Hence, the numerical techniques help us to quickly understand the real flow
environment and effectively communicate the conclusion. The CFD makes it possible
to evaluate the field variables of the velocity, the pressure gradient between the
proximal and distal of the vein graft model and the impact of the Wall Shear Stress
(WSS) on the vein graft wall throughout a solution domain (Rory F. Rickard et al.,
2009).

The 3D CFD analysis in this research is applied to calculate the\velocity of the
blood flow, the gradient of the blood flow pressure between the proximal and distal in
the RSVG model, and the WSS impact on the RSVG wall that'consist of the searching
of the blood flow patterns in an applied irregular.RSVVG model; the oversize in the
length and mismatching in the internal diametér-between the RSVG model and the

recipient artery and applying the boundary-conditions of the blood flow models.

1.2 Problem Statement and Research Scope

Even though. the procedure was successfully performed by surgeons, its
durability and(longevity is still unpredictable. There are many upper limb vein graft
failure ‘cases that have been reported (George D. Chloros et al., 2008). Based on
previous reports, most defected finger was cool and pale (Dumanian GA et al., 1998,
Jocelyn A. et al, 2007,P., Berg et al., 2007, and Zol B.,Kryger et al., 2007).

Based on previous studies, the irregular vein geometry formation such as the
kinking of the vein (H., Piza-Katzer, 1979; Qin, Liu et al., 2008) as well as a mismatch
size of the internal diameter of the end-to end vein graft (H., Piza-Katzer, 1979;
Chuang, DCet al., 1982; Rory F. et al., 2009) causes the vein graft failure. In fact, the

length and internal diameters of the vein are strongly related to the vein graft lifespan



(Christopher L. et al., 2001; Sang-Wook, Lee et al., 2003). Hemodynamics studies
including the blood flow patterns, the velocity, the gradient of the blood pressure and
the WSS were believed to initiate the development and the growth of arterial stenosis
but the previous studies lack of the realistic physiological considerations such as the
irregular RSVG formations, blood flow pulsatility, especially in the microvascular vein
grafting.

For the present study, the 3D CFD method was used to find out.the velocity of
the blood flow, the pressure gradient between the proximal and distal of the vein graft
models and the impact of the shear stress on the vein graft’s'model that flow through
the model of kink and the mismatch size of the RSVG segment in order to study the
survival and to ensure the prolonging of the vein graft lifespan as well (Christopher L.
Skelly, 2001;Sang-Wook Lee, 2003).

We propose the oversize of the-RSVG kinked length models with the variables
amplitude of two cycled sinusoidal wavy RSVG since the over length kink RSVG
failures occurred in variable length. We also propose the mismatch of the RSVG
models to the recipient arteries are 1:1.1, 1:1.2 and 1:1.3. The ideal size of the vein
graft model.diameter ratio to the artery diameter is 1:1 and straight also have been
proposed. as an ideal straight vein graft in comparison with the mismatch size and the
kink vein graft models since any fluid flows in the straight tube should be provided
very accurate fluidic properties such as velocity etc. (Donald F. et al., 2003; 1.G.Currie,
2003; Lee Waite, 2005).

The simulation work in understanding of the blood flow behavior in the
microvessel vein graft is vital prior to any experimentation work as it will save life and
the operation time on laboratory animals such as mice. This research assume that the

govern blood is the Newtonian, incompressible fluid, homogenous and does not slip at



the vessel wall. The govern blood is assumed as Newtonian blood because the whole
blood behaves as Newtonian fluid with a constant viscosity at 37°C, which is the
human body temperature, is constant because it is biologically maintained by other
human system. The whole blood is incompressible to ensure the Navier-Stokes
equations can be applied in this research. The govern blood does not slip at the vessel
wall because the whole blood is firmly attached to vessel wall. The whole blood is
homogenous (single phase) in the whole human vessels. The vessel wall. is assumed as
cylindrical and rigid body and the blood flow in laminar flow because the vessel wall at
digital artery is not tapered and low distend effect and the Reynolds numbers ranged
from 9.375 to 36.

In order to obtain the blood flow characteristics, simulations have been carried
out by using a variety of the Reynolds numbers ranged from 9.375 and 36.The various
of Reynolds number based on cases are-shown in Table 1.1. Despite this, the numerical
models of the laminar at steadystate (t=0s) and transient state (t #£0s) are also utilized
in this work to simulate.the microvessel blood flow problems. The FVM approach is
used to carry out the'simulation commercial software ANSY'S Fluent Version 12.1.

Motiyated by this concoction of problem statement and scope, the research on
microvessel blood flow behavior in the irregular geometry formation model of the vein

grafts has been executed and played a pivotal role in this research.

Table 1.1 : Various numbers of Reynolds number based on cases.

Case Diameter, cm Re at Viin Re at Vinean Re at Vimax
Ideal Straight 0.10 9.375 18.75 28.13
1 0.11 10.31 20.62 30.94
2 0.12 11.25 22.50 33.75
3 0.13 12.19 24.38 36.00
A 0.10 9.375 18.75 28.13
B 0.10 9.375 18.75 28.13
C 0.10 9.375 18.75 28.13
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1.3 Objective

The main objective of this research is to investigate the relationships between
the effect of blood flow on the irregular geometry and thrombosis formation in
microvessels that relate to their long term survival. In order to achieve the purpose of
this study, the main objective and the pre-objectives of the project are 'summarized as
below:

1. To validate the numerical models of the laminar@models. This is because the
reliability of the CFD models is of paramount’importance in simulation and
also to check any discrepancies between these models.

2. To simulate the steady state-and the pulsatile blood flow in irregular
geometry formation model of the vein grafts.

3. To identify any critical range of geometry dimensions.

4. To study the relationship between the irregular geometry formation model
of the vein grafts and prolonging survival.

Some pre-objectives

1. Coneerning grid independence and number of nodes study.

The grid independence study needs to be carried out for every irregular
geometry model used in this research. This is because the created number of nodes
in the irregular geometry model of the vein graft through meshing process varies
according to the dimension of the irregular geometry model. To get an accurate
result, a large number of nodes need to be archived in meshing. The simulation
work was carried out continuously by setting the convergence history until the

residual target of mass and momentum reach less than 1 x 10°®.



2. Accomplishment of the blood flow simulation algorithm, boundary condition, the
User Define Function (UDF) as well as the irregular geometry models.

The blood flow simulation algorithm, boundary condition, the UDF as well
as the irregular geometry models have to be validated by peer reviewed simulation
work. This is because the reliability of the simulation results can be questioned
even though the grid independence is achieved. An incompressible Navier-Stokes
Equation, Newtonian fluid, measuring velocity profile, the WSS.impact on wall,
pressure gradient, steady and pulsatile flow of the blood within irregular formation
geometry of the vein graft model were chosen based ;jon the simulation work
previously done by other researchers.

The research objective can only be achieved after the completion of all research

pre-objectives.

1.4 Dissertation Organization

This dissertation is presented in six chapters.

Chapter1 deals with the introduction of the research and overview of this thesis.
The fundamental of the upper extremity vein grafting surgery have been addressed in
order to provide better solutions for the RSVG problem. This chapter also presents the
CFD analysis, problem statement, research scope, objectives and finally the dissertation
organization.

Chapter 2 presents a brief analysis of the overall literature review from previous
CFD analysis that had been done by researchers. This chapter discusses about the
application and the ability of the CFD Analysis in hemodynamic system. It also covers

current vessel failures and the CFD Analysis method had been proposed and conducted



by previous authors. Later, a discussion on the summary of literature review and the
research proposal is presented.

Chapter 3 discusses the theoretical blood flow in microvessels and the
computational simulation study. In this chapter, the basic concepts of fluid mechanics
are viewed as it is fundamental to describe the fluid dynamics. The simulation details,
such as meshing, boundary conditions and the flow equations that have been applied in
this study are also mentioned.

Chapter 4 explains the research methodology.This chapter presents the
validation of the blood flow simulation algorithms, the grid independence of irregular
formation of the vein graft model, the boundary conditiens in irregular formation of the
vein graft model as well as the numerical models!

Chapter 5 presents the results and-discussion for the blood flow in steady state
simulations on ideal vein graft model~and the irregular formation of the vein graft
models followed by the pulsatile’bfood flow results.

Finally, the conclusion and future work recommendations are presented in

Chapter 6.



CHAPTER 2

LITERATURE REVIEW

2.1 Literature Review

This chapter provides the CFD Analysis method that-has been applied by
previous researchers. Their research methodologies are also discussed. Finally, the
inferences in the vessel failure were mentioned at the €nd of this chapter.

The CFD method is applied to determine.the hemodynamic factors such as the
deformation erythrocytes (Secomb T.W:.et.al,2007; A. Jafari et al., 2009; Doddi, S.K.
& Bagchi, P., 2009), the blood viscosity (Cole JS et al., 2003; Filipovic N. et al., 2009),
the shear stress impact on the.vessel wall (Klyscz T. et al., 1997; Cole JS et al., 2003),
and the blood flow veloeity(Jung F. &Zeintl H., 1997; Mette S. Olufsen et al., 2000;
Filipovic N. et al., '2009;Tzu-Ching Shih, et al., 2011) in the complex 3D blood
microvessels; Their previous researches exposed that the CFD technique not only can
show, the.information of the blood flow motion but also the changing in shape of the
Red Blood Cells flowing in the microvessels. As a conclusion, they found out that the
numerical method become a powerful method to study the patterns of the blood flow
especially in the geometrically complex vessel.

A. Jafari et al. ( 2009 ) applied a commercially available Fluent ANSYS Inc.
CFD package Fluent 6.2 which is based on the finite volume method in order to

simulate the behavior of the blood flow in microvessels. The 3D CFD modeling and



simulation are also presented on the motion of a large number of deformable cells in
the microchannels (Doddi, S.K. & Bagchi, P., 2009).

The CFD method of the pulsatile flow, non-Newtonian of the blood flow
through a femoral artery bypass model, have been conducted by Cole JS et al. (2003) in
order to understand the bypass blood flows, and to identify factors of the blood flow
which contribute to the progression of disease such as thrombosis. From their research,
more effective bypass design could be developed and prolonged the lifespan of the
femoral artery bypass.

Tzu-Ching Shih, et al. (2011) also applied the CFD method in his research to
calculate the velocity of the Red Blood Cells (RBCs) insix cases microvessels of finger
nail-fold. They reconstructed 3D images from<2D~images of the microvessel. They
assumed that the capillaries in a circular.crgss sections and the vessels walls as non-slip
boundary conditions. An origin velocity of the Red Blood Cells flowing into each
microvessel was calculated by(the Optical Flow Estimation (OFE). The velocities of
multiple points along each. microvessel simulated by the CFD, Average results of the
CFD, were compared” with the Optical Flow Estimation (OFE) calculations, the
Velocity of Optical Flow Estimation. The study indicates that the CFD method can be
considered’as one of acceptable methods by providing reasonable accuracy in the result
of.the RBCs velocity in the finger nail-fold microvessels.

The relationships between the irregular geometry formation and the thrombosis
were also previously studied by Qin Liu et al. (2008), Rory F. Rickard et al. (2009) and
W. W. Jeong and K. Rhee (2009). Qin Liu et al. (2008) stated that the local shear
stresses or shear rates, especially in the bent or stretched microvessels could induce the
formation of the thrombus. For that reason, the bent or stretched microvessels was

tested experimentally and simulated computationally. They found out that the thrombi
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were originated at the inner wall of the curvature angle in these bent or stretched
microvessel models. The 3D CFD using commercial software, Fluent ANSYS Inc., was
used to determine the mechanical mechanism that induced the thrombus. The
microvessels were modeled with variable shaped cross-sections (elliptic and circular) as
well as different curvature (0°, 90° and 180°) in order to simulate the stretching and
bending microvessels. From their CFD simulation result, the inner wall of the curved
circular shaped microvessel models showed the highest values in the Wall Shear Rate
and the Wall Shear Rate gradient at the inner wall of the curved circular-shaped
microvessel models. They are found at the inner side when the-vessels are bent and two
apexes of the wall with shorter axis for the 0° (straight) elliptic shaped vessel. From
their observation, the bent and elliptic-shaped microvessels have strongly related to the
different value in the shear stresses or shear-rates. They also found out that the value of
shear stress or shear rates gradient between the outer and the inner wall of the
microvessels become higher n~“more bent and the angle of the elliptic-shaped
microvessels.

Rory F. Rickard et al. (2009) stated that the vessel size mismatch could cause
anastomotic_failure in the microvascular surgery. In the surgical procedure, an end-to-
end attachment has to be applied if an end-to-side anastomosis is not available. Most of
end-to end techniques are characterized to deal with the size mismatch. Their research
objective was to numerically analyze the WSS and the blood flow patterns in four
idealized end-to-end anastomoses artery models, where the upstream or the recipient
artery is smaller than the downstream. The four techniques model were a wedge cut of
the larger vessel, an oblique region of smaller blood vessel, a fish-mouth cut of small
vessel and an invaginating attachment. The blood flow was remodeled by the FVM

applying the commercially available CFD code Fluent ANSYS Inc. From their
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experimental simulation works, the invagination model showed that the ring vortices
happened. The word ‘vortices’ is a plural noun for the vortex and it happens when the
flow is mostly in a spinning motion. The ring vortices also have been seen in the fish-
mouth model. However, the ring vortices effects were less seen in the invagination
model compare to the fish-mouth model. The counter-rotating, spiral, complex vertices
were found dispersed downstream in the oblique region. The first wedge model showed
least flow separation, with the high flow became centralized but decelerated in the flow
rate. The impacts of the WSS were similar for all models. They concluded that by
shortening the length of the wedge or increasing the downstream vessel radius to
1.5mm led to separation in the blood flow.

W. W. Jeong and K. Rhee (2009) believed that the existing and growth of the
arterial stenosis caused hemodynamic~factors including the blood viscosity
characteristics, the shear stress and the blood flow pattern, but they are still lack in
previous studies of realistic physiological considerations. They suggested that the flow
pulsatility, non-Newtonian, viscosity and the irregular surface geometry may cause
arterial stenosis problem as a research inference. They used the arterial models that
suffered with (48" percent occlusions under clinical blood flow function in order to
explore theeffect of the non-Newtonian viscosity and the irregularity at the surfaces on
the blood flow regions. The CFD based on the FVM was applied for the non-
Newtonian and Newtonian characterized blood model in their research. Based on their
observation after the experimental work, the WSS in those smooth surface simulation
models were lower compared to the model in suffered irregularity at the surface. They
found out that the non-Newtonian viscosity in the blood properties are strongly related
to the increasing of the WSS. They also found out that the dimension less pressure drop

and the time average of the WSS in steady state flow was lower than in the pulsatile
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flow. However, the WSS and the pressure gave less effect in the pulsatility effects
compared to the non-Newtonian viscosity in the blood properties. By the end of their
research, they found out that the non-Newtonian viscosity in the blood properties and
artery model with suffered irregularity in the surface could predict pressure drop and
the WSS in the stenosis arteries.

Minh Tuan Nguyen and Lee (2012) did the CFD simulations on the laminar
flow in nine sinusoidal wavy shaped tubes conducted for mean Reynolds number of
250, which is in the range of clinical flow-rate and investigated flow structures,
pressure distribution and particle trajectories both in steady-state and periodic flow
conditions. For comparison purposes, six wave lengthsand amplitudes of sine function
for geometry of the tube models were tested. The'results showed that small amplitude
secondary curvature has significant influence,on the nature of the flow patterns and the
particle mixing mechanism. This reveals that the characterizing accurate geometry is
essential in accurate predicting’of in vivo hemodynamics and may motivate further
studies on any possibility with regards to the reflection of the secondary flow on the

vascular remodeling‘and the pathophysiology.

2.2 Summary

From literature reviews, the previous studies revealed that the CFD method
could be applied in the human vessel and give the information of the blood flow
behavior. For that reason, the 3D Fluent software is applied in this research. The vessel
mismatch (the recipient artery is smaller than the vein graft) can cause anastomotic
failure in the microvascular. As in our inference, the vessel size mismatched (the

recipient artery is larger than the vein graft) also could cause anastomotic failures.
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Thrombi were originated at the inner wall of the curvature angle in these bent in the
microvessel models. We predict that the re-formation of thrombi also will occur in
various amplitude of sinusoidal wavy vein graft. The end-to-end mismatched internal
diameter and the kinked over length of the Reverse Saphenous Vein Grafts (RSVGSs)
have been proposed as the irregular geometries formation for this research. For the
blood flow model, the laminar steady state and the laminar pulsatile state have been set

as the blood flow model.
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CHAPTER 3
THEORETICAL BLOOD FLOW IN THE MICROVESSELS AND

THE COMPUTATIONAL SIMULATION STUDY

3.1 Review of Basic Fluid Mechanics Concept

Density is the mass per unit volume of a substance.and is given by the Greek
character p (rho). The Sl units for p are kg/m*and the‘approximate density for blood is

1050 kg/m®. In other word, blood is slightly depser than water.

p=22 (3.1)

The specific weight is ‘an inversely to density (»=1/p), presented by Greek

symbol » (gamma), is defined as its weight over volume. Thus, » can be related to

density through the.equation
v = pg [N/m’] (32)

Where g is the gravitational force and is always used to present the weight of the

system.
3.1.1 Viscosity

The common fluids, such as water, oil, petrol and air, the shear stress and shear
stress rate are indicated by this equation which can be related to the relationship of the

form
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T = (3.3)

where the constant of proportionality is presented by the Greek symbol — (mu) and also
called the dynamic viscosity, the absolute viscosity, or simply the viscosity of the fluid.
According to Equation 3.3, the graph plots of the shear stress, t versus shear stress rate,

du /dy should be linear with the slope equal to the viscosity as shown inFigure 3.1.

