

A NEW FLEXIBLE CROSS CORRELATION (FCC) CODE FOR OPTICAL CDMA SYSTEMS

MOHD RASHIDI BIN CHE BESON (1140810644)

by

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

2014

ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah SWT for the opportunity to complete this thesis. I am indebted and grateful to many people who have helped me during the course of this research project in one way or another. In particular, I would like to acknowledge and express my deepest gratitude to respected supervisor, Prof. Dr. Syed Alwee Aljunid Syed Junid to whom I am greatly indebted for giving me the opportunity to further PhD in UniMAP under his supervision. His door has always been opened and I could always discuss with him no matter how busy he is. I also would like to express my sincere thanks to my co-supervisors Prof. Dr. Farid Ghani, Ir. Dr. Anuar and Dr. Hilal Adnan Fadhil for their guidances, supports and encouragements. My heartiest thank you to both of my beloved parents who always continuously pray for my success and fully supported me along the way. I would also like to acknowledge my siblings for their moral support and always keep thinking positive side in me. My endless thanks and deepest appreciations to the one who is very patient no other than my caring wife, Shafida Wati Kasim without her support, I could never complete this journey. Not forgetting my daughter, Nurhidayah Husna thank you for all the joy and happiness that you bring into my life. My sincere appreciations for my colleagues, Dr. Amir, Dr. Junita, Mr. Abdul Rahman, Dr. Hamza, Mr. Abdullah and all CoE ACE-SCCE Optical group that has been involved in this work directly or indirectly for their assistance, ideas and contributions. Last but not least, I would like to acknowledge the Malaysian Ministry of Education and UniMAP for supporting my studies, financially. Amin.

Mohd Rashidi Bin Che Beson

TABLE OF CONTENTS

PAGE

THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	x
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv
ABSTRAK	xvi
LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS ABSTRAK ABSTRACT CHAPTER 1 INTRODUCTION	xvii
CHAPTER 1 INTRODUCTION	
1.1 Introduction	1
1.2 Problem Statements	3
1.3 Research Objectives	5
1.4 Scope of Research Works	5
1.5 Thesis Outline	7
CHAPTER 2 LITERATURE REVIEW	

2.1	Introduction	9
2.2	Optical F/WDMA (OF/WDMA)	12
2.3	Optical TDMA (OTDMA)	14
2.4.	Optical CDMA (OCDMA)	16
2.5	OCDMA System Classifications	18
	2.5.1 Coherent OCDMA System	18

	2.5.2	Incoherent OCDMA System	20
2.6	Coding	g Techniques	22
	2.6.1	Spectral Phase Coding	23
	2.6.2	Spectral Amplitude Coding	24
2.7	OCDN	A Detection Techniques	27
	2.7.1	Complementary Subtraction Detection Technique	28
	2.7.2	AND Subtraction Detection Technique	30
2.8	OCDN	AA Implementation Challenges and Tradeoffs	33
2.9	OCDN	AA Codes	34
	2.9.1	AA Implementation Challenges and Tradeoffs AA Codes Modified frequency hopping (MFH) code Modified double weight (MDW) code	36
	2.9.2	Modified double weight (MDW) code	38
	2.9.3	Dynamic cyclic shift (DCS) code	41
	2.9.4	Hadamard Code	43
2.10	Summ	Dynamic cyclic shift (DCS) code Hadamard Code ary	45
		00 V	
СНА	PTER	3 RESEARCH METHODOLOGY	
3.1	Introdu	.65	46
3.2		dology	47
3.3	Design	n and Performance Parameters	51
	3.3.1	Bit Rate	51
	3.3.2	Transmit Power	52
	3.3.3	Chip Spacing	52
	3.3.4	Effective Received Power (P_{sr})	53
	3.3.5	Number of users (K)	54
	3.3.6	Code Weight (W)	54
	3.3.7	Code Length (N)	54
3.4	Signal	s to Noise Ratio and Bit Error Rate	55
3.5	Simula	ation Analysis	56
3.6	Optica	ll Light Sources	57

