li, 

& Madeleine, 2008), sensor weight (Watakabe, Mita, Akataki, & Ito, 2003), contact 

pressure between the sensor and muscle (Bolton, et al., 1989), sensor location on 

muscle (Alves, et al., 2010; Zuniga et al., 2010), and temperature effect on muscle’s 

mechanical properties (W. McKay, et al., 2013; Orizio, 1993). These studies have put 

great practical importance for establishing the validity of MMG technique. 

However, many questions regarding MMG signal contamination still remains to 

be answered to use the technique for a comprehensive examination of muscle function. 

For example, the cross-talk that occurs between adjacent muscles is one of the more 

important concerns associated with both MMG (Beck, et al., 2010; Ebersole, et al., 

2001) and sEMG techniques (Hagg & Milerad, 1997; Kong, Hallbeck, & Jung, 2010). 
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The cross-talk issue is particularly relevant in cases where the timing of activation of 

different muscles is of importance, such as in movement analysis (Sasidhar, 2013). The 

problem becomes even more critical for muscles those are in close proximity with each 

other (Farina, Merletti, Indino, Nazzaro, & Pozzo, 2002). For instance, the human 

forearm consists of several muscles in close proximity, and thus there is a relatively 

small surface area on the forearm for placing the recording devices. 

Therefore, analyzing cross-talk from the forearm muscles is an intriguing issue 

for certain clinical applications such as prosthesis control and pre-and -post operative 

units for monitoring the activity of muscle of interest, because cross-talk can modify the 

activity of the muscle, which may misinterpret the intended muscle function. In 

particularly, most of the clinic relies on the muscle on/off activity that may be altered by 

the cross-talk (Merlo & Campanini, 2010). Thus, this study focused to understand on 

cross-talk between the MMG signals recorded from muscles in the forearm. 

 

1.3 Motivation of the Research 

 

To the best of our knowledge, a limited number of studies have investigated the 

cross-talk in sEMG signals from the forearm muscles (Kong, et al., 2010; Mogk & Keir, 

2003; Yung & Wells, 2013). However, it is unclear whether the cross-talk occurs in the 

forearm muscle as a result of wrist posture and different levels of the gripping tasks. 

Since the forearm muscle group plays an important role for the finger and wrist 

movements and gripping an object in our daily activities, the activities from an 

individual muscle of the forearm need to be ensured for comprehensive examination of 

muscle function in rehabilitation centers and controlling prosthesis devices precisely in 

the clinics. However, the sEMG signal generated by an individual muscle of the forearm 
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is very challenging, because sEMG requires two electrodes to place over a muscle 

whereas the muscle consists of very limited surface area for the recoding electrodes 

(Kong, et al., 2010; Riek, Carson, & Wright, 2000). Additionally, the volume of 

conductor in sEMG signal of a muscle may be changed as a movement, which may also 

recruit geometrical artifact to sEMG signals (Rainoldi et al., 2000). In view of this, 

MMG may be a better selection for the muscles that have limited surface area and close 

to each other like the forearm, because the MMG needs only single transducer to place 

over a muscle. However, before applying the MMG technique over forearm muscles 

convincingly, the cross-talk between adjacent muscles needs to be revealed out. 

Although some studies (Beck, et al., 2010; Cramer et al., 2003) have examined the 

crosstalk of MMG signals from quadriceps, those studies did not examine the 

propagation axes of the muscle. This is important because crosstalk is highly associated 

with the propagation properties of muscle fibre oscillation and becomes even more 

critical for muscles that in close proximity with each other (Jaskólska et al., 2004). 

Therefore, crosstalk in MMG signals from quadriceps muscles may not hold true for the 

muscles in the forearm, because quadriceps muscle group consists of larger surface area 

for placing sensor than the forearm. Unfortunately, no previous study to date has 

examined cross-talk between the MMG signals detected from the forearm muscles. This 

gap motivates the current study to answer some interrelated research questions. 

 

1.4 Research Questions 

 

i) Does cross-talk occur for MMG signals generated by the different axes 

of the forearm muscles during all wrist postures? 
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ii) Do the wrist postures influence the level of cross-talk in the MMG 

signals generated by the forearm muscles? 

iii) Is there any relationship between the level of cross-talk in the MMG 

signals generated by the forearm muscles and the submaximal to maximal isometric 

muscle contractions of the grip force? 

iv) Does cross-talk occur for MMG signals due to: force tremor (MMGFT) in 

the limb, the signal component of intramuscular pressure waves produced by the muscle 

fibres geometrical changes of fast-twitch fibres (MMGFF) and slow-twitch fibres 

(MMGSF)? 

 

1.5 Research Objectives and Hypotheses 

 

The overall objective of this thesis was to analyze the cross-talk in the MMG 

signals generated by the longitudinal (Lo), lateral (La) and transverse (Tr) axes of the 

extensor digitorum (ED), extensor carpii ulnaris (ECU), and flexor carpii ulnaris (FCU) 

muscles during the isometric wrist postures of wrist flexion (WF) and extension (WE) 

and radial (RD) and ulnar (UD) deviations. Additionally, the effect of the wrist postures 

and different levels of grip force on the cross-talk values was also analyzed. Specifically 

the objectives are: 

i) To quantify and analyze the level of cross-talk in the MMG signals from 

the Lo, La and Tr axes of the ED, ECU, and FCU muscles during the WF, WE, RD, and 

UD wrist postures. 

Our hypothesis suggests that the multi-axis MMG signals from forearm muscles 

may show different levels of cross-talk due to the effects of the propagation properties 

of muscle fibres forming the MMG signal. Therefore, any of these axes may accumulate 
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