The particle of the fluid relates the actual value of the viscosity and also highly relates
on temperature as shown in Figure 3.1 with the two curves for water. The Newtonian
fluids can be defined when the shear stress of fluids is linearly related to the stress
strain rate (also referred to the angular deformation rate). The formulation of Equation
3.3 is a general formulation and applicable /in“more complex flow type of the

Newtonian fluids.

Meanwhile, the non-Newtonian fluids can be defined when the shear stress of
fluids are not linearly related:to“the shear strain rate. For this research, we assume that

blood is homogenous and*‘Newtonian fluid.

Crude Oil (60°F)

Shearing stress, T
Water (60°F)

Water (100°F)

Air (60°F)

Rate of shearing strain, :—:

Figure 3.1 Linear variation of shear stress with shear strain rate for common fluids.
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3.1.2 Pressure Variation in a Fluid at Rest and Incompressible Fluid

3.1.2.1 Pressure Variation in a Fluid at Rest

a®__ (34)

An Equation 3.4 is the fundamental equation for fluids at-fest (no external force)
and can be used to determine how pressure with the, elevation level, where dp is
differential in pressure and dz is differential in the ‘elevation level. This equation
indicates that the pressure gradient in the vertical direction is negative value which

means that the pressure decreases if we move upward in a fluid at rest.

3.1.2.2 Incompressible Fluid

The “specific weight is equal to the product of fluid density and

the-acceleration of gravity (y= pg), changes in y are caused by a change in either p or g.

For most engineering applications the variation in g is negligible, so our concern to the
product of fluid density and the acceleration of gravity. Commonly, a fluid with
constant density (p= constant) is called an incompressible fluid. For this research, we
also assume that blood is incompressible fluid and we also ignore about the
acceleration gravity in our calculation. We usually neglect the liquids with the variation

in density value and applicable even it is over large vertical distances, so that the
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assumption of constant specific weight (¥= constant) when dealing with any liquid is a

good one.

3.1.3 Differential Analysis of Fluid Flow - Microscopic Balances of Mass and

Momentum

The main goal of biofluid mechanics in this research is to identify the
relationship between variables so that the value of one ormore of these variables can be
determined in terms of given boundary conditions.cAs a first step, the basic balances of
properties or “Conservation Laws” that involve multiple variables of interest will be
introduced. The view of biofluid mechanics study is divided into two parts which are
Macroscopic and Microscopic view. Since our study focuses on Microscopic Balances
of Mass and Momentum imnythe microvessel blood flow, these laws relative to an
infinitesimal or Microscopic volume will be evaluated. By doing the Microscopic
approach, complex and detailed parameters can be determined such as local velocity,

pressure and'so on.

3.1.4 Conservation of Mass— Derivation of the Continuity Equation

A system is defined as a collection of unchanging contents, so the conservation

of mass principle for a system is simply stated as

Time rate of change the system mass =0
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or

PMeye = g (3.5)

WhereM_, . is the systemmass.

Control Volume Control Volume Control Volume
-~
\
Vi
/

System

System System

©) (b) ©)

Figure 3.2 System and control volume ‘in‘the tube at three different instances of time.
(@) System at time t — &t. (b) System and control volume at t, coincident condition. (c)

System and<ontrol volume at t + &t.

Figure 3.2 shows"a system and a fixed, non-deforming control volume that is
coincident at an{instant of time. Thus, we can express Equation 3.6 which is also a

derivation result from the Reynolds transport theorem that allows us to state,

DMz, .\ aM,
_D?_S = % T P A Vo + oA (3.6)

or can be expressed as

Time rate of charge Time rate of change Net rate of flow of
of the mass of the _ of the mass of the _ mass through the
coincident system - contents of the B control surface

coincident control
volume
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Because the amount of mass in volume dVis pdV, it follows that the amount of mass in

the control volume, M_,, can be written as in Equation 3.7
Mg, = [ pdV (3.7)

If the control volume has multiple inlets and outlet, Equation 3.6 can be
arranged by replacing with Equation 3.7 for flow through each of the inlets and outlets

to give Equation 3.8

DMgys _ 8

Dt a.rcbpdv +Epour‘qourvour _pin‘qinvin (38)

When a flow is at steady state flow (t=0s),-all*field properties at any specified

point), including density,2, remain constant withytime and the time rate of change of the

mass of the contents of the control volume-is zero (Equation 3.9 and 3.10).

a:"’f'_-l:

Yo =0 (3.9)

%fcrpdV =0 (3.10)

The control volume expression for conservation of mass, commonly called the
continuity equation, is obtained by combining Equation 3.5 and Equation 3.8 to obtain

Equation 3.11.
%fcv pdV +X Pout AourVour — PinAinVin = 0 (3.11)

From Equation 3.11 the mass can be conserved if the time rate of change of the mass of

the contents of the control volume plus the net rate of mass flow through the control
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surface of the control volume plus the net rate of mass flow through the control surface

equal to zero.

For the mass flowrate, i symbol is often expressed, through a section of the

control volume having area A as in Equation 3.12.
m= pAV =p (3.12)

where p is the density of fluid, V is the normal velocity component-of fluid to the area
A, and Q=VA is the volume flowrate (m? /s). Note the symbols‘used to denote mass, m

(kg), and mass flowrate, m(kg/s).

The case of the fluid flow across the{ non-uniform section area A always
happens. For that case, the appreciate .fluid, velocity to use in Equation 3.22 is the
average value of the component of-velocity normal to the section is involved. This
average value, V, is defined in Equation 3.13 and shown in the Figure 3.6.

[y oV da
oA

=l
I

(3.13)

\
\
N
~
v
A
Jv Y y ¥ Yy V.V

Figure 3.3 Uniform (Mean) and Non-uniform blood flow velocity profile through the
straight tube
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3.1.4.1 Differential Form of Conservation of Mass/Continuity Equation

The small and stationary cubical element will be taken as our control volume as

illustrated in Figure 3.4.

oy
u

J=——— - - = — -

’ gz
dx

Figure 3.4 The differential element for the development of conservation of mass
equation.

At the center of the element the fluid density is p and the velocity has component u, v
and w. Since the element is small the volume integral in Equation 3.10 can be

expressed as

a
ot Yev

pdV ® %:ﬁ'xﬁ}rﬁz (3.14)
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The rate of mass flow through the surfaces of the element can be obtained by
considering the flow in each of the coordinate direction separately. For example, in

Figure 3.5 flow in the x direction is depicted.

d(pu) & |
_ Eapu]?x aydz i
* | pu oy
— ! B —
e [ ___ d(pu) &x
) —
y e {pu-l— dx 2 8yoz
al 2
ax
X

Figure 3.5The differential element for the development of conservation of mass
equation.

If we let pu represents the x component of the mass rate of flow per unit area at the

center of the element, then on the right face

pu|x+l:5:r.-"'2:' = pPu + 8(pu) 5_1 (315)

-

dx 2

and on the left face

8(pu) &
Pl o (52/2) = PU— 2= (3.16)

dx 2
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Note that we are really using Taylor series expansion of pu and neglecting higher order
terms such as (8x)*, (§x)* and so on. When the right-hand sides of Equation 3.15 and
Equation 3.16 are multiplied by the area §ydz, the rate in which the mass is crossing

the right and left sides of the element is obtained, as illustrated in Figure 3.5. When
these two expressions are combined, the net rate of mass flowing from the element

through the two surfaces can be expressed as

Net rate of _ d(pu) Sx v d(pu) :ﬁ'xa e — d(pu)
massoutflow  |P“ T Tax 2 |9V T |PH T Taxy 2097 T Tax
in x direction
d
= (ow) bubydz
dx

(3.17)

For simplicity, only the flow in the x direction has been considered in Figure 3.8, but,
in general, there will also be flows inthe y and z directions. An analysis similar to the

one used for the flow in the x direction shows that

Net rate of mass outflow in'y direction= a;} Sx8ySz (3.18)
and

Net rate of mass outflow in z direction = 22 §xGydz (3.19)
Thus,

Net rate of mass outflow= [3 ';T} + 33’1’*} + ac;;-}] Sx8y8z (3.20)

From Equation 3.18, 3.19, and 3.20, these do not follow that differential equation for

the conservation of mass is
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8p , 8lpu) | Blpv) | Alpw) _
Bt ax T By t=, =0 (3.21)

As mentioned previously, this equation is also commonly referred as the continuity

equation.

The continuity equation is one of the fundamental equations of fluid mechanics
and, as expressed in Equation 3.21, is valid for a steady or unsteady flow, and
compressible or incompressible fluids. In vector notation, Equation- 3.21 can be

simplified as in Equation 3.22.
dp . _
S, TV pV=0 (3.22)

Two special cases are of particular interest. For steady flow (t=0s) of compressible

(p # constant) fluids (Equation 3.23 0r3:24)

VooV =0 (3.23)
or
Blpu) | 8lpw) | Bfpw) _

Bx + oy P 8z 0 (324)

This, follows since the definition g is not a function of time for steady flow, but colud
be a function of position. For incompressible fluids the fluid density, o, is a constant
( = constant) throughout the flow so that Equation 3.22 becomes (Equation 3.25 or

3.26)

F-V=0 (3.25)

or
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Bu dv dw
dx dy dz

=0 (3.26)

Equation 3.25 and 3.26 apply to both steady and unsteady flow of incompressible fluids.

3.1.5 Conservation of Momentum

In deriving the differential form of this law, the dynamics associated with a

fluid control volume (Av = AxAyAz) are considered once again as shown in Figure 3.6.

pyly+i‘.y

Pwlz+ﬂ.z

Pu|x > > pu|x+ﬂ.x

R S .
.~ Oz
/ ax
Wz

Figure 3.6 Mass flux across the surfaces of control volume
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Newton’s Second Law of Motion is now applied, as written in Equation 3.27, in terms

of the time rate of change of momentum (Equation 3.28):

»F =ma (3.27)
Sum of the Net rate of efflux of Time rate of change
external forces = linear momentum = of linear momentum
acting on the across the Control within the Control
Control Volume Volume Volume
(3.28)

In general, the linear momentum per unit volume fluid-can be expressed as pV

so that by multiplying this term by the rate of volume change, we can obtain the time

rate of change of the linear momentum. To determine the flux of a property across the

Control Volume surface, the appropriateexpression for the rate of volume change is

(V - #) dA, where 7 is the outward_directed normal to a particular surface. For a change

of the property within the Cantrol Volume, the rate of the volume change is simply

given byg. As in the'derivation of the Continuity Equation, the Control Volume

considered is constant and we can express the above equality in Equation 3.29.

.

oV (V-7)dd

%F 8 o v
lim —— = lim,., — tlim, g —
Al AxAyAz Ap—=0 .rf AxAyAz + Ap—=0 ar .rf

AxAyAE

[f'we take the limit of Av = AxAyAz as it approaches zero.

Each of these terms can be evaluated separately as follows:

1. Sum of the external forces (Equation 3.30)

LF

limy, ., ——— = dF
Av=0 penyaz

2. Net rate of momentum efflux across the control volume (Equation 3.31)
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Lim o [ 220 = 2 () + 2 (oV5) + 2 (V) = P [2 (o) + 2 (ov) +
—[pw]]-l—p[u—-l—v——I-w A]
(3.31)

At this point, we can also use the Continuity Equation to substitute terms (Equation

3.32)

—[p ]+ S (v ]+—(PWJ = —5 (3.32)

and reduce this limit to (Equation 3.33)

limy, . jf%ﬂj‘“ 72+ p[u + v§+§] (3.33)
3. Time rate of change of momentum within'the control volume (Equation 3.34)
lim g fJf 22 = 2 (o) = ol + V2 (3.34)
Substituting for the limits and combining the terms gives Equation 3.35

dF = [u—+vﬂ+w ]+p§ (3.35)

The change of momentum has been expressed in terms of its components

velocities. Let us look at the external forces in further details. They consist of the sum
of the body forces, F., and the surface forces, F, .. The forces are typically due to the

presence of gravitational, electromagnetic, and electrostatic fields. If the only body

force is gravity, then (Equation 3.36)

For = pg, AxAyAz (3.36)
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The surface forces acting on the control volume are those due to the normal, o,

and the shear stress, T, stresses. These stresses can be assumed to vary continuously

from their nominal values at the center of the Control Volume in each of the coordinate

directions as illustrated in Figure 3.10.

e+ 22
a. 2
¥
! Tzx
: =<1
1
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wx T g 5 *-——————- - ) —
= 1
1
) ————————— e — — —
y — DU R
arzxdz ¥x
Tz 3 E

.

dr_, d.
d. 2
do,. d,
fe e a 2

x

Figure 3.7 Normal and shear stresses along the x coordinate in the Control Volume

Figure 3.7 depicts the normal and shear stresses acting on the Control Volume in the x

direction alone. Similar figures can be constructed for the normal and shear stresses

acting in the y and z directions. This, the net surfaces force acting in the x direction is

given in Equation 3.37.

29



For = (222) axaynz + (22 22 ) Axayaz+ (%2

= ) AxAyAz (3.37)

The total force acting on the control volume in the x direction then becomes (Equation

3.38)
F = B:r + F Ex (338)

which, in the limit, can be expressed in Equation 3.48a.

I - AT e ATy

—_ xx X
df, = pg, + =+ v + (3.38a)
Similarly, the differential force components in the y and’z directions are:
dF, = pg, + 22 4 2 Ta (3.38h)

» ¥ .

— ks Btyr , OTys

dF, = pg, + 25+ + P (3.38c¢)

By substituting the tesults of the above expression in Equation 3.38a to 3.38c
back into the expression for the Newton’s Second Law (Equation 3.39) yield in

Equation 3.40a.t0,3.40c.

_ N[ _ dlmP)

SFam(Z) =22 (3.39)
Gopy | BTyw , BTgy _ _(Bu du du du

Pgx T ax + Ay + 8z _p(ar+uax+ﬂa}-+waz) (3.40a)
Bryy | fopy | OTzp v dv dv dv

pg, + o + 5y + = —p(a—l-ug—l- va_;;—l_WE) (3.40b)
ar,,_, af}a 0tz _ (8w dw dw dw

pgz-l- + + P _‘G(ar+uax+va}-+waz) (3.40c)

30



In this form, we can see that the right-hand side of the above equations actually
represents density (mass/volume) X acceleration, or force/volume, where the

acceleration terms can be separated in local acceleration (du/dt, etc.) component. The

total acceleration can be expressed in terms of the substantive derivative in Equation

3.41.
Du _ Gu du du du
E—E'r-l-ulrl_r-I-'L:Jﬂ}_-I-WlaEr (3.41)

Equation 3.40a to 3.40c represents the complete form of the different
Conservation of Momentum balances. These equations, cannot be solved, however,
because there are more unknowns (i.e., dependent variables) than equations. Thus, it is
necessary to derive additional information in order to provide those equations. Those
equations are applicable for incompressible Newtonian fluids. Here, the normal and

shear stresses can be expressed inEquation 3.42a-c.

B Bu o)
Oux = =P + 23 Tuy = Bo = 15+ %) (3.422)
A dwr fv
Oy = P+ 2-”'3_}-1}'3 = Tay T “{a_y * E) (3.42D)
Ozz TP T EFETEI TTxz T H (Z—: + Z—:) (342C)

By substituting these relationships into Equation 3.42a to 3.42c, we obtain the

Equation of Motion in scalar form along the three coordinate axes as

LG (Fu Fu W) (Bu du dudu

P8x ~ 3, + '“’(ax'* +ay’- +azﬁ) - P (E‘r +uE':r + Yay +WE'3) (3.433)
dp 8w | 8w | %oy v du v v

P8y a}-+“{ax=+ay=+az=}_p(ar+uax+vay+waz) (3.43b)
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dp 8w | 8w | Pw _ E'_v. E'_v. E'_v. E'_v.
Pf?z—g+“(m—=+ﬁ+§)—P(aﬁ“ax”aﬁwag) (3.43c)

The equivalent vector form as in the Equation 3.44.

oV

pg —Vp +pV?V=p— (3.44)
which can simply be written as in Equation 3.45.