3.7	Modulation Techniques	59
3.8	Detection Techniques	60
3.9	Photo-detector	62
3.10	Summary	64

CHAPTER 4 DEVELOPMENT OF FCC CODE

4.1	Introduction	65
4.2	Mathematical Preliminaries	68
4.3	Code Construction	70
	4.3.1 Code Design Algorithm	72
	4.3.2 FCC Code Properties	77
4.4	Codes Comparison	79
4.5	Encoder and Decoder Design	80
	4.5.1 FCC Code Encoder Design	82
	4.5.2 FCC Code Decoder Design	83
4.6	Summary	84

CHAPTER 5 THE PERFORMANCE OF FCC CODE IN OCDMA SYSTEM

5.1	Introd	uction	86
5.2	Multip	ble access interference (MAI)	86
5.3	Noise	Consideration	88
	5.3.1	Phase induced intensity noise (PIIN)	88
	5.3.2	Shot Noise	89
	5.3.3	Thermal Noise	90
5.4	Theor	etical Performance Analysis	91
	5.4.1	Power spectral density (PSD)	92
	5.4.2	SNR and BER Derivation	94

5.5	Theore	tical Results	97
	5.5.1	Effect of Number of Users on Various SAC-OCDMA Codes	98
	5.5.2	Effect of Number of Users on Code Weights	101
	5.5.3	Effect of Number of Users on Received Power (P_{sr})	103
	5.5.4	Effect of Code Length on Code Weights	104
	5.5.5	Effect of PIIN Noise on Received Power (P_{sr})	106
	5.5.6	Effect of PIIN Noise on Bit Rate	107
	5.5.7	Effect of PIIN Noise on Number of Users	108
	5.5.8	Effect of Number of Users Considering PIIN Noise Only	110
	5.5.9	Effect of Shot Noise on Received Powers (P _{st})	112
	5.5.10	Effect of PIIN and Shot Noises on System Performance	113
	5.5.11	Effect of Received Power (P_{sr}) Considering All Noise	115
	5.5.12	Effect of Noise Influences on Received Power (P_{sr})	116
	5.5.13	Effect of Bit Rate with Detection Techniques on Number of Users	118
	5.5.14	Effect of Detection Techniques on SNR	119
	5.5.15	Effect of Bit Rate Utilizing AND Subtraction	
		Detection Technique on Received Power (P_{sr})	120
	5.5.16	Effect of Detection Techniques on Bit Rate	121
	5.5.17	Effect of Code Weights on Bit Rate	123
	5.5.18	Effect of Various SAC-OCDMA codes on Bit Rate	123
	5.5.19	Effect of Bit Rates on Number of Users	125
	5.5.20	Effect of Bit Rates on Received Power (P_{sr})	127
5.6	Simula	ation Results	130
	5.6.1	Effect of Bit Rates on Fiber Length	132
	5.6.2	Effect of SAC-OCDMA Codes on Fiber Length	133
	5.6.3	Effect of Bit Rate on System Performance	135
	5.6.4	Effect of SAC-OCDMA Codes on Bit Rate	136
	5.6.5	Effects of 622 Mbps Bit Rate on Chip Spacing	137
5.7	Comp	arisons of Theoretical and Simulation Results	138
5.8	Summ	ary	141

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS

6.1	Conclusions	143
6.2	Future Works	145
REF	FERENCES	147
LIS'	T OF PUBLICATIONS T OF AWARDS T OF AWARDS TO FAWARDS	157
LIS'	T OF AWARDS	160
	origina	
	redby	
	orotect	
	.xenis i	
	This	
	\odot	

