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LIST OF ABBREVIATIONS 

 

 

Al2O3 Aluminum Oxide 

HF Hydrogen Fluoride 

HfAlO Hafnium Aluminum Oxide 

HfO2 Hafnium Oxide 

NH3 Ammonia 

NO Nitric Oxide 

NO2 Nitrous Dioxide 

Si3N4 Silicon Nitride 

SiO2 Silicon Dioxide 

SiOxNy Silicon Oxynitride 

Ta2O5 Tantalum Oxide 

TaN Tantalum Nitride 

A Ampere 

CG Control Gate 

CHE Channel Hot Electron 

CMOS Complementary Metal Oxide Semiconductor 

CP Charge Pumping 

CR Coupling Ratio 

CT Charge Trapping 

C-V Capacitance Voltage 

DC Direct Current 

DPN Decouple Plasma Nitridation 

DRAM Dynamic Random Access Memory 

DT Direct Tunneling 

EEPROM Electrically Erasable Programmable Read Only Memory 

EOT Effective Oxide Thickness 

EPROM Electrically Programmable Read Only Memory 

ETB Engineered Tunnel Barrier 

F Minimum Feature Size of Specific Technology Node 

FeRAM Ferroelectric Random Access Memory 

FG Floating Gate 

FM Flash Memory 

F-N Fowler Nordheim 

FOM Figure of Merit 

HBD Hard Breakdown 

HF C-V High Frequency C-V 

IC Integrated Circuit 

IPD Inter Poly Dielectric 

ITRS International Technology Roadmap for Semiconductor 

I-V Current-Voltage 

LOCOS Local Oxidation 
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MATLAB Matrix Laboratory 

MLC Multi-Level Cell 

MOS Metal Oxide Semiconductor 

MV Mega Volts 

MOSFET Metal Oxide Semiconductor Field Effect Transistor 

MRAM Magneto-resistive Random Access Memory 

MTP Multi Time Programmable 

NC Nano Crystal 

NMOS N-channel Metal Oxide Semiconductor 

NVM Non-Volatile Memory 

ONO Oxide Nitride Oxide 

OTP One Time Programmable 

PBD Post-Breakdown 

PCM Phase Change Memory 

P/E Program / Erase 

PN Plasma Nitridation 

RAM Random Access Memory 

RTA Rapid Thermal Annealing 

RTN Rapid Thermal Nitridation 

SBD Soft Breakdown 

SEM Scanning Electron Microscope 

SHE Substrate Hot Electron 

SHH Substrate Hot Hole 

SMU Source Measure Unit 

SRAM Static Random Access Memory 

SILC Stress Induced Leakage Current 

SLC Single Level Cell 

SMU Source Measure Unit 

SONOS Silicon Oxide Nitride Oxide Silicon 

TAT Trap Assisted Tunneling 

TDDB Time Dependent Dielectric Breakdown 

TEM Transmission Electron Microscope 

TO Tunnel Oxide 

VARIOT Variational Oxide Thickness 

V Volt 

VM Volatile Memory 

WKB Wentzel–Kramers–Brillouin 

W/E Write / Erase 
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Fabrikasi dan Pencirian Dielektrik Terowong Berlapisan Tunggal dan Berbilang 

Bagi Peranti Ingatan Kilat Berget Terapung Yang Termaju. 

 

 

ABSTRAK 
 

 

 

Peranti get terapung adalah merupakan komponen utama kepada teknologi ingatan 

tidak-meruap sejak bermulanya era peranti ingatan kilat. Walaubagaimanapun, apabila 

peranti dikecilkan sehingga ke dimensi nanometer, get terapung kilat menghadapi satu 

laluan yang sukar. Pengecilan oksida penerowong mempunyai limit praktikal sekitar 8 

nm disebabkan keperluan pengekalan data. Justeru, tujuan kajian ini ialah untuk 

mencirikan dan menilai prestasi oksida penerowong berlapisan tunggal dan berbilang, 

yang mana fokus utamanya adalah untuk mengecilkannya kurang dari 8 nm. Kajian ini 

dilakukan di dalam dua langkah. Pertamanya, ciri-ciri I-V peranti di selakukan 

menggunakan perisian MATLAB, berdasarkan model fizikal padat yang terkini. 