A I I > 22

VvV =—vp+g+v(v?V) (3.45)

by expanding the material derivative for acceleration and.dividing by density, p.

The above equation (in either scalar or vector form).are commonly called the Navier-

Stokes equations for the incompressible Newtonian fluids.

3.2 Computational Fluid Dynamics (CFD)

As mention earlier, in order to solve a set of equations, we must have at least as
many constraints as we have dependent variables. Examination of Equation 3.43a to
Equation 3.43c shows that there are four dependent variables-pressures (p) and three
velocity components (u, v and w) defined in terms of four independent variables-time
(t) and three position coordinate (X, y and z) — but only three equations. However, by
including the Continuity equation, we obtain the fourth constraint, which will allow us
to uniquely define each dependent variable. Mathematically, Equation 3.22 (Continuity
Equation) and Equation 3.44 (Navier-Stokes Equation) are first-order and second-order

partial differential equations, respectively. Furthermore, Equation 3.43a to Equation
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3.43c is nonlinear because of the presence of product terms such as
u - du/dx,v-du/dy,w-du/dz, etc. Unfortunately, no exact analytical solution has
been taken. One is to first simplify the equations until they have a mathematical form in
which there is a solution. For example, we could assume a steady, two-dimensional
flow (say, in the x-y plane) along one axis (say, the x axis), which would eliminate all

terms involving d/dtand two of the velocity components. If the flow were in the x

direction only, the Equation 3.22 could reduce to

fu

=0 (3.46)
Or
u=F)+cC (3.47)

Where C is the integration constant, Equation 3.54 will be reduced to

z-w(%) (3.48)

Here, it is now possible to solve u(y) as an explicit function of p.

The other approach taken is to solve these equations numerically. This approach
is mere complex, but it provides the ability to solve problems without making
unrealistic simplifying assumptions. The basic technique is to first sub-divide the flow
into many small regions, or cells (Figure 3.11b), over which the governing equations
are applied. Rather than using the differential form of the equations, however, they are
rewritten in algebraic form in terms of changes that occur in variables due to the
incremental changes in position and time. Solutions are then obtained locally at the
specific locations or nodes (Figure 3.8b), on the finite elements across a mesh (Figure

3.8a) of element Figure 3.8 and Figure 3.9.
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Face Associated Nodes
Face 1 1-2-3-4
Face 2 3-4-5-6
Face 3 5-6-7-8
Face 4 1-2-7-8
Face 5 2-4-5-7
Face 6 1-3-6-8
(©)

Figure 3.8(a) The CFD Mesh for the saphenous vein graft model with a kink failure. (b)
Hexahedron cells that applied on the saphenous vein graft model (c) Table of Face and
Node numbering for the Hexahedron cells -
.&\QO

Qv (0)
Figure 3.9: Th@ue meshes are employed in the area of the saphenous vein graft in
order to obt&i@more accurate result in this region of interest. For this research interest

region.is t'the wall of the vein graft model ;(a) Proximal or Inlet region and (b) Distal
\Y or Outlet region.

L&
©

This set of solutions is updated at subsequent time intervals over the entire mesh until
some acceptable levels of accuracy, or tolerance, are achieved based upon the
convergence between the successive values of certain output variables. Obviously, this
can be a very detailed and time- consuming process depending upon the complexity of
the geometry being analyzed and the initial and boundary conditions imposed.

Furthermore, additional features are sometimes included in the equations to allow for
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the simulation of Non-Newtonian fluids and the turbulent flow conditions, for example.
While it is always important to validate such results, these computational fluid
dynamic (CFD) software programs are increasingly being used to solve challenging

biomedical flow problems unapproachable by any other means.

3.3 Computational Simulation Details and Modeling

3.3.1 Computational Simulation Details

Computational simulation of blood-flow in ideal and irregular of the vein graft
models are executed via ANSYS FLUENT V13 and the discretization scheme is based
on the finite volume method. A structured hexahedron mesh has been utilized for nodes
generation due to a better ‘meshing yield and it is also more suitable for ideal and
irregular vein formation models by applying the GAMBIT V2.4.6. Meshing is a
process of engagement of sub-domains or to generate small cells into ideal and
irregular of the vein graft models to become as an interlock by using a hexahedron cell
or element. This is amenable to solve the governing equations through created grids.
The meshing step begins by setting and generating the coarse grids to ensure that there
are no problems in the first place of generating the grids, and then followed by
generation of successive smaller grids at the interest region like in this research, the
wall region is confirmed as an interest region for the wall shear stress study. This is
because the first time meshing can reflect a significant effect on the results due to low

mesh density (Ferziger&Peric, 2002; Shaw, 1992). However, the skewness value

36



should also be considered as to achieve successive in meshing. Skewness is defined as
the difference between the shape of the cell and the shape of an equilateral cell of the
equivalent volume. The highly skewed cells can decrease accuracy and destabilize the
solution. Each element has a value of skewness between 0 and 1, where 0 represents an
ideal element. In the GAMBIT V2.5.6, the skewness that value below than 0.5 is an
acceptable value in meshing. The predicting equation of the blood flow through the
vein graft models have to be converged and the meshing required to achieve the Grid
Independent state. The Grid Independent state can be achieved by.abserving the results

that do not change for further refinements of the grid (Tu et al.;”2008).

Furthermore, a simulation by the vein graft-failures has been introduced in this
work. This is to achieve high accuracy and Grid Independence, where the ideal and
irregular vein graft models have been.remadeled to small size and more cells. Hence,

the computations for all models aretexecuted case-by-case as illustrated in Figure 3.10.
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Failure Detail
Internal
' Diameter Amplitude of
Ratio, sinusoidal
(dareery dyesn )| Wavy vein, cm
Ideal [ - :
Straight Ideal 1:1 0
Case l 1:1.1 0
Internal D [::O
diameter | ). 4y CD ven Case 2 12 0
mismatch
Case 3 1:1.3 0
:%_0 Case'A 1:1 0.05
Over
Iength (j:] Artery (:O Vein Case B 11 0.10
kink
Case C 1:1 0.15

Figure 3.10 Table of the vein graft models

Convergence can be easily achieved too due to density of the meshing increased in the
vein'graft model. A reasonable convergence solution for the iterations has been set for

both mass and momentum, with residual level being below 1 x 1075,

Based on clinical diagnostic and surgical results, the real vein graft is in
cylindrical geometry. As our objective to investigate our model close to in-vivo vein
graft, the ideal and irregular formation of the vein graft model has been designed and
created them in three dimensions cylindrical geometry. Furthermore, we can investigate

any part of interest in x, y axes and even in z axis of the vein graft models compared to
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the two dimensional analysis that limited into two axes only, x and y axis. In this
circumstance, the computational effort or the central processing unit (CPU) time
occurred due to direct involvement of the three axes. Therefore, several assumptions

are applied in this work to reduce the computation time, such as:

1. No heat transfer function applied at the blood flow through the vein-graft model

2. No backward flow function activation at distal or outlet region of the vein graft
model

3. Flow is fully developed at the inlet region which/means no user define function

applied for parabolic profile flow

However, we still extrude_odr, vein model length in order to allow the blood
flow to become fully developed since no user define function applied as illustrated in
Figure 3.11. As a solutien;,.the inlet region in monitoring the flow is set right after the
blood flow become a-fully developed flow. A fully developed flow is calculated based

on the entrance’length (L) of a pipe channel as cited by Krishnan B. Chandaran et al.

(2007)AFigure 3.11). Typical entrance lengths are given by

L

== 0.06 Re for laminar flow (3.49)

where D and Re are the pipe diameter and Reynolds number respectively.
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<——— Entrance region flow >l€ Fully developed flow 4)'
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-~ S~ é |
. L Inviscid-core | >
—> T r
N sl > D
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- v
< L >
(1) (2

Figure 3.11 Entrance region, developing region andfully developed in the vein graft
model

Once the fluid reaches the end of the entrance region at Section (2), the flow is simpler
to describe because the velocity,dsca function of only the distance from the pipe
centerline, r and independentof-x. Hydraulically, the entrance length is very important
because the transport properties such as centerline velocity or maximum velocity,
pressure gradient between the proximal and distal of the vein graft model and the wall
shear stress.impact on the vein graft model depend strongly after the blood flow over

than_this.entrance length region.

3.3.2 Fluid Mechanics in a Vein Graft Model

Most of the blood flow in the human circulation occurs within tubular structures
such as arteries, capillaries and vein as well. For that reason, the study of fluid

mechanics in a straight tube is of particular interest in biofluid mechanics. Even
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thoughmthe human vasculature is not geometrically a series of straight tubes of
constant diameter, results from this analysis do provide good estimates or starting
points for further evaluation. In this chapter, there are several definitions of terms,

which are relevant to common blood flow conditions.

Based on clinical results, the circulatory system is pulsatile in most regions like
the systemic arteries and the microcirculation. The unsteady term for flow type is very
general and refers to any flow type that is simply and not constant;-The pulsatile flow
can be defined as the flow that has a periodic flow behavior and a net directional blood
flow motion over cycle (i.e., the average flow is > 0). On‘the other hand, the oscillatory
flow means the flow has periodic flow behavior but ‘escillates back and forth without a

net forward or reverse output (i.e., the average flow <0). The fact of the unsteadiness

type of blood flow is well known. Describing the principles of blood flow under more
simplified condition is very helpful before furthering to complex physiologic
environments. The simplest-Case to consider, therefore, is that of steady state blood
flow type of Newtonian: fluid through a straight, rigid, circular tube aligned in a

horizontal positien (Figure 3.12)

dt
(T +— d'r) 2n(r+ dr) dx=
dz

p(2mrdr)

Figure 3.12 Force balance for steady blood flow through an ideal straight, horizontal,
vein graft model
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3.3.2.1 Blood Flow Stability and Related Characteristics

The nature of flow of a Newtonian fluid in a straight, rigid, circular tube is
controlled by the inertial (accelerating) and the viscous (decelerating) forces applied to
the fluid elements. When the viscous forces dominate, the flow is called laminar and is
characterized by smooth motion of the fluid. The laminar flow can be thought of as if
the fluid is divided into a number of layers flowing parallel to each.other without any
disturbances or mixing between the layers. On the other hand, when the inertial forces
strongly dominate, the flow is called turbulent. Here, the fluid exhibits a disturbed,

random motion in all directions, which is superimposed on its repeatable, main motion.

3.3.2.1.1 Steady State Laminar Blood Flow in a Vein Graft Model

The key characteristic of the laminar flow is that it is well organized and very
efficient, whereas'the turbulent flow is chaotic and accompanied by high energy losses.
Therefore, the’turbulent flow is undesirable in the blood circulation because of the
excessive workload it would put on the heart and also because of potential damage to
the' blood cells. A helpful index used to determine whether the flow in a tube or
turbulent is the ratio of the inertial forces to the viscous forces. This ratio is classically
known as the Reynolds number (Re), which is dimensionless since both terms have

units of [F]. It is defined as

Re = Inertial forces — pWVd (350)

Viscous forces Tl
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Where p [kg/m?®] is the density of fluid, V[m/s] is the average velocity of the fluid
over the cross section of the tube, d[m] is the tube diameter, and u [ke/m- =] is the

dynamic viscosity of the fluid. Although the inertial forces obviously begin to dominate

for Re = 1, it has been determined experimentally that in a smooth-surfaced tube, the
flow is laminar for all conditions where Re <= 2100. In this research, the blood flow

has been calculated and recognized as laminar blood flow type. This means that the
turbulence flow characteristic should be ignored. Furthermore, if\the tube is long
enough to have stabilized any entrance effects (Figure 3.12), the velocity profile then

takes on a parabolic shape and the flow is called a fully developed laminar flow.

In section 3.1.5, we discussed the principle @f Conservation of Momentum and
derive the Navier-Stokes Equation. For.the incompressible Newtonian flow, the

equation of motion in vector nation given by Equation 3.55
T (Vv = —Lvp + G4 o(v3F) (3.51)
ar p pTy .

Where V' [m/s] is ‘the velocity vector, p [Pa] is the pressure, g[m/s?] is the
gravitationab<acceleration, p[N — s?/m*] is density and v [m?®/s] is the kinematic

viscosity of the fluid, respectively.

If we apply these equations in cylindrical coordinates (Equation 3.52) to the
case of steady flow in an ideal straight, circular, horizontal vein graft model (Figure

3.13),

W 4y 3V Ve 3 f&]: 8y (Ve 18V 13T 3T
p[ﬂr—i_vrar-l_rﬂﬂ-l_%ﬂz F;E 33+F(ﬂr:+rﬂr+rzﬂﬂi+ﬂz:) (352)
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Figure 3.13 The'shear stress distribution within the fluid in an ideal straight vein graft
model (laminar flow) and typical profiles

Then the momentum balance in the z (axial) direction reduces to

2] - 659

since the time rate of change (i.e., d/dt ), secondary velocity (i.e., V.and V4), and
circumferential velocity gradient (i.e., dV./d&) terms are zero. As a consequence, the

conservation of mass balance results in dV/dz also being zero.
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Rearranging terms yields
ép _ 18 (_av
Z=ulz(-55)] (3.54)

Since pressure is only a function of length and axial velocity is only a function
of radius, however, this equation can be written equivalently in terms of ordinary

derivatives, or
2=ult (-3 (3.55)

We can further observe that, for the two terms of the’equation (i.e., Left Hand
Side and Right Hand Side) to be equal for all values-of independent variables r and z
(each of which is only present in one of the terms), each term must be constant.

Equation 3.55 then can be integrated twice to yield (Equation 3.56 and Equation 3.57)

ZoL(g)rs 659
v, = :—#{Z—ZJT +c,Inid e, (3.57)

The constant terms, c;andc,, can be evaluated by applying known values of
axial velocity at the specific boundary locations. For example, V. = 0 at ¥ = R is due to
the) “non-slip” condition at the vein graft wall. The values of V7, however, is not known
at the vein graft model center, » = 0, although we can assume that it is a maximum at

the point due to overall symmetry of the vein graft model. Thus, the appropriate

boundary condition here is dV_/dr = 0, which requires that ¢; = 0 and which also

constrains all velocities to be finite.

Evaluatingc, and substituting it into Equation 3.57 results in
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v, =2 (Z)[r* - R (3.58)

3_4,1..1 d=

If we replace the differential pressure gradient term by the pressure gradient

along the entire ideal straight vein graft model, Ap/L, then the velocity variation, or

“profile” in an ideal straight vein graft model is given by

v, = [22] [1 _ (E” (3.59)
or
V() =V, [1 - {ij] (3.60)

Where V [m/s] is the velocity of the fluid at distance r[m] from the center of the tube,

V.. [M/s] is the maximum (centerline) velocity, R[m] is the radius of the tube, d[m] is
the diameter of the tube, and AB[Pa] is the pressure drop along a length L[m] of the

tube. By integrating this veloecity profile over the tube’s cross section and diving by two,

we can obtain the ayverage.velocity

Vppe = 22 (3.61)

Since the flow rate in tube, Q[m?/s], is equal to the average velocity, V...,

times the cross-sectional area, we can write

Q = Vo (RR?) = 2 (7R?) (3.62)
Or

apR® 3 sprR?
Q= (G) RY) =5 (363)
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In terms of the tube diameter, this becomes

Q = iﬂ;:a (3.64)
Solving for the pressure difference, we obtain
Ap =128 "; (3.65)

which is commonly known as the Hagen-Poiseulle Equation.

The Hagen-Poiseulle Equation is very important .equation to validate the
results obtained from this simulation works. If the simulation results show exactly or

nearly to the theoretical results, it means that our simulation works are correct.

3.3.2.1.2 Blood Viscosity and the-Wall Shear Stress impact on the Vein Graft

Model

In the study of the vein graft vascular disease, one of the most important
variables is the shear stress,z[N/m?] of the blood flow, at the vessel wall (z,,) of the
vein graft model (Figure 3.6).The wall shear stress has considerable clinical relevance
because it provides information about both the magnitude of both the blood exerted on
the vessel wall as well as the force exerted by the fluid layer on another (Krishnan B.
Chandran, et al, 2007). In healthy blood vessels, the shear stress is generally

low(~15 to 20 dynes/cm?®) and is not harmful to either the blood cells or to the cells,

which lines up the inner surface of the vessel, called endothelial cells. The shear stress

varies with the flow conditions (cardiac output, heart rate etc.) as well as with the local
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geometry of the vessel (curves, branches, etc.).Excessively high levels of the shear
stress caused, for example, by atherosclerosis lesion or artificial heart valves, may
damage the red blood cells (a condition called “hemolysis™ ) or the endothelium of the
vessel wall. Other abnormal shear stresses, such as the very low or strongly oscillatory
shear stresses, may also change the biological behavior of some cells, such as platelets
in the blood stream in which they become activated, leading to thrombus formation.
These stresses may also act on endothelial cells lining the vessel wall, which then act as

active compounds, leading to vessel constriction or wall hypertrophy.