LIST OF TABLES

NO.		PAGE
2.1	Comparison of OCDMA schemes	27
2.2	Comparison of Complementary and AND subtraction detection techniques	32
2.3	Example of MFH code for $W=5$	38
2.4	DCS code word with $W=3$ and $D=8$ for 14 users	42
3.1	Comparison of various SAC-OCDMA codes characteristics	49
3.2	Comparison of various SAC-OCDMA coding techniques	49
4.1	The FCC code with $K = 4$, $W = 3$, $\lambda_{xy} \le 1$ and $N=9$	75
4.2	The FCC code with flexible $K = 8$, $W = 3$, $\lambda_{xy} \le 2$ and $N=10$	75
4.3	Codes comparison in term of code length for fixed number of users at 30	80
4.4	Comparison of encoder-decoder types used in OCDMA system	81
5.1	Parameters used for theoretical calculations	98
5.2	Number of simultaneous users versus BER for FCC ($W=4$),	
	DCS (W=4), MDW (W=4), MFH (W=4) and Hadamard (W=8) codes	99
5.3	Code weights performance for FCC code	103
5.4	Performance of FCC code in term of code length at different weights	106
5.5	PIIN noise at $P_{sr} = -10 \text{ dBm}$	107
5.6	PIINs versus number of users (neglected Shot and Thermal noises)	
	at $P_{sr} = -10 \text{ dBm}$	110
5.7	System performance BER versus number of simultaneous users	
	considering only PIIN noise for various SAC-OCDMA codes	112
5.8	Effective received power P_{sr} versus system performance BER for	
	various SAC-OCDMA codes	116
5.9	Influences of noises on effective received power P_{sr}	118
5.10	Effects on number of users at bit rates and subtraction detection techniques	119
5.11	Effect of bit rates on number of users for various SAC-OCDMA codes	127
5.12	Effect of bit rates on optical received power P_{sr} for various	
	SAC-OCDMA codes	129
5.13	Typical parameters for the simulation analysis	130

5.14Wavelength assignment of FCC code at (K=3, W=2)1315.15Wavelength assignment for FCC code at (K=9, W=4)1315.16Performance of codes at system performance BER of 10^{-9} 1345.17Performance of codes at fiber length 10 km135

o this term is protected by original copyright

LIST OF FIGURES

NO.		PAGE
1.1	General model scope of works	6
2.1	Illustrates of multiple access techniques	10
2.2	Multiple access technique coding approaches	12
2.3	Optical fiber for F/WDMA channels	13
2.4	Point-to-point optical transmission using TDMA technology	15
2.5	OCDMA coding data of each channel Conventional direct-sequence spread spectrum schemes Coherent processing output	17
2.6	Conventional direct-sequence spread spectrum schemes	18
2.7	Coherent processing output	19
2.8	Conventional direct-sequence spread spectrum schemes Coherent processing output Incoherent processing fundamental Encoder-decoder for delay time a) Feedfoward fiber delay line buffer	21
2.9	Encoder-decoder for delay time	22
	a) Feedfoward fiber delay line buffer	22
	b) Tunenable fiber delay line buffer	22
2.10	Block diagram of SAC-OCDMA utilizing FBG's	25
	a) Basic of SAC-OCDMA coding system	25
	b) Spectral distribution function of FBG's	25
2.11	Complementary subtraction detection technique	29
2.12	AND subtraction detection technique	31
2.13	General MDW code matrix	38
2.14	Example of MDW code matrix	40
3.1	Hierarchy of the methodology used for SAC-OCDMA codes	50
3.2	Sine chip spacing	53
3.3	Rectangular shaped weights	53
3.4	LED circuit configuration	58
3.5	LED output spectrum	59
3.6	NRZ modulation format	59
3.7	RZ modulation format	60
3.8	Photo-detector FWHM peak response	63
3.9	Design of simple PIN photo-detector schematic	63