Kelajuan pengaturcaraan dan penahanan data kemudiannya di kira berdasarkan lenkung 

I-V yang diselakukan. Keduanya, pemuat MOS kemudiannya di fabrikasikan dan 

dicirikan untuk pengesahan keputusan penyelakuan. Prestasi oksida penerowong 

berlapisan tunggal telah ditunjukkan dengan jayanya.  Prestasinya telah di nilaikan 

berasaskan dua aspek, iaitu kelajuan pengaturcaraan τprog dan penahanan data τret. τprog 

untuk lapisan oksida dan oksinitrid berlapisan tunggal berketebalan 4 nm ialah masing-

masingnya 110 μs dan 130 μs, tidak terlalu jauh dari kehendak teknologi iaitu 

selama100 μs. Walaubagaimanapun, prestasi τret mereka adalah jauh lebih rendah dari 

yang diperlukan iaitu 10-tahun, yang mana kedua-duanya hanya mampu mencapai 3.1 

dan 4.6 tahun masing-masing. Berdasarkan hal tersebut, boleh disimpulkan bahawa 

kedua-dua lapisan tunggal oksida dan oksinitrid berketebalan 4 nm telah gagal untuk 

memenuhi keperluan teknologi nod 18 nm. Walaubagaimanapun, telah dibuktikan 

bahawa oksida nitrid mampu untuk menambahkan prestasi τret bagi lapisan tunggal 

SiO2. Urutan dari itu, telah juga ditunjukkan bahawa ketebalan oksida berlapisan 

tunggal dan oksinitrid berketebalan masing-masingnya 8.25 dan 6.4 nm, adalah 

diperlukan untuk mencapai keperluan penahanan data selama 10 tahun. Juga telah 

berjaya ditunjukkan bahawa oksida nitrid berupaya untuk mengurangkan penghasilan 

perangkap secara berkesan, yang mana ini akan mengurangkan kebocoran peranti pada 

medan rendah, terutama di dalam bentuk SILC. Bagi kes dielektrik berbilang lapisan, 

telah ditunjukkan bahawa konfigurasi terbaik ialah yang mempunyai lapisan dasar SiO2 

paling tipis / Si3N4 paling tebal. Penyelakuan peranti menunjukkan bahawa untuk 

dielektrik berlapisan 2 dan 3, τprog adalah dalam julat 18 hingga 41 μs untuk lapisan 

berketebalan berkesan oksida (EOT) 4 dan 8 nm, manakala secara eksperimen nilainya 

adalah dalam julat 2 hingga 104 μs.  Mengambilkira keperluan τret walaubagaimanapun, 

hanya konfigurasi yang berketebalan berkesan oksida (EOT) 6 nm untuk kedua-dua 

dielektrik berlapisan 2 dan 3, serta 8 nm untuk dilektrik berlapisan-3yang telah berjaya 

memenuhi kehendak teknologi nod 18 nm. 
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Fabrication and Characterization of Single and Multi-Layer Tunnel Dielectrics for 

Advanced Floating Gate Flash Memory 

 

 

ABSTRACT 

 

 
 

The floating gate device has been the workhorse for the non-volatile memory 

technology since the beginning of flash memory era. However, as the device is scaled 

down towards the realms of nanometer dimension, floating gate flash faces a very steep 

scaling path. The tunnel oxide scaling has a practical limit of approximately 8 nm due to 

data retention requirement. Therefore, the purpose of this work is to characterize and to 

assess the performances of single and multi-layer tunnel oxide, which primary focus is 

to further scale it beyond 8 nm. This study was carried out in two steps. Firstly, device 

I-V characteristics were simulated using the MATLAB software, based on the most 

recent compact physical model. Programming speed and data retention were calculated 

based on the simulated I-V curves. Secondly, MOS capacitors were then fabricated and 

characterized to validate the simulation result. The performance of single layer tunnel 

oxide has been successfully demonstrated. Its performance has been mainly evaluated 

from two perspectives, namely the programming time τprog, and data retention τret. The 