Based on our earlier discussions, we can determine the shear stress for the

laminar flow of Newtonian fluid as being linearly related to the shear rate(dV /dr)

according to Equation 3.3 as expressed in terms_of cylindrical coordinates

r=pZ (3:3)

Where V is the velocity[m/=] at the radial position r [m] and u is the dynamic viscosity
[N — s/m?] of the fluid. For laminar case, the wall shear stress can be determined from
the force balance within a control volume if the pressure drop, Ap, is known along a

length L of.the ideal straight vein graft model (Figure 3.13)
Ty = =2 (3.66)

As mentioned earlier, both viscous and shear stresses, if large enough, can
potentially activate or lyse (i.e. rupture) the blood cells. However, the origin and,
consequently, the scale of both viscous and shear stresses are different. The viscous
shear stresses act on a molecule scale, i.e., they arise from the tendency of one

molecule to remain in close proximity to its neighbor. This is quantified in fluids
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through the measure of their “viscosity”. As the viscous stresses act on a scale much

smaller than the diameter of a blood cell (in the order of few pum), the blood cells will

always experience the viscous shear stress if one is present.

3.3.3 Boundary Conditions

Boundary conditions are the sets of properties or conditiens that are defined at
every surface of ideal straight and irregular formation -of ‘the vein graft model. This
defining process is one of the most important stages'in.computation in order to simulate
the blood flow model numerically. The simulation will lead to a wrong solution if it is
wrongly specified as erroneousness sets(of the boundary condition (Versteeg et al.,
1995; Tu et al., 2008). The setting. of the following boundary conditions is a common
practice in the vein graft modeling or the vein graft wall bounded flow. A Newtonian
fluid, nonslip at the wall/of‘the vein graft model, the laminar blood flow, the steady and
pulsatile flow, the-vein graft model as cylindrical shape, the vein graft model as a rigid
body and blood-flow are types of boundary conditions that need to be specified at each

case of-thevein graft models in order to solve the blood flow problems.
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CHAPTER 4

RESEARCH METHODOLOGY

4.1 Introduction

The simulation work in engineering field has<become well established for
further engineering analysis. However, the outcomes of simulation works have always
being argued. Due to this, the simulation work must be validated first before any results
can be established. Hence, in this chapter; the study of simulation algorithms and the
integrity of its results are carefully. validated against peer reviewed experimental works.
The experiment had been performed by Tzu-Ching et al. (2011) in measuring the red
blood cells velocity in~the capillaries of finger nail-folds. More details on this
experiment will be_discussed in the following subchapter. Further information on this
experiment is ‘discussed in the following subtopic. The thesis models, as laid in the
proceeding chapter have been utilized in this validation work to investigate the blood
flow phenomena in irregular formation of the vein graft models. Those models are
carefully validated with an error of 1.5% which is within acceptable limits. Therefore,
this validation will save and set as a benchmark in meshing to use the models and carry
out further investigation for blood flow in the irregular vein graft models. Besides, case
by case simulation methods has been introduced to achieve higher accuracy in results

as the results do not show any significant changes in velocity with further refinements
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in the grids. Finally, the boundary conditions in this validation simulation works are

also included from the experimental work.

4.2 Simulation Procedures

First of all, an ideal straight vein graft model must be drawnin the GAMBIT
Geometry Design which is the meshing software and followed. by ’mesh generation. The
GAMBIT Geometry Design has also been applied in designing every case of irregular
formation of the vein graft model. Each vein graft. model was examined for mesh
quality especially the skewness range of the_cells. In GAMBIT Geometry Design
software, the skewness range of the cells 'must be below than 0.6. Otherwise, the error
will occur when executing the geometry in the ANSYS Fluent Software. After the
mesh generation, the vein graft-models are ready for computation process. (Please refer

Appendix A)

The precedure begins with the definability and initialization of physical
boundarycconditions by the ANSYS Fluent Software pre-processing tool. In this
initialization process, the design problems have to be carefully initialized with specific
boundary conditions according to the design problems. Next, the designed problems are
ready to be solved iteratively by the ANSYS Fluent-Solver tool with appropriate
equations. In this study, both the steady and pulsatile flow function have been utilized
at ideal straight and irregular formation of the vein graft models while preserving the
same boundary conditions for the designed vein graft models. This is to obtain the

different results between this ideal straight and the irregular formation of the vein graft
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models. Finally, the results are analyzed at the post-processing (Please refer Appendix
B). The entire flow of the process for this simulation sequence is illustrated in Figure

4.1.

GAMBIT Geometry Design: Ideal Straight and Irregular
geometry formation model of the vein grafts design

\

GAMBIT Geometry Design: Ideal Straight and Irregular geometry
formation model of the vein grafts meshing

\

GAMBIT-Mesh Quality Checking Examination: Ideal Straight and
Irregular geometry formation model of the vein grafts mesh quality
checking

\

FLUENT Pre-Processing forldeal Straight Case

Step 1: Launching ANSYS FLUENT
Step 2: Mesh Checking for Ideal Straight Case
Step 3: General Settings
Step 4: Models
Step 5: Materials (Fluid: Blood Properties)
Step 6: Cell Zone Conditions (Fluid Conditions)
Step 7: Boundary Conditions (Proximal, Distal and Vessel Wall)
Step 8: Solution (Steady Flow, Transient Flow and Results Monitoring)
Step 9: Displaying the Preliminary Solution (Displaying Results in Contours or Line)

Step 10: Enabling Second-Order Discretization (Optimizing Calculation)

i v

Repetition of Initialization FLUENT-Solver (Calculation Process)
and Simulation for ;
Irregular geometry
formation model of the FLUENT Post-Processing (SimulationResults)
vein grafts ;

Examine Result for Ideal Straight Case

{

| Finish

Figure 4.1 The entire flow of the process for simulation work
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4.3 Validation Basis

The work of Tzu-Ching Shih et al. (2011) concerns the measurement of the red
blood cells velocity in the capillaries of finger nail-fold by applying the computational
fluid dynamic method. The two-dimensional captured capillary images were
reconstructed to three dimensional models by assuming circular cross-sections. The
vessel walls were also assumed as the non-slip walls. The red blood cells velocity that
calculated by the OFE (Optical Flow Estimation) was used in their experiment as a
reference fluid or yardstick in order to measure and compare the red blood cell velocity
that calculated by the CFD. The calculated red-blood cell velocities of various grid
sizes in meshing were almost identical to each other at each distance, indicating that the
CFD numerical results are grid independent. Based on their experiment, it is noted that
the CFD method can provide a reasonable accuracy to the red blood cells velocity in

the finger nail-fold capillaries:

The blood_vessel model that they had used was assumed as circular cross
sections with. the capillary diameter ranging from 8.98 to 21.72 um, and about 1 cm in
length..Other blood flow properties that they had set in their experiment were an inlet
flow and Reynolds number of 191.70um/s and 0.003, respectively. From the
calculation, the Reynolds number showed below than 1 most certainly describes the
flow of fluids as laminar blood flow. The non-slip boundary conditions were applied on
the vessel walls and a uniform velocity profile was used at the inlet. The blood was
approximated as a Newtonian fluid with a density of 1050 kg/m*® and a dynamic
viscosity of 0.035 kg/m/s. Figure 4.2 shows the outlet velocities with different element

numbers obtained from their experiment. Their experiment results shows a good
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agreement with their estimated analytical results, suggesting that the CFD method and
the incompressible Navier—Stokes equations can be used to predict the blood flow
behavior of homogenous fluid within a blood vessel in the finger nail-fold .Therefore,
their method has been used in this work to validate the simulation algorithms, the

model equation as well as the boundary conditions.
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Figure 4.2 The velocity profile at the vessel outlet with different element numbers. The
profile was observed at (Tzu-Ching Shih et al., 2011).

4.4 Simulation Validation Details

4.4.1 Case by Case Simulation

In order to achieve the grid independence state, simulation by cases has been
introduced in this meshing work. This method has led to achieve the highest number of
nodes in the designed irregular formation of the vein graft model. The error occurred if

54



more nodes are created such as in length kink of the vein graft model, only 443 681
nodes were accepted. As shown previously in Figure 3.12, the finer meshes are
employed in the area of the saphenous vein graft in order to obtain more accurate result
in this region of interest. Furthermore, the spacing between two nodes can also be
reduced orderly, at the same times the numbers of nodes in the total vein graft models
increase. To add further, this research interest region is at the wall of the vein graft
model. In addition, this particular method is very suitable for the vein graft models with
longer length as more accurate results can be obtained (Rory F.Rickard, 2009). Hence,
the simulation work case by case is considered suitable for this validation work since
the microchannel used in Rory F. Rickard, (2009) and ef Tzu-Ching Shih et al.” (2011)
experiments. The amount of larger number of nodes'in the vein graft model should lead
to better approximations or more accurate-results. Simultaneously, the convergence
criterion can be easily achieved in calculating due to the higher density of meshing in

the vein graft model.

Table 4.1 shows_the details of the simulation case by case that have been
performed to simulate the experimental work in order to achieve the grid independence.
These are ideal straight vein graft model, three cases of mismatch vein graft model and
threg“cases of kink vein graft model simulation which have been performed. Further
details on the accuracy of the analysis are discussed in the following subtopic of

meshing.
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Table 4.1:Details of simulation based on cases.

Geometry Detail
Internal Amplitude
Diameter,cm Vein of two
Case Model cycled
Case Length, ' i
om sinusoidal
Artery | Vein Wwavy vein,
cm
St'faeig'ht — — | 1deal | 010 | 0.10 10 0
Case 1 0.11 0.10 10 0
D e—
Internal 10
diameter Case2 | 0.2 0.10 0
mismatch | CO = (O v
Case3 | 0135 010 | 19 0
Case A 0.10 0.10 10.01 0.05
Over W:D
kink | GO O
Case C 0.10 0.10 10.10 0.15

4.4.2 Meshing

The first step of the pre-processing step in the ANSYS Fluent is the creation of
geometry of the vein graft model. After that, the created geometry of the vein graft
models will proceed to the meshing stage. Those works were done in GAMBIT.
Meshing is a process of engagement of the sub-domains or to generate small cells into
ideal and irregular of the vein graft models to become an interlock by using a

hexahedron cell or element. This is a requirement to solve the governing equations
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through created grids into the vein graft model. At the beginning, the meshing process
starts by generating vertices as a guidance to generate the grids, and then followed by
the refinement of successively smaller grids. The fine meshes are employed in the area
of saphenous vein graft in order to obtain more accurate results in this region of interest.
For this research, the interest region is at the wall of vein graft model. This is because
the first time meshing can reflect a significant effect on the results due to low mesh

density (FerzigerJ.H, 1992).

As stated previously, the vein graft models with a length range between 10 cm
and 10.10 cm have to be refined with the objective of increasing the number of nodes in
the vein graft models where hexahedron cells are:utilized since this produces better
meshing yields in the vein graft models especially at the wall of the vein graft models

even for more complex geometries.

Table 4.2 shows the summary of the total number of nodes and hexahedron

elements that have been generated through the different subtopic meshing process.
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Table 4.2 Total number of nodes and hexahedron elements

Total Total
Case Model number of
Case number of
hexahedron
nodes
elements
Ideal ( [ [ )
Straight Ideal 248 751 242 000
Case 1 248751 242 000
Internal
diameter (T 0| case2|” 248751 242 000
mismatch
C O arery (0 -vein | Cases | 248751 242 000
Case A 222 761 216 000
Over length (:W Case B | 443681 432 000
kink
Case C 443 681 432 000

4.4°3\, Boundary Conditions

The boundary conditions for validation in this simulation works are carefully

extracted from previous experimental works conducted by GJTangelder et al. (1986),

Mette S. Olufsen, (2000), Christopher L. (2001), Sang-Wook Lee et al. (2003),Meena S.

et al. (2006), Jung J. et al. (2008), Qin, Liu et al. (2008), Rory F. et al. (2009) and Tzu-

Chinget al. (2011) to ensure their conditions is applied exactly the same into the this
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simulation work. This is to accurately simulate and to attain reliable results required .
Hence, the boundary conditions are as follows (Wilmer W. Nichols et al, 1998,

Krishnan B. Chandran, 2007) :

1. The property of blood has been assumed as homogenous liquid and its viscosity
is the same at all rates of shear. The particle of blood is well known as a
suspension of particles, but it has been proven that, in the vessels.in which the
internal diameter is larger compared to the size of red blood.ceH, it behaves as
Newtonian liquid. However, this assumption is applicablejin‘tubes over than 0.5
mm radian. It is available for this research sincé.the only tubes over than 0.5
mm internal diameter are applied.

2. The blood flow does not slip at the vessel walls. It is assumed that velocity is

zero when r = R, which means that zero velocity at the vessel walls.

3. The blood flow is laminar-which means the blood flow is parallel to the wall of
the vessel. This assumption is not applicable in turbulent blood flow. However,
it has been proven that we limit this study by dealing with the laminar blood
flow only:

4. The“rate of blood flow is at ‘steady’ state. It is only valid in steady state
simulation cases but not for pulsatile (acceleration or deceleration) flow
simulation cases.

5. The vessel is cylindrical in shape. There are two opinions on this assumption;
first, the cross section of the vessel is circular and second, the vessel walls are
parallel. Even though this vein graft models may be good approximation for
most of the existing digital arteries and saphenous vein in the upper extremity
circulation, the digital arteries and the vein grafts are more elliptical in shape.

The digital arteries do not taper with their cross sections (Mette S. Olufsen,
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2000). Thus, the general assumption of circular cross for the saphenous vein
graft section without taper is a close to reality.

. The rigid vessel wall and the diameter do not vary with the internal pressure.
The arterial walls are more visco-elastic and dilated with the pulse pressure
compared to the wall of veins. The interaction between the flowing blood and
the dilatable arterial wall is an important factor in the description of the flow
dynamics. Thus, the assumption of rigid walls in the model is‘also not valid.
However, based on previous simulation work, the distensibility of the vessels
will not affect the solution.

. The length of the vessel model needs to be extended and compared to the region
being studied. Theoretically, close to the<proximal (or the inlet) of the vein graft
model, blood has not yet become the‘flowed with the parabolic velocity profile
characteristic of the laminar flow. The distance required to establish the steady
form of flow is knowrr,as the ‘entrance length’, and here the Poiseuille’s
equation does not.apply. We can conclude that, any result needs to be collected

right after the.entrance length of the vessel model.

The blood velocity in digital artery is calculated by Ying He et al. (2004) in the

experiment is 6.25 cm/s for minimum velocity, 12.5 cm/s for mean velocity and 18.75

cm/s for maximum velocity. The internal diameter of digital artery is approximately

about 1 mm (Ying He et al., 2004). Based on paper reviews, the velocity of blood flow

through the vein graft must be exactly the same as the exercised artery to ensure the

prolonging survival of the vein grafting. Therefore, the inlet velocity of 12.5 cm/s as

the mean velocity is applied at the proximal of the vein graft model in all cases, ideal

straight model and irregular formation of the vein graft models for steady state analysis.
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For unsteady or pulsatile flow analysis, the User Define Function (UDF) containing
6.25 cm/s and 18.75 cm/s for minimum and maximum velocity is applied at the
proximal in all cases (Please refer Appendix C). An interval time is set to be 4 seconds

for one cycle of pulsatile (Ying He et al., 2004).

An absolute pressure of 1 atm is applied at the inlet region of the vein graft
models as the patients are at the atmospheric pressure while ignoring the.gravitational

force and the energy equation.