Scope of FCC code development	67
The Relationship between Ws versus λ_{xy}	72
Identification used in FCC code	75
Flowchart for the FCC code design algorithm	76
FCC encoder design for $(K = 9, W = 4)$	83
FCC decoder design for $(K = 9, W = 4)$	84
Photo-detector circuit consists of Thermal and Shot noises	91
The PSD of the received signal denoted as $G(v)$	93
Number of simultaneous users versus system performance BER	
for various SAC-OCDMA codes	99
Number of simultaneous users versus SNR for DCS (W=4),	
MDW ($W=4$), MFH ($W=4$) and Hadamard ($W=8$) codes,	
respectively at $P_{sr} = -10 \text{ dBm}$	101
Performance of number of simultaneous users versus system performance	
BER for FCC code at different weights at bit rate of 155 Mbps	102
Number of simultaneous users versus BER for FCC code at	
various received power P_{sr} .	104
Code length versus system performance BER for FCC code	
at different weights.	105
Relationship between received power P_{sr} versus PIIN noise for various	
SAC-OCDMA codes	106
Performance of effective received power versus PIIN noise	
for FCC code (W =4) at different bit rates 155 Mbps,	
622 Mbps and 1 Gbps	108
Number of simultaneous users versus PIIN Noise for various	
SAC-OCDMA codes	109
Number of simultaneous users versus system performance BER	
by considering PIIN noise only	111
Effective received power P_{sr} versus Shot noise	
for various SAC-OCDMA codes	113
	The Relationship between Ws versus λ_{xy} Identification used in FCC code Flowchart for the FCC code design algorithm FCC encoder design for $(K = 9, W = 4)$ FCC decoder design for $(K = 9, W = 4)$ Photo-detector circuit consists of Thermal and Shot noises The PSD of the received signal denoted as $G(v)$ Number of simultaneous users versus system performance BBR for various SAC-OCDMA codes Number of simultaneous users versus SNR for DCS ($W=4$), MDW ($W=4$), MFH ($W=4$) and Hadamard ($W=8$) codes, respectively at $P_{sr} = -10$ dBm Performance of number of simultaneous users versus system performance BER for FCC code at different weights at bit rate of 155 Mbps Number of simultaneous users versus BER for FCC code at various received power P_{sr} . Code length versus system performance BER for FCC code at different weights. Relationship between received power P_{sr} versus PIIN noise for various SAC OCDMA codes Performance of effective received power versus PIIN noise for FCC code ($W=4$) at different bit rates 155 Mbps, 622 Mbps and 1 Gbps Number of simultaneous users versus system performance BER for sched ($W=4$) at different bit rates 155 Mbps, 622 Mbps and 1 Gbps Number of simultaneous users versus system performance BER by considering PIIN noise only Effective received power P_{sr} versus Shot noise

5.13	Effective received power P_{sr} versus PIIN and Shot Noise	
	for various SAC-OCDMA codes	114
5.14	Effective received power P_{sr} versus system performance BER	
	for various SAC-OCDMA codes	115
5.15	Effect of P_{sr} versus system performance BER when	
	the number of simultaneous users ($K=9$) for FCC code	117
5.16	Effect on system performance at different bit rates and	
	detection techniques	118
5.17	Effect of detection techniques on system performance SNR	120
5.18	Effect of detection techniques on system performance STRC P_{sr} Effect of detection techniques on bit rate	121
5.19	Effect of detection techniques on bit rate	122
5.20	Effect of weights on bit rate.	123
5.21	Effect of various SAC-OCDMA codes on bit rate	124
5.22	Effect of various bit rates (a) 155 Mbps, (b) 622 Mbps	125
	(c) 1.0 Gbps on number of simultaneous users	126
5.23	Effect of bit rates on received power P_{sr} for FCC (W=4), DCS (W=4)	
	and MFH ($W=4$) codes at (a) 155 Mbps	127
	(b) 622 Mbps (c) 1.0 Gbps	128
5.24	Block diagram of FCC coding system	132
5.25	Effect of bit rates on fiber length for FCC ($W=4$) code	133
5.26	Effect of bit rates on fiber length for FCC ($W=4$) and MDW ($W=4$) codes	134
5.27	Effect of bit rate for FCC (<i>W</i> =4) code	136
5.28	Effect of bit rate for FCC (W =4) and MDW (W =4) codes.	137
5.29	Chip spacing versus BER at bit rate of 622 Mbps	138
5.30	Comparison between theoretical and simulation results for FCC code	
	at various bit rates.	139
5.31	Comparison B2B theoretical and simulation results for FCC code	140