τprog for 4 nm single layer oxide and oxynitride were calculated to be 110 μs and 130 μs 

respectively, not too far off from 100 μs technological requirement. However, their τret 

performance was well below 10-year requirement, with both dielectrics just been able to 

achieve 3.1 and 4.6 year respectively. In that sense, one can conclude that both 4 nm 

single layer oxide and oxynitride have failed to comply with the requirement of 18 nm 

technology node. However, it has been proved that nitrided oxide could improve the τret 

of single layer SiO2. Furthermore, it has also been demonstrated that the thickness of a 

single layer oxide and oxynitride of 8.25 and 6.4 nm respectively, would be required to 

achieve the 10-year data retention requirement.  It has also been shown that nitrided 

oxide could serve as an effective way of suppressing trap generation which in turn 

would suppress low field device leakages, especially in the form of SILC. In the case of 

multi-layer dielectrics, it has been shown that the best configuration is the one with the 

thinnest bottom SiO2 / thickest Si3N4. Device simulation shows that for 2 and 3-layer 

dielectrics, the τprog was in the range of 18 to 41 μs for the EOT of 4 to 8 nm, while 

experimentally it’s in the range of 2 to 104 μs. Taking τret requirement into 

consideration however reveals that only configurations with the EOT of 6 nm for both 2 

and 3-layer dielectrics and 8 nm of 3-layer dielectric have successfully met the 

requirement for 18 nm technology nodes.  
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CHAPTER 1 

  

INTRODUCTION 

 

1.1 The Flash Memory In Brief 

 

Semiconductor memory is an electronic data storage device that widely 

regarded as an essential element of today’s electronics industry. The device is 

normally used as computer memory and other integrated circuits (ICs) based 

product, with its construction is built around semiconductor processing technology. 

In general, semiconductor memory exists in two different forms in ICs. The 

non-permanent type, normally called volatile memory (VM), which only retains its 

information as long as the power supply is connected. Examples of VM are the 

majority of RAMs (Random-Access Memory) such as SRAM (Static Random-

Access Memory) and DRAM (Dynamic Random-Access Memory) (Bez, 

Camerlenghi, Modelli, & Visconti, 2003).  

Another form of memory, which is the focus of this study, is called Non 

Volatile Memory (NVM). In this type of memory, the stored information is 

retained even after the power supply is removed. Examples of NVM are One Time 

Programmable (OTP) Memory, Electrically Erasable Programmable Read-Only 

Memory (EEPROM) and Flash Memory (FM).   

NVM itself can be a One Time Programmable (OTP) or a Multi Time 

Programmable (MTP). In OTP memory, the information is programmed into the 

memory cell during the fabrication process (Bartolomeo et al., 2009). The main 
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disadvantage with the OTP is it cannot be reprogrammed, which is a distracting 

factor for many forms of applications. MTP memory devices on the other hand, 

offer advantages in the way that its information can be stored and erased several 

times. The like of Electrically Programmable Read-Only Memory (EPROM), 

EEPROM and FM are all belong to this category (Brown,D. & Brewer,E. 1998e).   

The history of FM started in 1967, when Kahng and Sze presented a novel 

concept of floating gate transistor, where electrons could be stored onto it (Kahng 

and Sze, 1967). Since then, the EPROM cell has been developed. This technology 

grew rapidly to become the most significant NVM technology in the 1980s. About 

the same period, the Flash EEPROM was introduced which add the electrically 

erasable feature to the existing EPROM (Mukherjee & Chang, 1985). 

Consequently, the first FM product was presented in 1988 (Kynett & Baker, 1988).   

However, FM market did not take-off smoothly until the technology was 

proved to be reliable and manufacturable. Only by the late of 1990s, the demand 

for FM grew rapidly as the consumer products which require NVM for code and 

data storage, such as mobile application start to be of in high demand. Starting 

from year 2000, the FM can be considered as a really mature technology (Falan 

Yinug, 2007). 

Since year 2000 onwards have witnessed the rapid growth of the FM due to 

mostly to ever increasing popularity of mobile and portable devices such as digital 

cameras, smartphones and computer tablets. This popularity of FM is due to its 

unique ability to erase the cells in blocks of data at a very fast rate (Falan Yinug, 

2007).  