4.4.4 Grid Independence

As stated previously, the Navier-Stokes Equations was used as the governing
equations. Those equations have.to be fully converged in order to get better results.
However, based on literature-studies, achieving the grid independence state is the only
method in obtaining.high accuracies. The grid independence state can be defined as an
achievement when the results do not change for further refinements of the grid in the
vein graft-models. At the same time, the convergence in calculation also strongly
depends on the mesh refinement of the vein graft models or in other words, how much
smaller the girds are packed into the vein graft models. High density of grids are
packed into the vein graft models, it helps to achieve the convergence quickly or
required a minimum number of iteration in calculation. We can conclude that the
convergence and grid independence states are quickly achieved based on the quality

and quantity of the grid generated in the vein graft models (Rainald Lohner, 2008).
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Figure 4.3 shows the grid independence test and accuracy that has been
achieved for the simulated vein graft models. The resulting velocity profile for the
Internal Diameter Mismatch Cases shows a huge discrepancy compared to other cases.
This is because of the initial or normal speed that carried by blood flows from the wide
artery vessels to the narrow vessels. The Ideal Straight and Over Length Kink Cases of
the simulations do not show any significant changes in the velocity profiles. Further
increment in the number of nodes in the vein graft models via simulation by cases,
which also reduces the spacing size between nodes, leading to-better approximation
with higher accuracy. Hence, the results achieved the grid independence state. However,
the errors happen in the simulated results for those .cases'where the error percentage is
less than 1.48% as compared to the measured fesult (Ying He et. al, 2004) which is
well within the 5% error limit.The computational fluid dynamics numerical software
ANSYS FLUENT was applied. In the numerical solution algorithm as given by Fluent,
the governing Navier-Stokes equations (linear momentum and conservation of mass)
were solved rapidly. The.equations are linear, steady and simple with several iterations
of the solution loops. were needed before a solution result was fully converged. By
applying this approach, the resulting algebraic equations for the dependent variables
(the flow velocities) in each control volume were solved by the Least Squares Cell
hased ‘on the linear equation solver and discretization method. The calculation was

carried out by setting the convergence criteria as 10, The governing equations were

calculated rapidly until calculations of all flow variables were converged on the HP

workstation Z600 desktop (Intel Xeon, 4 GB RAM).
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45 Validation

45.1 SteadyState Blood Flow Model

Velocity profiles of blood flow at proximal vein graft models
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Figure 4.3 Grid independence tests

Figure 4.4 shows the comparison of the velocity profiles of blood flow through
the vein graft models between the measurement and the simulation result of the steady
stateblood flow. The model has been simplified according to the previous simulation
work to obey several experimental conditions such as laminar blood flow, Newtonian
fluid, incompressible fluid, blood as homogenous liquid and it does not slip at the
vessel walls. The simulation results of the velocity profile form have been monitored at
the proximal, middle and distal of the vein graft models. Those profiles have also been

compared to previous measured results (Ying He et al., 2004).
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The measured velocity of blood flow in the finger digital artery from Ying He et
al.’s (2004) experiment is about 0.125 m/s being 1.48% higher than the simulation
result at 0.12315 m/s, which is well within the 5% error limit except for the mismatch
cases. Thus, the observed velocity profile of blood flow in the vein graft models by the
steady state flow model shows a very good agreement with the simulation data. It also
shows the ability to produce better prediction on the blood flow in the vein graft models
for low Reynolds number. Besides, the error percentages of each. monitor region
between the experimental and simulation works are shown in table 4.3. Based on this
table, the error values obviously explain that the experiment value is much higher than
the simulation values even for Internal Diameter Mismatch Cases. As stated previously,
this is due to the initial or normal speed that carried by blood, flows from the wide
artery vessels to the narrow vessels. However, a similar setting of meshes were set on
that model of cases and validated.~The steady state blood flow models have been
methodologically validated by(theoretical and simulation works. Thus, the vein graft
models can be used for further investigations in the blood flow even in a steady state or

pulsatile blood flow.
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Velocity profiles of blood flow at proximal vein graft models
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Figure 4.4 Comparison of velocity profiles between an experiment by Ying He et al.
(2006) and the validation simulation of steady state blood flow model.
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Table 4.3 Error percentage between experiment and simulation by the steady state
blood flow model

Error (%)
Case Model
Case
Proximal | Middle Distal
Ideal N ~
straight | ¢ @ 0 O— | tdea 1.48 1.48 1.48
Case 1 1.48 1.48 1.48

Internal
diameter @:©:©:I) Case 2 1.48 148 | 1.48
mismatch

C O aery (0O vein | Case3 (148 | 148 | 148

Case' A 1.48 1.48 1.48

Over
length :@ZWID Case B 1.48 1.48 1.48
kink
. Case C 1.48 1.48 1.48
D atery (D" vein

45.2 The Rulsatile Blood Flow Model

The investigation of blood flow in an ideal straight and irregular formation of
the geometry vein graft models were extended in the pulsatile blood flow function by
using the same vein graft models that were previously applied in steady state cases.
Figure 4.5 shows the comparison of the pulsatile velocity of blood flow between the
Ying He et al.’s (2004) experimental and simulation by using laminar pulsatile of the

FLUENT User Define Function. This validation is observed at the proximal of the vein
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graft model crossing the center line of the sections, exactly as the location of previous
simulation works (A. Jafari et al., 2009, Christopher L., et al., 2001, QinLiu et al., 2008,
Rory F. Rickard et al., 2009, Sang-Wook Lee et al., 2003, Tzu-Ching et al., 2011, W.
W. Jeong et al.,, 2009). The values of velocity, pressure gradient and WSS were
observed right after 4 seconds because the stability was achieved on that time. The
difference velocity of pulsatile blood flow through the vein graft models between
measured and ideal straight results are 1.60% error. Thus, the observed blood flow
velocity profiles of the pulsatile model also show a very good..agreement with the
experimental data. The error percentages for each monitor region (proximal, middle

and distal) between the velocity profiles for the simulation works are illustrated in

Table 4.4.
Pulsatile Velocity Profile at Proximal Vein Graft Models
0.35 Measured Result
0.3 +—Ideal Straight
o 025 7\ /\ —m—Internal Diameter Mismatch Case 1
E, 0.2 —fd—Internal Diameter Mismatch Case 2
E 0+15 Internal Diameter Mismatch Case 3
ﬁ 0.1 «=Over Length Kink Case A
005 "4 ~0—Over Length Kink Case B
0 Over Length Kink Case C
0 5 10 15

Time, s

Figure 4.5 Comparison of pulsatile velocity profiles between measured result by Ying

He et al. (2004) and validation simulation of the pulsatile blood flow models.
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Table 4.4 Error percentage between the experiment and simulation by the pulsatile
models.

Error (%)
Case Model

Case
Proximal Middle Distal

Ideal
Straight (_@—ﬁ—m_nv () Ideal 1.60 1.60 1.60

Case 1 1.60 1.60 1.60

Internal
diameter mZOZQ:O Case 2 1.60 1.60 1.60
mismatch

(:D; Artery CO W ein Case 3 1.60 1.60 1.60

Case A 1.60 1.60 1.60

Over
length (M@:D Case B 1.60 1.60 1.60
kink
. Case C 1.60 1.60 1.60
(:Di Artery @ : Vein

46  Summary

The validation between the simulation works and the previous experimental
works have been performed by utilizing both steady state and pulsatile models. Both
models show a very good agreement to the approximate velocity profiles of blood flow
in the vein grafts. The velocity profile error percentage between the experiment and the
simulation at the vein graft models are 1.48% and 1.60% by the steady state and

pulsatile models, respectively. Besides, the simulation by cases which has been
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introduced in this work to achieve grid independence as well as higher result accuracies,
shows promising achievement. Therefore, it can be concluded that, the simulation
algorithms, the model equation as well as the boundary conditions used in this
validation simulation works give promising results when compared to the measured
results. Hence, these validated simulation algorithms, model equation, boundary
conditions and the simulation by cases method form the benchmark upon which the

basis to perform further simulations for the blood flow in the vein graft:models.

69



CHAPTER 5

RESULT AND DISCUSSION

5.1 Introduction

In order to address the hypothesis in the introduction, computations are
performed for irregular formation of the vein graft models. The dimensions of irregular
formation of the vein graft models are classified into two major cases, the internal

diameter mismatched and over length kink of the vein graft models.

For the dimension of internal diameter mismatched vein graft models, 1 mm
internal diameter of the vein\graft models are attached to various internal diameter of
the artery models and-the:vein graft length of 10 cm for the vein graft models are kept
constant. In the over length kink vein graft models, the vein graft diameter of 1 mm is
kept constant, However, the vein graft lengths are based on the amplitude of two cycled

sinusoidal wavy vein graft.

All irregular vein graft models are created to investigate any significant
differences in term of velocity of the blood flow, the pressure gradient between
proximal and distal, the impact of the wall shear stress and the strain rate in the vein
graft models. In the current simulations, there are three different inlet velocities from
6.25 cm/s up to 18.75 cm/s, which have been used as the parameters to simulate blood

flow in the vein graft models by using both steady and pulsatile laminar models.
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After examining and ensuring that the grid independence is achieved and the
equations have been converged, the final results are examined in the post-processing
tool Ansys FLUENT Inc. and Microsoft Excel. An observation of the simulation results

is shown and discussed in this chapter.

The fact that the blood flow is unsteady is well known. However, it is helpful to
first describe the principles of fluid flow under more simplified conditions before
moving to complex physiologic situations. Because of this reasony-we decided to
simulate irregular formation of the vein graft models on the laminar steady state first

and then proceed with the laminar pulsatile state.

5.2 Irregular Formation Geometry of Vein'Graft Model

The computationaldoemain of the irregular formation geometry of the vein graft
models with designingyin the GAMBIT. The internal diameter mismatched vein graft
models are designed with 10 cm in length, 0.10 cm in internal diameter of the vein graft
models.and 0.11 cm (Case 1), 0.12 cm (Case 2) and 0.13 cm (Case 3) in internal
diameter of the artery models. Those designs of internal diameter mismatched vein
graft models can be seen in Figure 5.1 for Case 1, Figure 5.2 for Case 2 and Figure 5.3
for Case 3, respectively. The figures show the vein graft models’ inlet, outlet and wall
boundaries. The internal diameter mismatched design of the vein graft models consist
of the same diameter of the vein graft which are attached to three different internal
diameters of the artery models. The internal diameter mismatched of the vein graft

models were extruded from the inlet after considering the entrance length for all
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calculated Reynolds numbers. For Case 1, 0.10 cm internal diameter of the vein graft
models is attached with 0.11 cm internal diameter of the artery models. The subsequent
cases, 0.10 cm internal diameter of the vein graft models are attached to 0.12 cm
internal diameter of the artery model for Case 2 and 0.13 cm internal diameter of the

artery model for Case 3.

In order to carry out the simulation works, the internal diameter mismatched
models have to be meshed whereby the domain will be divided ‘intossmall grids to
create nodes where the governing equations are solved. Therefore, the repetition in
meshing is done on the internal mismatched diameter vein graft models to create large
number of nodes and achieve the grid independence ‘without affecting the vein graft
models. The numbers of nodes and hexahedron elements employed to achieve the grid
independence for internal diameter mismatched vein graft models are shown in Table
5.1. The maximum total numbers af nodes is 248 751 for all cases, respectively, which

attained at meshing works.

Table 5.1: Summary of Meshing for Internal Diameter Mismatched Vein Graft Models

Internal Diameter Mismatched Vein Graft Models

Simulation by Cases Total number of
Total number of nodes
hexahedron elements
Ideal Straight Case 248 751 242 000
Case 1 248 751 242 000
Case 2 248 751 242 000
Case 3 248 751 242 000
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Mismatched Regi

Distalf@utlet)

Figure 5.1: Internal Diameter Mismatched Vein Graft Model for Case 1

q
Proximal (Indet)

Mismatched-Region

Mismatched Regi

Distal (Outlet)

Figure 5.2: Internal Diameter Mismatched Vein Graft Model for Case 2
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Proximal (Inlet)
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Figure 5.3: Internal Diameter Mismatched Vein Graft Model for Case 3

Three designed QOver Length Kinked Vein Graft Models with the kink and

curves, 9°, 18% and 277, are illustrated in Figure 5.4, Figure 5.5 and Figure 5.6 with the

centerline of.the vein graft model lengths are 10.01 cm, 10.04 c¢cm, and 10.10 cm,
respectively. Those vein graft models are also designed at the same distances in wall to
wall diameter. The figures also represent the vein graft models inlet as proximal, outlet
as distal and kinked regions. As proposed previously, the vein graft models of 1
milimeter was kept constant for these vein graft models too, as to maintain the
consistency of the study within this particular channel, the vein graft models diameter
and the vein graft models were also extruded from the inlet after considering the
entrance lengths for all calculated Reynolds numbers. Even though the simulation
works have been done for the same vein graft models diameter, but the amplitude in the
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vein graft models play as an important function for the investigations since the shape of
the geometry does affect the fluid flow in the vein graft models. In order to achieve the
grid independence, simulation by cases has been performed. The number of nodes and
hexahedral elements that are employed to achieve the grid independence state is shown
in Table 5.1. The total number of nodes and hexahedral elements generated by cases
simulation are 222 761 nodes and 216 000 hexahedral elements for Case A and 443 681
nodes and 432 000 hexahedral elements for Case B and 443 681 nodes and 432 000
hexahedral elements for Case C, respectively. Table 5.2 also_shows the number of
nodes and hexahedral elements that are employed to achieve the grid independence

state in the Over Length Kink Vein Graft Models.

Proximal (Inlet)

Kinked Region

\ Kinked Region

Distal (Outlet)

Figure 5.4: Over Length Kinked Vein Graft Models for Case A
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Proximal (Inlet)

Kinked Region

Kinked Region

Distal (Outlet)

Figure 5.5: Over Length Kinked \Vein Graft Models for Case B

Proximal (Inlet)

Kinked Region \

Kinked Region

Distal (Outlet)

Figure 5.6: Over Length Kinked Vein Graft Models for Case C
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Table 5.2: Summary of meshing for Over Length Kinked Vein Graft Models

Over Length Kinked Vein Graft Models

Simulation by Cases Total number of
Total number of nodes
hexahedron elements
Ideal Straight Case 248 751 242 000
Case A 222 761 216 000
Case B 443 681 432 000
Case C 443 681 432 000

5.3 Grid Independence Test

The grid independence test is carried out for these Internal Diameter
Mismatched Vein Graft Models by observing the velocity profiles blood flow. The
velocity profile is observed at the proximal (inlet), middle and distal (outlet) of the vein
graft models. These are Case 1, Case 2'and Case 3 simulations which have been carried
out for the test of grid independence and accuracy. Figure 5.7, Figure 5.8 and Figure

5.9 show the independence checking for Case 1, Case 2 and Case 3, respectively.

The error percentage of the velocity profile of the Internal Diameter
Mismatched Vein Graft Model for Case 1 at the middle and distal is 1.605 % and 0.831
% higher-compared to the proximal, respectively. In terms of the Internal Diameter
Mismatched Vein Graft Model for Case 2, the error percentage of the velocity profile at
the middle and distal is 2.646 % and 0.8127 % compared to the proximal, respectively.
The error percentage of the velocity profile for Case 3 at the proximal and middle is
1.984% and 1.975 % higher compared to the distal, respectively. Additionally, the
velocity profiles also do not show any significant variations hence the simulation has
achieved the grid independence. Besides, the convergence history has been monitored

for both mass and momentum until the residual target reaches below 1 x 107°,
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Velocity profile of the Internal Diameter Mismatched
Vein Graft Model for Case 1
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Figure 5.7: The grid independence test of the Internal.Diameter Mismatched Vein
Graft Model for Case 1 with comparison of velocity profiles for three different
positions in the vein graft model.

Velocity Profile of the Internal Diameter Mismatched Vein
Gratt Model for Case 2
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Figure 5.8: The grid independence test of the Internal Diameter Mismatched Vein
Graft Model for Case 2 with comparison of velocity profiles for three different
positions in the vein graft model.
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Velocity Profile of the Internal Diameter Mismatched Vein
Graft Model for Case 3
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Figure 5.9: The grid independence test of the Internal Diameter Mismatched Vein
Graft Model for Case 3 with comparison of velocity profiles for three different
positions in the vein.graft model.

As stated in the previous chapter, the same settings of grid that were used for
ideal straight and internal diameter.mismatched vein graft models is also applied for the
Over Length Kinked Vein Graft Model. An observation on the velocity profile of the
blood flow test is also, conducted for the grid independence test in these cases. The
velocity profilg,is observed at the proximal (inlet) and distal (outlet) of the vein graft
models; where the fully developed flow is considered. Figure 5.10, 5.11 and 5.12 show
the grid independence test for the Over Length Kinked Vein Graft Models,
respectively. Based on the observation, the error percentage of the velocity profile of
the Over Length Kinked Vein Graft Model for Case A, Case B and Case C at the
proximal is 0.29%, 0.11 % and 0.07 % lower compared to the distal, respectively.
However, the velocity profiles do not show any significant changes since the micro

channels are in the grid independence state.
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Velocity Profile of the Over Length Kinked Vein Graft
Modelsfor Case 1
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Figure 5.10: The grid independence test of the Over,Length Kinked Vein Graft
Models for Case A with comparison of velocity profiles for two different positions
in the vein graft.model.

Velocity Profile of the,\Internal Diameter Mismatched
Vein Graft Model for Case 2
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Figure 5.11: The grid independence test of the Over Length Kinked Vein Graft
Models for Case B with comparison of velocity profiles for two different positions
in the vein graft model.
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Velocity Profile of the Internal Diameter Mismatched
Vein Graft Model for Case 3
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Figure 5.12: The grid independence test of the Over,Length Kinked Vein Graft
Models for Case C with comparison of velocity profiles for two different positions
in the vein graft.model.