LIST OF SYMBOLS

- Ν Number of code length
- W Code Weight
- λ_{r} Auto-correlation
- λ_{xv} **Cross-correlation**
- Element ∈
- Equality _
- Inequality ¥
- rotected by original copyright Number of user for OOC code. |C|
- Р Prime number (Prime code)
- Primitive element β
- Η Hadamard Code
- R_p Parallel resistance
- R_{s} Series resistance
- Electronics current *i*_{elec}
- Absolute temperature T_B
- Boltzmann's constant K_b
- Electrical bandwidth В
- Receiver local resistance R_L
- Coherence time au_c
- Ι Average photocurrent
- Electron charge 1.602×10^{-19} (coulombs) q
- Σ Summation
- Indicated as user X_I X_i
- Indicated as user Y_I Y_i
- Т Transpose Matrix
- Inequality (subgroup) \leq

LIST OF ABBREVIATIONS

OCDMA	Optical Code Division Multiple Access
MAI	Multiple Access Interference
TDMA	Time Division Multiple Access
WDMA	Wavelength Division Multiple Access
CDMA	Code Division Multiple Access
VOD	Video on Demand
BER	Code Division Multiple Access Video on Demand Bit Error Rate Phase Induced Intensity Noise In-phase cross-correlation Signal to Noise Ratio Spectral Amplitude Coding
PIIN	Phase Induced Intensity Noise
IPCC	In-phase cross-correlation
SNR	Signal to Noise Ratio
SAC	Spectral Amplitude Coding
MFH	Modified Frequency Hoping
PC	Prime Code
OOC	Optical Orthogonal Code
FCC	Flexible Cross Correlation
MDW	Modified Double Weight
OptiSys	Optical system software
FBG	Fiber Bragg Gratings
PSK	Phase Shift Keying
PN 🔘	Pseudo Noise
DSSS	Direct Sequence Spread Spectrum
LED	Light Emitting Diode
GF	Galois Field
LAN	Local Area Network
NRZ	Non-Return-to-Zero
FWM	Four Wave Mixing
RIN	Relative Intensity Noise
SMF	Single Mode Fiber
LPF	Low Pass Filter