Nowadays, the ubiquitous presence of the FM, especially of NAND cell 

architecture in almost all aspect of modern life especially, has led the flash memory 
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to be considered as one of the integrated circuits technology driver towards 10 nm 

technology node with blistering speed, surpassing both logic and DRAM (Lu, 

2012).  

In semiconductor industry, cost and speed trade-off is always a serious 

deciding factor when designing a new product. As silicon real estate is becoming 

more expensive, the chip size emerges as the main cost contributing factor. For this 

reason, memory chip designers have developed several types of FM variant, 

namely the NOR, DINOR and NAND architectures to target for specific 

application. However, NAND and NOR architectures have emerged as the 

dominant FM variant, employed in contemporary electronic industry as the 

workhorse for wide spectrum of applications (Toshiba America, 2006). 

The NOR architecture was optimized for speed. In NOR cell configuration, 

the individual memory cells are connected in parallel, which in turn requires one 

contact for every two memory cells, thus consuming significant chip area. This 

configuration enables the device to achieve random access, which result in shorter 

read times required for the random access of microprocessor instruction. Therefore, 

NOR is ideal for lower density, high-speed read applications in code storage and 

direct execution in portable electronic devices, such as smart phones and computer 

tablets.  

NAND architecture on the other hand, was designed with a smaller chip 

size (about half of NOR) to enable a lower cost-per-bit of stored data. The reduced 

cell size was achieved by arranging an array of eight memory cells connected in 

series, thus saving an expensive silicon real estate for contact formation. NAND is 

ideal for the low-cost, high-density, high-speed program/erase applications such in 
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the high-density data storage medium for consumer devices. The overall features 

comparison between NOR and NAND architectures is shown in Table 1.1. 

 

Table 1.1: NOR and NAND Features Comparison (Micron Technology, Inc., 2013) 

 

Serial NOR / Parallel NOR 

 

Single Level Cell (SLC) NAND / Multi 

Level Cell (MLC) NAND 

Low density, low pin count High density, low pin count 

Long life cycles 

Less reliable and requires controller 

management 

Reliability, high performance Low performance 

Reliable code and data storage Mostly data-focused 

Fast random access time Fast writes and reads 

 

 

Based on the way the devices store its information, FM device can be 

classified into two main classes. In the first class, the charge is stored on a 

conducting layer that is completely isolated from other structures by a dielectric 

film. This type of device is commonly referred to as a floating gate (FG) Flash. In 

the second class of FM, the charge is stored in discrete trapping centers of 

dielectric layer. These devices are therefore, commonly referred to as the charge-

trapping (CT) device.  

To date, FG Flash are the mainstream of FM and have followed Moore’s 

Law scaling through multiple technology generation, and mostly used in both NOR 

and NAND cells. 
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In a nutshell, the operational of FG Flash is based on the ability to bring 

electrons onto the floating gate and removing them again in order to change the 

threshold voltage of the memory cell. The pace at which these operations can be 

carried out is the most important FG Flash performance indicator and its normally 

termed as the programming speed. Nowadays, the programming operations for FG 

Flash are done by the methods of channel hot-electron (CHE) injection or Fowler-

Norheim (F-N) tunneling.  

The programming speed is proportional to the rate of electrons being 

injected onto the floating gate. The electron injection is carried out via ultra-thin 

dielectric layer, called the tunnel barrier, which transport the electrons under the 

influence of external electric field. Generally, the higher the electric field across the 

tunnel barrier, the higher the rate of electron injection through it.  

If the applied voltage level is maintained and the thickness of tunnel barrier 

is reduced, the electric field will increase. As a result, higher rate of electrons 

would be injected onto the floating gate, achieving faster programming speed. This 

important concept underlies the device scaling philosophy, practiced by the NVM 

device technologists to improve the FG Flash speed performance.  

However, as a result of a continuous and aggressive tunnel barrier scaling, 

especially when its thickness is reduced below 8 nm, several unwanted 

phenomenon such as Stress Induced Leakage Current (SILC) emerges (Wellekens 

& Houdt, 2008). The SILC would severely affect the FG Flash data retention 

capability, thus compromising the gain in the programming speed. A detail 

discussion on the tunnel barrier scaling is done in the next section.  

Several approaches have been proposed as alternatives for the shortcoming 

encounters with further scaling of the tunnel barrier. Among the most widely 
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