Therefore, analysis and results that have been discussed in the following subsections
are based on simulation of the jinternal diameter mismatched and the Over Length

Kinked Vein Graft Models.

5.4 Simulation-Results of the Irregular Vein Graft Models

In this section, several important preliminary field variables in the blood flow
phenomenon of the vein graft models are the central focus. As mentioned earlier,
several investigations are carried out for a series of cases of the irregular vein graft
models by using the laminar steady state and the laminar pulsatile blood flow models.
The laminar steady state blood flow model is considered for validation. Meanwhile, the

laminar pulsatile blood flow model is considered for the pulsatile model to study the
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pulsatile blood flow on an actual vein graft model as to closely simulate the in-vivo
condition of the vein graft. Besides, the utilization of this laminar pulsatile blood flow
model is to check its capability to predict blood flow in the vein graft models as well as
any correlation differences with the laminar steady state model. The modeling for blood
flow is based on continuity and momentum equations. Hence, the field variables
considered here are velocity in terms of the profile, pressure gradient and wall shear
stress which have been observed for the irregular vein graft models, Other findings
related to the flow mechanism such as fully developing region er entrance length are
also described. The utilization of the laminar steady state and’laminar pulsatile blood

flow models allow the observation of any trend of the.blood flow.

5.4.1 Results of Velocity Observation in Laminar Steady State Flow

Table 5.3 shows'the summary of dimension for Internal Diameter Mismatched
Vein Graft Models.\For a model of the Ideal Straight Case, 0.10 cm internal diameter of
the vein graft'is attached to 0.10 cm internal diameter of the artery. For Case 1, 0.10
cm_internal diameter of the vein graft is attached to 0.11 cm internal diameter of the
artery. For Case 2 and Case 3, 0.10 cm internal diameter of vein graft is attached to
0.12 cm and 0.13 cm internal diameter of the arteries, respectively. Ratios of
attachment with internal diameter differences are also shown in Table 5.3. The inlet
velocity of 12.5 cm/s is applied at the proximal of the vein graft model in all cases for

this experiment.
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Table 5.3: Summary of Dimension for Internal Diameter Mismatched Vein Graft

Models
Dveln (Cm) Dartery (Cm) Ratio
Ideal Straight 0.10 0.10 1.0:1.0
Case 1 0.10 0.11 1.0:1.1
Case 2 0.10 0.12 1.0:1.2
Case 3 0.10 0.13 1.0:1.3
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Figure 5.13: Schematic figure of Internal Diameter Mismatched Vein Graft Model
and Surface Monitor. The applied types of Surface Monitors at the Proximal and
Distal are Lines.
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Figure 5.13 shows the schematic figure of Internal Diameter Mismatched Vein
Graft Model that represents the model of Ideal Straight, Case 1, Case 2 and Case 3.

Where R, is the artery internal radius, O, is the centre of the artery, —R,, is the artery
internal radius, R, is the vein internal radius, O;,, is the centre of the vein, —R;,, is the
vein internal radius, L., is the vein length constant. As stated in Chapter 4, the Surface

Monitors need to be set in the Fluent Pre-Processing to allow the flow variables such as
velocity, pressure, wall shear stress and strain rate can be collected and,analyzed. The
applied Surface Monitors for velocity observation in these models are Lines. These

lines are placed at the Proximal and Distal of the vein graft models.

Proximal Region
Riv
—Ideal Straight
Radius Case 1
2 —m-Case?
—4—Case 3
_Riv .
Velocity, m/s

Figure 5.14: The velocity profile of blood flow at the Proximal Region in Ideal
Straight, Case 1, Case 2 and Case 3.
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Figure 5.15: The velocity profile of-blood flow at the Distal Region in Ideal
Straight, Case 1, Case 2 and Case 3.

Table 5.4 : A summary ofithe centre velocity of blood at the Proximal and Distal
Region fon Ideal Straight, Case 1, Case 2 and Case 3.

Centre Velocity, v, (m/s)
Proximal Distal
Ideal Straight 0.1232 0.1231
Case 1 0.1331 0.1342
Case 2 0.1570 0.1583
Case 3 0.1888 0.1852

Figure 5.14 and Figure 5.15 show the velocity profile of blood flow at the
Proximal and Distal Region in the vein graft model of Ideal Straight, Case 1, Case 2
and Case 3. Based on Table 5.4, the highest velocity of blood flow occurs in Case 3
vein graft model and gradually decreases in Case 2, Case 1 and Ideal Straight Case. The

increase of the centre velocity is due to the increase of mismatched percentage.
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Table 5.5 shows the summary of dimension for the Over Length Kinked Vein
Graft Models. For the model of the Ideal Straight Case, Case A, Case B and Case C are
constructed with the same diameter, 0.1cm but are different in lengths. For the Ideal
Straight Case model, 10 cm length of the vein graft is attached to the artery. For Case
A, 10.01 cm length of the vein graft is attached to the artery. For Case B and Case C,
10.02 cm and 10.03 cm length of the vein graft is attached to the artery, respectively.
The amplitude of two cycled sinusoidal wavy veins with length differences are also
shown in Table 5.5. The inlet velocity is 12.5 cm/s as the velocity is applied at the

proximal of the vein graft model in all cases for this experiment.

Table 5.5: Summary of Dimension for the Over Length Kinked Vein Graft Models

Dortery = Dyein, CIN| ~ Vein Length, cm Amplitude of two
cycled sinusoidal
wavy veins, cm
Ideal Straight 0.10 10 0
Case A 0.10 10.01 0.05
Case B 0.10 10.04 0.10
Case C 0.10 10.10 0.15
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Figure 5.16: Schematic figure.of.the Over Length Kinked Vein Graft Models and
the Surface Monitor. The applied types of Surface Monitors at the Proximal and
Distal are Lines.

Figure 5.16 'shows the schematic figure of the Over Length Kinked Vein Graft
Model that represents the models of Ideal Straight, Case A, Case B and Case C. Where

R4S the vein internal radius, O, is the centre of the vein, —R,, is the vein internal

radius and a is the amplitude. As also stated in Chapter 4, the Surface Monitors need to
be set in the Fluent Pre-Processing to allow the flow variables such as velocity,
pressure, wall shear stress and strain rate can be collected and analyzed. The applied
Surface Monitors for velocity observation in these models are Lines. These lines are

placed at the Proximal and Distal of the vein graft models.
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Figure 5.17 and Figure 5.18 show the velocity profile of blood flow at the
Proximal and Distal Region in the vein graft model of Ideal Straight, Case A, Case B
and Case C. Based on Table 5.6, the Ideal Straight Case demonstrates the highest
velocity in blood flow. On the contrary, Case A, Case B and Case C demonstrate low

velocity. It happens due to curvature geometry.

Proximal Region

—4—Ideal Straight
—-Case A

Case B
——Case C

Radius

Figure 5.17:-The velocity profile of blood flow at the Proximal Region in Ideal
Straight, Case A, Case B and Case C.
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Figure 5.18: The velocity profile of blood flow at the Distal Region in Ideal Straight,
Case A, Case B and Case.C.

Table 5.6: The summary of the centre veloeity of blood flow at the Proximal and Distal

Region for Ideal Straight, Case A, Case B and Case C

Centre Velocity, v, (m/s)

Proximal Distal

Ideal Straight 0.1232 0.1231
Case'A 0.1073 0.1074
Case B 0.1074 0.1074
Case C 0.1073 0.1073

5.4.2 Results of Velocity Observation in the Laminar Pulsatile Flow

The experiment on the Irregular Vein Graft Models has been continued on the
Laminar Pulsatile Flow. For this experiment, the same models in the steady flow

experiment are used but with UDF flow and other types of surface monitor are applied
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(Figure 5.19and 5.26). In order to carry out this experiment, the UDF containing 6.25
cm/s for minimum velocity and 18.75 cm/s for maximum velocity is applied at the

proximal in all cases as mentioned in previous sub-chapter 4.3.3.

All dimensions can be referred to Table 5.3. Figure 5.19 shows the schematic
figure of the Internal Diameter Mismatched Vein Graft Model that represents the model

of Ideal Straight, Case 1, Case 2 and Case 3. Where R,, is the artery internal radius,
0,.is the centre of the artery, —R,, is the artery internal radius, R;is'the vein internal
radius, O,.is the centre of the vein, —R.,, is the vein internal radius, L., is the vein length

is constant. The Point is chosen as the Surface Monitors for the pulsatile velocity
observation in these models because it is more. suitable in monitoring the pulsatile

velocity observation compare to Line. These points are placed at the Proximal and

Distal of the vein graft models. L constant
‘ ‘
R[r.'
/ Blood >
'Rl:l?
0.
e ﬂ“r I‘L‘:L’Dﬂsfﬂi’!f
_R[v
Proximal Distal
_R[r.'
Surface Monitor (Line) Surface Monitor (Line)

Figure 5.19: The schematic figure of the Internal Diameter Mismatched Vein Graft
Model and the Surface Monitor. The applied types of the Surface Monitors at the
Proximal and Distal are Point.
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Blood Flow Velocity Vs. Time at Proximal Region
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Figure 5.20: The pulsatile velocity at the Proximal Region in Ideal Straight, Case 1,
Case 2 and Case.3.
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Figure 5.21: The pulsatile velocity at the Distal Region in Ideal Straight, Case 1,
Case 2 and Case 3.
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Table 5.7 : The Summary of the center of pulsatile velocity of blood flow at the
Proximal and Distal Region for Ideal Straight, Case 1, Case 2 and Case 3.

Centre Velocity, v, (m/s)
Proximal Distal
Systolic Phase | Diastolic Phase | Systolic Phase | Diastolic Phase
Ideal Straight 0.1756 0.0633 0.1754 0.0636
Case 1 0.2097 0.1412 0.2113 0.1425
Case 2 0.2454 0.1657 0.2519 0.1683
Case 3 0.2961 0.1111 0.2919 0.1092

Figure 5.20 and 5.21 shows the center of the pulsatile velocity“of blood flow at
the Proximal and Distal Region in the vein graft model of Ideal Straight, Case 1, Case 2
and Case 3. The highest velocity of blood flow occurs in.Case 3 of the vein graft model
and the values of blood flow gradually decrease in, Case 2, Case 1 and Ideal Straight
Case at systolic phase as shown in Table 5.7, At'diastolic phase, the vein graft model in
Case 3 also demonstrates the highest'velocity of blood flow and the values of blood
flow gradually decrease in Case-2,.Case 1 and Ideal Straight Case. The increase in
velocity especially in Case 3-happens due to a decrease of the flow area in the vein. The
tolerance velocity from clinical data is +/- 0.006 m/s for systolic phase and +/- 0.00375
m/s for diastolic-phase. Based on table 5.7, a mismatched over than 10% should be

avoided because of acceptable tolerance velocity.

This experiment work has been conducted further in details by capturing the
velocity profile in blood flow at the proximal and distal region in all cases. In order to
capture the velocity profile, the line has been chosen again as the type of monitoring
surface as shown in Figure 5.13. The results of this experiment are shown in Figure

5.22,5.23, 5.24 and 5.25. The summary of these results are shown in Table 5.8.

Figure 5.22, 5.23, 5.24 and 5.25 show the velocity profile of blood flow at the

Proximal and Distal Region of the vein graft model in Ideal Straight Case, Case 1, Case
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2 and Case 3. Based on Table 5.8, the highest velocity of blood flow occurs in Case 3
of the vein graft model and gradually decreases in Case 2, Case 1 and Ideal Straight

Case.

Systolic Phase at Proximal Region
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- Riu
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Figure 5.22: The velocity profile-of blood flow at the proximal region in Ideal
Straight, Case 1,Case 2 and Case 3 during systolic phase.
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Figure 5.23: The velocity profile of blood flow at the proximal region in Ideal
Straight, Case 1, Case 2 and Case 3 during diastolic phase.
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Systolic Phase at Distal Region
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Figure 5.24: The profile of blood flow at the distal region in Ideal Straight, Case 1,
Case 2 and Case 3 during systolic phase.
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Figure 5.25: The velocity profile of blood flow at the distal region in Ideal Straight,
Case 1, Case 2 and Case 3 during diastolic phase.
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Table 5.8: Summary of the center of pulsatile velocity of blood at the Proximal and
Distal Region in Ideal Straight, Case 1, Case 2 and Case 3 (Captured by velocity

profiles).

Centre Velocity, v, (m/s)

Proximal

Distal

Systolic Phase

Diastolic Phase

Systolic Phase

Diastolic Phase

Ideal Straight 0.1732 0.0693 0.1730 0.0694
Case 1 0.2095 0.0836 0.2118 0.0847
Case 2 0.2445 0.0976 0.2504 0.1003
Case 3 0.2930 0.1187 0.2887 0.1172

Figure 5.26 shows the schematic figure of the Over-Length Kinked Vein Graft

Model that represents the models of Ideal Straight, Case(A, Case B and Case C. Where

R,, is the vein internal radius, O, is the centre,of‘the vein, —R,, is the vein internal

radius and a is the amplitude. All dimensions,can be referred in Table 5.5. The Point is

also chosen as the Surface Monitors-for pulsatile velocity observation in these models

because it is more suitable in monitoring the pulsatile velocity observation compared to

Line. These points are also.placed at the Proximal and Distal of the vein graft models.

)

Surface Monitor (Point)

Blood Flow

RELM

Proximal ; N

O w -
_Rz’r _Riv

Surface Monitor (Point)

Figure 5.26: The schematic figure of the Over Length Kinked Vein Graft Models and
the Surface Monitor. The applied types of Surface Monitors at the Proximal and Distal

are Points.
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Blood Flow Velocity Vs. Time at Proximal Region
0.3

0.25

Systolic Phase .

0.2

Velocity, m/s 015 A ) —o—Ideal Stlﬂlght
. 01 I( \ —-Case A
' 'g/
0.05

0

Case B

—=—("age C

4 6 3 10

Time, s

Figure 5.27: Pulsatile velocity at the Proximal Region in Ideal Straight, Case A,
Case B and Case.C.
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Figure 5.28: Pulsatile velocity at the Distal Region in Ideal Straight, Case A, Case B
and Case C.
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Table 5.9:Summary of the centre of pulsatile velocity of blood flow at the Proximal and
Distal Region in Ideal Straight, Case A, Case B and Case C.

Centre Velocity, v, (m/s)
Proximal Distal
Systolic Phase | Diastolic Phase | Systolic Phase | Diastolic Phase
Ideal Straight 0.1756 0.0605 0.1756 0.0605
Case A 0.1721 0.0562 0.1721 0.0561
Case B 0.1721 0.0562 0.1721 0.0562
Case C 0.1720 0.0562 0.1720 0.0562

Figure 5.27 and Figure 5.28 show the centre of pulsatile.velocity of blood flow
at the Proximal and Distal Region of the vein graft model in Ideal Straight, Case A,
Case B and Case C. From the observation, all cases;demonstrate no obviously different
in velocity values at all positions in Table 5.9.and even in all phases. However, based
on clinical data, all kinking cases cannot be applied for surgery because the blood that
flow through those models are too_slow and also out of acceptable ranges. In other

words, kinked wavy sinusoidalveins must be below than 0.0005 m height.

This experimental work also has been carried further in details by capturing the
velocity profilg,in blood flow at the proximal and distal region in Ideal Straight, Case
A, Case B-and Case C as performed in previous internal mismatch cases. In order to
capture the velocity profile, the line has also been chosen as the types of monitoring
surface as shown in Figure 5.13. The results of this experiment are shown in Figure

5.29, 5.30, 5.31 and 5.32. The summary of these results are shown in Table 5.10.
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Figure 5.29: The velocity profile of blood flow at the'proximal region in Ideal
Straight, Case A, Case B and Case C during systolic phase.

Diastolic Phase at Prgximal Region
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Figure 5.30: The velocity profile of blood flow at the proximal region in Ideal
Straight, Case A, Case B and Case C during diastolic phase.
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Systolic Phase at Distal Region
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Figure 5.31: The velocity profile of blood flow at the distal region in Ideal Straight,
Case A, Case B and Case C duringsystolic phase.
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Figure 5.32: The velocity profile of blood flow at the distal region in Ideal Straight,
Case A, Case B and Case C during diastolic phase.
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Table 5.10: Summary of the centre of pulsatile velocity of blood flow at the
Proximal and Distal Region for Ideal Straight, Case A, Case B and Case C
(Captured the velocity profile).

Centre Velocity, v, (m/s)

Proximal

Distal

Systolic Phase

Diastolic Phase

Systolic Phase

Diastolic Phase

Ideal Straight 0.1732 0.0693 0.1730 0.0693
Case A 0.1721 0.0561 0.1721 0.0561
Case B 0.1721 0.0562 0.1721 0.0562
Case C 0.1720 0.0562 0.1720 0.0558

Figure 5.29, 5.30, 5.31 and 5.32 show the velocity profile of blood flow at the
Proximal and Distal Region of the vein graft model-in-ldeal Straight Case, Case A,
Case B, Case C. From table 5.10, all cases also{demonstrate no obviously different in

velocity values at all positions and even in.allphases.

5.4.3 Results of Pressure Gradient Observation in the Laminar Steady State Flow

The experiment has been extended by monitoring on the pressure gradient in the
laminar ‘steady state flow. This variable has also received considerable in vascular
surgery and predictive value for long-term survival of the vein graft model. The
experiment has been performed on the same models that applied in the velocity
observation. The schematic figure, the monitoring surface and the dimension for the
vein graft models can be referred in Figure 5.13 and Table 5.3.The inlet velocity of
12.5 cm/s as the velocity is also applied at the proximal of the vein graft model in all

cases for this experiment.
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Figure 5.33: The proximal pressure in ldeal Stra’i&rb\lase 1, Case 2 and Case 3.
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Figure 5.34: The distal pressure in Ideal Straight, Case 1, Case 2 and Case 3.
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Table 5.11: Summary of the centre pressure of blood flow at the Proximal and
Distal region in Ideal Straight, Case 1, Case 2 and Case 3

Centre Pressure, P, (Pa)
Proximal Distal
Ideal Straight 102136 101360
Case 1 102281 101362
Case 2 102449 101360
Case 3 102644 101359

Figure 5.33, Figure 5.34 and Table 5.11 show the proximal‘and distal pressure
in ldeal Straight, Case 1, Case 2 and Case 3. All cases in Figure 5.33 and Figure 5.34

show the highest value in the pressure contribution oecur in Case 3.

Pressure Gradient in Steady State Blood Flow
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Figure 5.35: The pressure gradient in Ideal Straight, Case 1, Case 2 and Case 3.
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Table 5.12 : Summary of the centre of pressure gradient in Ideal Straight, Case 1,
Case 2 and Case 3.

Centre of Pressure Gradient, AP, (Pa/m)
Ideal Straight 7760
Case 1 9190
Case 2 10890
Case 3 12850

Figure 5.35 shows the pressure gradient in all cases. Based on Table'5,12, the ideal
straight demonstrates the lowest pressure gradient. The increase «0f pressure gradient

value is due to the increase of mismatched ratio.

Pressure gradient on the over length kink models have also been monitored. The
applied models are also the same as applied for. the velocity observation. The blood
velocity of 12.5 cm/s is also applied at the proximal region in every vein graft models.
For details of the dimension, the schematic figure and the monitoring surface are shown

in Table 5.5 and Figure 5.16.
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Figure 5.36: The proximal pressure in Ideal Straight, Case A, Case B and Case C.
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Figure 5.37: The distal pressure in Ideal Straight, Case A, Case B and Case C.

Table 5.13: Summary of the centre pressure of blood flow at the Proximal and

Distal region in Ideal Straight, Case A-Case B and Case C

Centre Pressure, P, (Pa)
Proximal Distal
Ideal Straight 102135.6 101360.3
Case A 102292 101486
Case B 102298 101486
Case C 102311 101487

Figure 5.36, Figure 5.37 and Table 5.13 show the proximal and distal pressure
in ldeal Straight, Case A, Case B and Case C. All cases in Figure 5.33 and 5.34 show

the pressure contribution is in vertical form. The lowest value in pressure contribution

happens at ideal straight case.
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Pressure Gradient in Steady State Blood Flow
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7700 7900 q100 8300 Case B
——ase C
—Riv
Pressure, Pa

Figure 5.38: The pressure Gradient in Ideal Straight,'Case A, Case B and Case C.

Table 5.14: Summary of the centre of pressure gradient for Ideal Straight, Case A,

Case B‘and Case C
Centre of Pressure Gradient, AP, (Pa/m)
Ideal Straight 7754
Case A 8052
Case B 8088
Case C 8158

Figure 5.38 shows the pressure gradient in all cases. Based on Table 5.14, the
ideal straight still demonstrates the lowest pressure gradient. The increase of amplitude

of sinusoidal two cycled wavy RSVG causes the increase of pressure gradient.
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5.4.4 Results of Pressure Observation in the Laminar Pulsatile Flow

The experiment has been continued by monitoring the pressure gradient in the
laminar pulsatile flow as stated in previous subtopic on velocity observation. In this
experiment, the same models in the steady flow experiment are also utilized but the
UDF flow and Points surface monitor are applied. The UDF containing-6:25 cm/s for
minimum velocity and 18.75 cm/s for maximum velocity is also applied in this

experiment at the proximal in all cases.

All dimensions can be referred in Table 5.3.-The-wein graft model with the point
surface monitor is chosen. The schematic figure of the vein graft model that represents
models of all cases can be referred in<Figure 5.19. The Point is also chosen as the
Surface Monitors for pulsatile pressureobservation in these models because it is more
suitable in monitoring the pulsatile pressure observation compared to Line. These

points are placed at the Proximal and Distal of the vein graft models.
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Blood Pressure Vs. Time at Proximal Region
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Figure 5.39: The proximal pressure in Ideal Straight; Case 1, Case 2 and Case 3.

Blood Pressure Vs, Time at Distal Region
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Figure 5.40: The distal pressure in Ideal Straight, Case 1, Case 2 and Case 3.
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Table 5.15:Summary of the centre of the pulsatile blood pressure at the Proximal and
Distal Region for Ideal Straight, Case 1, Case 2 and Case 3

Centre Pressure, P (Pa)

Proximal Distal
Systolic Phase | Diastolic Phase | Systolic Phase | Diastolic Phase
Ideal Straight 102558 101635 101384 101340
Case l 102754 101695 101379 101339
Case 2 102996 101763 101375 101339
Case 3 103334 101836 101373 101338

Figure 5.39 and Figure 5.40 show the centre of pulsatile blood pressure at the
Proximal and Distal region in the vein graft model of all cases. The centre pulsatile
blood pressure at the proximal region in Case 3 demonstrates the highest value in this

experiment as shown in Table 5.15.

BloodPressure Gradient Vs. Time

20000 A

15000

AP .. Pa/m 10000 —o—Ideal Sfl‘ﬂight

= Case 1
4 {
== Case 3
0
4 6 8 10
Time, s

Figure 5.41: The pressure gradient in Ideal Straight, Case 1, Case 2 and Case 3.
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Table 5.16: Summary of the centre of pulsatile blood pressure gradient between the
Proximal and Distal Region for Ideal Straight, Case 1, Case 2 and Case 3

Gradient of Centre Pressure, AP, (Pa/m)

Systolic Phase Diastolic Phase
Ideal Straight 11740 2950
Case l 13750 3560
Case 2 16210 4240
Case 3 19610 4980

Figure 5.41 shows the pulsatile pressure gradient in all cases.«Based on Table
5.16, Case 3 shows the highest reduction at systolic phase in_the amplitude of flow
wave compared to other cases even in diastolic phase. The mismatched in attachment
leads over high speed and high pressure gradient. The ratio of mismatched attachment
over than 1:1.1 should be avoided due to out of”“acceptable tolerance in pressure

gradient.

Monitoring in pressure gradient on the Over Length Kink Models was carried
out by generating the UDF flow and selecting points as the monitor surface to be used.
These points were located at the proximal and distal of the vein graft models. Figure
5.26 and Table 5.5 show the schematic figure and all dimensions of the vein graft

model of allcases.
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Blood Pressure Vs. Time at Proximal Region
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Figure 5.42: The proximal pressure in ldeal Straight,/Case A, Case B and Case C

Blood Pressure Vs Time at Distal Region
101600

al A
101550
\ \

/ /
Pressure, Pa (101450 II \\ ,I \\ :S::iiﬂ'aight
T
4

101500

101400
—d—=Case B

101350
== Case C
101300

Tt

6 3 10

Time, s

Figure 5.43: The Distal pressure in Ideal Straight, Case A, Case B and Case C
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Table 5.17: Summary of the centre of pulsatile blood pressure at the Proximal and
Distal Region for Ideal Straight, Case A, Case B and Case C

Centre Pressure, P (Pa)

Proximal Distal
Systolic Phase | Diastolic Phase | Systolic Phase | Diastolic Phase
Ideal Straight 102558 101635 101384 101340
Case A 102808 101604 101571 101571
Case B 102822 101604 101572 101572
Case C 102848 101608 101575 101575

Figure 5.42 and Figure 5.43 show the centre of pulsatile blood pressure at the
Proximal and Distal region in the vein graft model of all cases. Based on Table 5.17, all
irregular vein graft models demonstrate high pressure in systolic phase at the proximal
and low pressure in diastolic phase compared to ideal straight case. However, all

irregular cases demonstrate high pressure at distal region in systolic and diastolic phase.

Blood Pressure Gradient Vs. Time

13000
12000
11000
10000
9000
8000
7000
6000
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4000
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Case B

e (Cage C

APa, Pa/m

Figure 5.44: The Pressure Gradient in Ideal Straight, Case A, Case B and Case C.

111



Table 5.18: Summary of the centre of pulsatile blood pressure gradient between the
Proximal and Distal Region for Ideal Straight, Case A, Case B and Case C

Gradient of Centre Pressure, AP, (Pa/m)
Systolic Phase Diastolic Phase
Ideal Straight 11740 2950
Case A 12358 2328
Case B 12450 2321
Case C 12604 2347

Figure 5.44 shows the pulsatile pressure gradient in all cases.“Based on Table
5.18, all irregular geometry cases demonstrate high value in.the pressure gradient at
systolic phase and low value in the pressure gradient at.diastolic phase compared to
ideal straight geometry. High pressure gradient at“systolic phase and low pressure
gradient at diastolic phase in all irregular geometry happen due to curvature geometry
and the existing of flow resistance:, All kinking cases are not applicable in the
procedure because all of them demonstrate high pressure gradient compared to ideal

straight case.

5.4.5 Results-of the WSS Observation in the Laminar Steady State Flow

The observation is furthered on the wall shear stress in the laminar steady state
flow. The WSS also has considerable clinical relevance in vascular surgery and
predictive value for long-term survival of the vein graft model (i.e. pressure gradient).
This is due to the fact that it provides information about the magnitude of force that the
blood exerts on the vessel wall as well as the force exerted by one fluid layer on

another which has been debated for several years.
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Figure 5.45 shows the schematic figure of the Internal Diameter Mismatched
Vein Graft Model that represents the models of Ideal Straight, Case 1, Case 2 and Case

C. R,, isthe Artery internal radius, O, is the Centre of the artery, —R,, is the Artery
internal radius, R;, is the Vein internal radius, O, is the Centre of the vein, —R,,, is
the Vein internal radius and L, is the Vein length and it is constant. For the WSS

Observation in the Laminar Steady State Flow, a Wall is chosen. The wall is placed at
the wall of the vein graft models. The summary of dimension and ratio-of attachments
for the internal diameter mismatched vein graft models can be referred in Table 5.3 and
the inlet velocity of 12.5 cm/s as velocity is also applied at’the proximal of the vein
graft model in all cases for this experiment.

I‘E: onstant
Blood Flaw
R[r.'

Vessel Wall

Ly

constant

L |

e - - - - - - - - - - - - - ——

___________________________________________________

e e e e e e e e e e e e e e e e e = >

Figure 5.45: The schematic figure of Internal Diameter Mismatched Vein Graft Models
and Surface Monitor. The applied type of Surface Monitor at the vessel wall is Wall.

Figure 5.46, 5.47, 5.48 and 5.49 show the WSS in Ideal Straight, Case 1, Case 2
and Case 3. Based on Table 5.19, the highest value of the WSS occurs in Case 3 of the

vein graft model and the values of the WSS gradually decrease in Case 2, Case 1 and
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Ideal Straight Case. The increase of the mismatch percentage leads to the increase of

pressure gradient.
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Figure 5.46: Contours of the Wall Shear Stress in the Ideal Straight Case
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Figure 5.47: Contours of the.\Wall Shear Stress in Case 1
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Figure 5.48: Contours of the Wall Shear Stress in Case 2

115



4.27e+00
g 4.10e+00
| 3.93e+00

3.76e+00
3.59e+00
3.42e+00
3.25e+00
3.08e+00
2.90e+00
2.73e+00
2.56e+00
2.39e+00
2.22e+00
2.05e+00
1.88e+00
1.71e+00
1.54e+00
1.37e+00
1.20e+00
1.03e+00
8.54e-01

6.83e-01

5.13e-01

3.42e-01

1.71e-01

0.00e+00

Z——XK

Contours of the Wall Shear.Stress in Case 3

Figure 5.49: Contours of the Wall Shear Stress in Case 3

Table 5.19: Summary of the steady WSS at the Wall Region for Ideal Straight, Case 1,

Case 2 and Case 3.

Wall Shear Stress, t,,. (Pa)

Ideal Straight 2.125
Case 1 3.062
Case 2 3.767
Case 3 4.272

The experiment was furthered on the over length kink models. The 12.5 cm/s is

also applied at the

proximal region in every vein graft model. For the details of

dimensions, the schematic figure and the monitoring surface are shown in Table 5.5

and Figure 5.50. Where R, is the Vein internal radius, O;,, is the Centre of the vein,

—R,, is the Vein internal radius and a is the amplitude height.
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Vessel Wall Blood Flow

!

Figure 5.50: The Schematic Figure of the Over-Length Kinked Vein Graft Models and
the Surface Monitor. The applied type of Surface Monitors at the Proximal and Distal
is\Wall.

Figure 5.51, 5.52, 5.53 and’5.54 show the WSS in Ideal Straight, Case A, Case
B and Case C. Based on. Table 5.20, the lowest value of the WSS occurs at ideal
straight case of the*vein graft model and the values of the WSS gradually increase in
Case A, Case B’and Case C. The increase of the WSS value is due to the increase in the

blood fleworesistance or amplitude height of the curvature and pressure gradient.
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Figure 5.51: Contours of the Wall Shear Stress in Ideal Straight Case
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Figure 5.52: Contours of the Wall Shear Stress in Case A
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Figure 5.53: Contours of the Wall.Shear Stress in Case B
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Figure 5.54: Contours of the Wall Shear Stress in Case C
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Table 5.20: Summary of the steady WSS at the Wall Region for Ideal Straight, Case A,
Case B and Case C.

Wall Shear Stress, t,,. (Pa)
Ideal Straight 2.125
Case A 2.521
Case B 2.514
Case C 2.563

5.4.6 Result of the WSS Observation in the Laminar Pulsatile‘Flow

The experiment on Internal Diameter Mismatched Vein Graft Models has been
continued on the WSS Observation in.the<Laminar Pulsatile Flow. In this experiment,
the same models and surface monitor-in the WSS Steady Flow experiment are used but
the UDF flow is applied. The-schematic figure, the surface monitor and the ratio of
attachments for the vein-graft model that represents the models of all cases can be
referred in Figure 5.3 and Table 5.3. The UDF containing 6.25cm/s for minimum
velocity and. 18.75 cm/s for maximum velocity for maximum is also applied in this

experiment at the proximal in all cases as previous laminar pulsatile flow experiment.
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Figure 5.55: Contours of the Wall Shear Stress.in Ideal Straight Case at Diastolic
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Figure 5.56: Contours of the Wall Shear Stress in Ideal Straight Case at Systolic Phase
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Figure 5.57: Contours of the Wall Shear'Stress in Case 1 at Diastolic Phase
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Figure 5.58: Contours of the Wall Shear Stress in Case 1 at Systolic Phase
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Figure 5.59: Contours of Wall Shear Stress in the Case 2 at Diastolic Phase
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Figure 5.60: Contours of the Wall Shear Stress in Case 2 at Systolic Phase
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Figure 5.61: Contours of the Wall Shear Stress in Case 3 at Diastolic Phase
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Figure 5.62: Contours of the Wall Shear Stress in Case 3 at Systolic Phase
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Table 5.21:Summary of the pulsatile WSS at the Wall Region for Ideal Straight,
Case 1, Case 2 and Case 3.

Wall Shear Stress, t,,. (Pa)

Systolic Phase | Diastolic Phase
Ideal Straight 3.636 1.005
Case 1 3.640 0.906
Case 2 4.362 0.957
Case 3 5.283 1.073

Figure 5.55, 5.56, 5.57, 5.58, 5.59, 5.60, 5.61 and 5.62 show the WSS in Ideal
Straight, Case 1, Case 2 and Case 3. Based on Table 5.21, the highest value of the WSS
occurs in Case 3 of the vein graft model at systolic phase. However, there were no
significant difference in values of the WSS in Ideal. Straight Case, Case A, Case B and
Case C at diastolic phase. The over speed (out of ‘acceptable range) in blood flow and

high pressure gradient will affect the WSS-values.

Monitoring in the WSS was-carried on the Over Length Kink Models. The
generation of the UDF flow.and selection of walls as monitor surface are also used.
Figure 5.50 and Table 5.5 show the schematic figure and all dimensions of the vein

graft model for all cases.
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Figure 5.63:Contours of the Wall Shear Stress in Ideal Straight Case at Systolic Phase.
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Figure 5.64: Contours of the Wall Shear Stress in Ideal Straight Case at Diastolic

Phase.
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Figure 5.65: Contours of the Wall'Shear Stress in Case A at Systolic Phase.
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Figure 5.66: Contours of the Wall Shear Stress in Case A at Diastolic Phase
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Figure 5.67: Contours of thedWall Shear Stress in Case B at Systolic Phase
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Figure 5.68: Contours of the Wall Shear Stress in Case B at Diastolic Phase
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Figure 5.69: Contours of the Wall.Shear Stress in Case C at Systolic Phase.
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gure 5.70: Contours of the Wall Shear Stress in Case C at Diastolic Phase.
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Table 5.22 : Summary of the pulsatile WSS at the Wall Region for Ideal Straight, Case
A, Case B and Case C.

Wall Shear Stress, t,,. (Pa)

Systolic Phase | Diastolic Phase
Ideal Straight 3.636 1.0050
Case A 4.023 0.7250
Case B 4.030 0.7310
Case C 4.120 0.7530

Figure 5.63, 5.64, 5.65, 5.66, 5.67, 5.68, 5.69 and 5.70 show the-pulsatile WSS
in all cases. Based on Table 5.22, all irregular cases demonstrate, higher WSS value
compare to ideal straight case at systolic phase, but lower WSS value at diastolic phase
compare to ideal straight case. From the observationthe curvature in geometry causes

high pressure gradient which leads to high WSS value.

5.5 Result and Discussion of the.lrregular Vein Graft Models

The discussion of results focuses on the blood velocity, blood pressure gradient
and the WSS in irregular vein graft models and the long-term effects in thrombosis re-
formation. Ideal Straight Case, Case 1, Case 2 and Case 3 are presented in mismatched
percentage. ldeal Straight Case is represented by mismatched percentage 0%. Case 1,

Case 2 and Case 3 are represented by 10%, 20% and 30% respectively.

Meanwhile, for the Ideal Straight Case, Case A, Case B and Case C are
presented in amplitude height. The amplitude height of OR, 1R, 2R and 3R represents

the Ideal Straight Case, Case A, Case B and Case C, respectively, where R is 0.05cm.
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5.5.1 Result and Discussion on the Velocity Observation in Irregular Vein Graft

Models
Centre Velocity Vs Mismatched Percentage
0.3
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) ——Internal
Centre 0.2 Diameter

velocity, i / Mismatched
m's 0.15 /
<

0.1

0.05
0 10 20 30

Mismatched Percentage) %o

Figure 5.71: The Centre velocity in different percentage or cases of the internal
diameter.mismatched model
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Figure 5.72: The Centre velocity in different amplitude or cases of the over length
kinked model
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Figure 5.73 : The Centre pulsatile velocity in different percentage or cases of the
internal diameter mismatched model.
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Figure 5.74 : The Centre pulsatile velocity in different amplitude or cases of the over
length kinked model

All mismatched cases demonstrate high value in velocity due to discrepancy in
the cross section between the artery and vein as shown in Figure 5.71 and Figure 5.73.

It happens because the blood being pushed (force through) at higher speed from the
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wide arterial vessel to the narrow vein (Wilmer at al., 1998). Meanwhile, all kinking
cases demonstrate low value in velocity due to similarity in the cross section between
the artery-vein attachment and the curvature geometry as shown in Figure 5.72 and

Figure 5.74.

The mismatched and kinked wavy sinusoidal veins should reach below than
10% and 1R amplitude height in order to ensure it is applicable for the vein grafting
procedure. This is because the blood flows through those models are too fast in over
than 10% mismatched models at systolic and diastolic phase and)too slow in over than

1R amplitude height of the kinking model at diastolic phase.

5.5.2 Result and Discussion on the Pressure Gradient Observation in the Irregular

Vein Graft Models

Centre of Pressure Gradient Vs. Mismatched

Percentage
13500
12500 >
500
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AP, Pa/m 10500 Diameter
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500 &

0 10 20 30
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Figure 5.75 : The centre of pressure gradient in different percentage or cases of the
internal diameter mismatched model.
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Figure 5.76: The centre of pressure gradient in different curvatures or cases of over the
length kinked model.
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Figure 5.77 : The centre of pulsatile pressure gradient in different percentage or cases
of the internal diameter mismatched model.
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Centre of Pulsatile Pressure Gradient Vs. Amplitude
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Figure 5.78 : The centre of pulsatile pressure gradient in-different curvature or cases of
the over length kinked madel.

High blood pressure gradient is shown in Figure 5.75 and Figure 5.77 due to the
cross section discrepancy between the'eross section of the arteries and veins leading to
high velocity flow. All kinking eases also demonstrate high blood pressure gradient at
systolic phase and low blood pressure at diastolic phase due to the curvature geometry

which leads to high and low velocity flow as shown in Figure 5.76 and Figure 5.78.

All“irregular models should be below than 10% mismatched and 1R amplitude
height(to" ensure prolonging survival. This is because the alteration of biological
pulsatile pressure gradient is strongly related to the vein graft life span and this is

supported by Christopher L. Skelly (2001).
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5.5.3 Result and Discussion on the WSS Observation in Irregular Vein Graft

Models

Steady WSS Vs. Mismatched Percentage

4.5
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Figure 5.79 : The steady WSS in different percentage or cases of the internal diameter
mismatched model.
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Figure 5.80 : The steady WSS in different curvatures or cases of the over length kinked
model.
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Figure 5.81 : The pulsatile WSS in different percentageor cases of the internal
diameter mismatched model:
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Figure 5.82 : The Pulsatile WSS in different curvatures or cases of the over length
kinked model.

High pressure gradient at systolic and diastolic phases causes high WSS in all

mismatched cases because of high pressure gradient. Meanwhile, high WSS was only
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seen at systolic phase in all kinking cases because of the existing of high pressure

gradient.

The abnormal shear stresses impact, such as very high or low pulsatile shear
stresses may also lead to the thrombus formation. It happens due to a change of the
biological behavior of platelet in the blood flow. Wilmer W. Nichols et al. (1998) and
Krishnan B. Chandran et al. (2007) also suggested that the thrombus formation
involves regulation of the release by the Endothium-Derived Relaxing Factor (EDRF),
which believed to be nitric oxide. The modulation of the EDRF)released by the WSS
also influences the development of atherosclerosis via another mechanism and reduces

the vein graft life span.
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CHAPTER 6

CONCLUSION

6.1 Summary

It is noted that the unpredicted failure in the vein ‘graft can occur after the
procedure was performed. Most defected fingers were pale and become cool as
reported from previous studies. It happens becausethe flow of blood is blocked due to
the formation of thrombus. The irregular vein geometry is believed to be the initiation
of the thrombus formation. Based on several studies conducted previously, the irregular
vein graft geometry occurs due-tesmismatching in internal diameter between the vein
graft and the recipient artery-as well as kinking because of the over size in length of the
vein graft.

In biofluid studies, the abnormal behavior of the blood flow in velocity,
pressure_gradient and the WSS impact in the vessel wall will cause the growth of
thrombus. In this study, we decided to mechanically analyze the behavior of blood flow
and focus on velocity, pressure gradient and the WSS impact on the wall of vein graft.
The 3D CFD Analysis was chosen as an experimental method since it provides high
accuracy result. Furthermore, the 3D Analysis is one of reliable and acceptable methods
that are still being applied by most researchers. The GAMBIT and the ANSYS Fluent
commercial software were used in this simulation work as they receive good feedbacks

based on reviews. The details of the vein graft geometry were decided after reading

139



clinical data in medical journals and having discussion with the surgeons. The 3D vein
graft geometries were constructed in the GAMBIT software by assuming the vein graft
geometries are cylindrical in shape. At this stage, we were dealing with the meshing
drawing of the vein graft geometry. The quantity of cells possibly needs to be more but
it still yield good results. The useless quantities of cell might affect the calculation of
time at the simulation stage. For the analysis part, the created vein graft models were
imported from the GAMBIT software into the ANSYS Fluent software.\In the ANSYS
Fluent software, the desired location and types of results monitoring and preferred
parameter can be set. In this simulation work, the proximal{ distal and wall of the vein
grafts were selected as the location of the result monitering. The point, plane and wall
were applied as the types of monitoring views. The-experiment results were presented
in contours and graphs. The decision foratJlocations and types of monitoring views,
and collected results are based on previous research works. In order to achieve our
research goals, the pulsatile flow types were simulated on the vein graft models.
However, the steady state'flow is still needed and it plays an important role for result
verification. Even though the latest and the best commercial software (i.e. GAMBIT
and ANSY S Fluent) were implemented in this simulation work but it still requires some
verification works. Thus, the experiment results were verified by using theoretical
results. In this study, the error percentages were low and within the acceptable ranges.
The pulsatile laminar blood flow demonstrates an abnormal blood flow pattern
in the model of irregular formation geometries compared to an ideal straight model
(well matched in internal diameter and length). The vein graft models with the
mismatching in internal diameter problem demonstrate high value in velocity of the
blood flow, pressure gradient of blood flow between the proximal and distal, and the

WSS impact on the wall of the vein grafts. Meanwhile, low value in velocity of the
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blood flow, pressure gradient of the blood flow between the proximal and distal, and
the WSS impact on the wall geometries can be seen in the vein graft models with the
over length kinking problem.

The simulated models of irregular formation geometries have high possibility
and potential in the re-formation of thrombus since a reduction in the vein graft area
sizes (i.e. internal diameter mismatched problem) produced high value in velocity of
the blood, pressure gradient and the WSS compare to simulated .models of ideal
straight. Even though the over length kink problem models demanstrate low value in
velocity of blood and the WSS but, low pressure also initiates the re-formation of
thrombus.

In conclusion, all geometries have been{validated by simulating in the steady
state blood flow before furthering analysis:in, the pulsatile flow. The simulations in the
pulsatile blood flow type have been ‘done in order to imitate the real environment.
Critical ranges of geometry dimension have been identified. The only acceptable range
of the RSVGs sizes mismatching less than 10% and kinking (amplitude height) less
than 0.0005 m for 6.25'cm/s diastolic velocity blood flow. The simulation results reveal
that irregular. ggometry formation models could reduce the lifespan of the RSVG by
performingabnormal results in the blood flow velocity, pressure gradient and the WSS.

In the future, the well matched size in internal diameter and length of the RSVG
is suggested for the recipient artery to avoid any failures in the revascularization
procedure. Based on the experiment results of this research, it has been proven that the
well matched size in internal diameter and length of the RSVG shows good and
reasonable velocity of the blood flow, gradient pressure of the blood blow and the WSS

impact on the wall of the vein graft.
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6.2 Future Work

With regards to the future work, some recommendations on simulation are

listed below as well as in experiment.

® Simulation works should be carried out for more complex geometry such as
a real extracted Magnetic Resonance Imaging (MRI) 3D geometry, not by

assuming that vein graft model only in cylindrical in shape:

® Simulation works can be extended by setting the vein graft wall as porous

wall not only just rigid wall.
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APPENDIX A

Step of vein graft model geometry construction in GAMBIT 2.4.6.

< GAMEIT _Salver: FLUENT 5/6 ID: amp-0-001! | ——
File Edit Solver Hel Operation

(& 2| @) il
7 e g gulfis
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Figure A.1 : Geometry.construction of vein graft model.
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Figure A.2 : Geometry meshing construction of vein graft model.
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1 GAMBIT _Solver; FLUENT 5/6 1D: amp-0-001.
Operation

9| [@ Wl

Edit Solver

Specify Boundary Types
FLUENT 5/

Action:

@ add v Mody

+ Delets  + Delete all
Name: Type.

WELOCITY_IMLET [ VELOCITY_INL
WALL waLL
PRESSURE_OUTL [PRESSURE_OL
(R - - J—

I Show Iabels _I Show colors

Name:
Type:

WALL =]

Entity:

Lahel Type

CREEAETEFREIEE W I

i

g
Transcript Y Description 1
(Bttp: / /e, gno. org/copyleft/lesser htnl) £Y S R | 7 I
! Remove Edit
7
Command: Apply Reset Close

Figure A.3 : Geometry boundary condition.setting of vein graft model.
Velocity inlet as Proximal region (inlet), wall of vein graft model as Wall

region (wall) and pressure outlet as Distal Region (outlet).
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APPENDIX B

Analysis of vein graft model in ANSYS Fluent V12.1.

Mesh (Time=5.0000e+00) Dec 19, 2013
ANSYS'ELUENT 12.0 (3d, dp. pbns, lam, transient)

eparing mesh For display...
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- B

Figure B.1 : Problem Setup. Mesh ; Check icon for geometry volume status

whether in error or good..Solver ; Pressure-Based is selected since this
simulation deal with-low speed flow and absolute is selected in Velocity
Formulation. Steady time is chosen for steady state flow and Transient time

is chosen for pulsatile state flow.
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Figure B.2 : Problem Setup. Models ; Laminar, is\chosen as Viscous since all

simulations deal with laminar blood flow.
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Figure B.3 : Problem Setup. Materials ; Fluid (Blood) properties are inserted.
Fluid (air) and solid (aluminium) material are default setting by Fluent

ANSYS and no need to be defined.

153



x|
File Mesh Define Suface Display Report Poralel
E-W-@0[E+A] A@AMA-O-
Problem Setup Cell Zone Con
General Zore
Models
Materidls
Phases
Boundary Conditons
Mech Interfaces
Dynamic Mesh
Reference Values
Soution
Souton Methods
Solution Controls
Moritors
Soon s . ==
Calcation Actvities
Run Calaiation i
Results [fud
Graphics and Animatons (=
Plots mixture blood -
Reports [C]Porous Zone:
[ Source Terms
Mesh (Time=50000e+00) [CIFixed Values Dec 19, 2013
- 12.0 (34, dp, pbns, lam, transient)
Mo
otion | porous zone | Reacton | Source Terms | Fixed values |
nizture n
© Superfidal Velodty zones, o Rotation-s Origin Rotation-Axis Direction
Physical Veloaty default-interio X [z Xfo
velocity_inlet
wall
Y v
pressure_outlet ™ o [o
fluid
shell conduction 2 2y e
Done.
Preparing mesh for disp:
Done.
Reading "C :#Userstcanprd 125 anp- 0=0015#anp - 0- 0015-
bone- X
< 0 ) v

Figure B.4 : Problem Setup. Cell Zone Conditions’; Fluid (zone) is selected.
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Figure B.5 : Problem Setup. Boundary Conditions ; Velocity Inlet (zone) is selected

and desired velocity of blood flow is set. For the steady state flow, velocity is constant.
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Figure B.6 : Problem Setup. Boundary Conditions ; For the pulsatile state

flow, velocity is interpreted from udffile (see Appendix C) based on desired

axis direction.
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Figure B.7 : Problem Setup. Reference Values ; Computation from velocity

inlet (Proximal region) and Fluid is selected as Reference Zone as well.
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Figure B.8 : Solution. Solution Methods ; PISQ-is-selected as Scheme. In
order to optimize in calculating, Least Squeare Cell Based in Gradient,

Second Order in Pressure and Second Order Upwind in Momentum are

selected as well.
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Figure B.9 : Solution. Surface Monitors ; In order to collect analysis data,

we can create type of surface monitor and position.
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Figure B.10 : Solution. Solution Initialization.
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Figure B.11 : Solution. Calculation Activities ; We can save data file every

time step or desired iterations.
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Figure B.12 : Solution. Run calculation ; Time Step'Size is set as 1 and the
Number of Time Steps are 10 since only,2Q'seconds are required for this

simulation (applicable.onlyfor pulsatile flow).
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Figure B.13 : Result. Graphics and Animations ; For example, for the wall
of vein graft model, Contour of result is selected for graphics and there is

legend of value also available for reference.
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Figure B.14 : Results. Plots; XY Plots isiselected and export it to Microsoft
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APPENDIX C

User Define Function

File type: C File

Details:

#include "udf.h"

#include "math.h"

DEFINE_PROFILE(transient_velocity, thread, pesition)

float t, velocity;

face tf;

t = RP_Get_Real("flow-time");

velocity'=-0.0625+0.03125*sin(M_P1/2*t);

begin_f _loop(f, thread)

F_PROFILE(f, thread, position) = velocity;

end_f_loop(f, thread)
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