 P_{sr} Effective Receive Power

QoS Quality of Service

Superstructure Fiber Bragg Grating **SSFBG**

Spectrally Encoded Time Spread **SPECTS**

Spatial Light Phase Modulator **SLPM**

- Fiber-To-The-Home FTTH
- ITU International Telecommunication Union

o This item is protected by original copyright

Kod Silang Kolerasi Fleksibel (FCC) Baru Untuk Sistem Optik CDMA

ABSTRAK

Kecenderungan terhadap teknologi multi-akses pembahagian kod (CDMA) untuk di aplikasikan ke dalam sistem komunikasi gentian optik semakin mendapat perhatian yang sangat luas. Kebolehan teknik ini ialah ianya merupakan salah satu skim akses pelbagai di mana kecemerlangan pencapaiannya seperti kepelbagaian penempatan slot, operasi yang tidak segerak, peningkatan tahap privasi dan kapasiti yang tinggi di dalam rangkaian. Prestasi multi-akses pembahagian kod optik (OCDMA) bergantung kepada keadaan syarat-syarat kod yang di bangunkan. Di dalam tesis ini, kod baru yang di bangunkan di kenali sebagai kod Silang Kolerasi Fleksibel (FCC) untuk sistem OCDMA untuk tujuan penambahbaikan dan mengatasi kelemahan-kelemahan pada kod OCDMA yang sedia ada. Kod FCC mempunyai ciri-ciri seperti ketidaktetapan fungsi korelasi silang dengan kod yang tidak panjang, mudah untuk di bina, dan berkeupayaan untuk meningkatkan jumlah pengguna dan kod pemberat secara serentak. Kod FCC di reka berdasarkan kombinasi matrik di mana matrik tripepenjuru telah di adaptasikan demi membangunkan algoritma kod FCC ini. Di dalam kajian ini, aspek teori dan simulasi ialah daripada sumber cahaya jalur lebar dan menggunakan teknik pengesan penolakan AND pada bahagian penerima. Hasil keputusan yang diperolehi, kod FCC mampu untuk meningkatkan jumlah pengguna sebanyak 150 di mana janya berlaku peningkatan peratusan sebanyak 66%, 172%, 650% dan 900% dengan perbandingan jumlah pengguna sebanyak 90, 55, 20 dan 15 bagi kod Anjakan Kitar Dinamik (DCS), kod Dwi Pemberat Diubahsuai (MDW), Frekuensi Berharap Diubahsuai (MFH) dan kod Hadamard pada kadar ralat bit (BER) yang di benarkan iaitu 10⁻⁹. Kod FCC juga menunjukkan kadar kuasa pada penerima ialah $P_{sr} = -25$ dBm, lantas menjadikan sistem pengesanan lebih sensitif jika menggunakan kod FCC ini. Selain itu, prestasi kod OCDMA di simulasikan dengan perisian OptiSystem dari OptiwaveTM. Prestasi sistem OCDMA ini di rujuk berdasarkan kriteria-kriteria seperti BER, kadar bit, kadar kuasa penerima P_{sr} dan juga jarak gentian optik. Keputusan simulasi menunjukkan bahawa kod FCC mempunyai keputusan yang baik di mana kod FCC mampu untuk capai jarak sejauh 45 km berbanding kod MDW hanya mampu capai pada jarak 21 km dengan kadar bit 155 Mbps dan BER 10⁻⁹. Dalam hasil penyelidikan ini, teknik pengesan penolakan AND di adaptasikan pada bahagian akhir penerima bagi tujuan mengurangkan kepadatan pada bahagian penerima selain meningkatkan prestasi sistem dari segi jarak dan jumlah pengguna aktif secara serentak. Keputusan teori dan simulasi telah membuktikan bahawa dengan menggunakan teknik pengesan penolakan AND telah meningkatkan prestasi sistem dengan sangat ketara sekali. Berdasarkan pengesahan keputusan teori dan simulasi melalui kaedah penghantaran belakang-kebelakang (B2B), perbezaan kuasa penerima ialah -36 dB pada kadar bit 155 Mbps dan BER 10⁻⁹ pada jarak optik 10 km.

A New Flexible Cross Correlation (FCC) Code for Optical CDMA Systems

ABSTRACT

There are tremendous interest in applying code division multiple access (CDMA) techniques to fiber optic communication systems. This technique is one of the multiple access schemes that is becoming popular due to its channel allocation flexibility, asynchronously operation, enhanced privacy, and increased capacity in bursty networks. The performance of optical CDMA (OCDMA) systems are highly dependable on code designed properties. In this thesis, a new Flexible Cross Correlation (FCC) code for OCDMA system is designed, simulated and validated. The FCC code has numerous features such as unfixed cross correlation function with shortest code length, easy to build, and adaptability to accommodate variance number of users and weights. The FCC code is designed based on matrix combinatorial where the tridiagonal code matrix was adopted in developing the algorithm of this FCC code. This research examines the theoretical and simulation aspects in the case of incoherent signal from the broadband light source utilizing AND subtraction detection technique at the receiver side. The results revealed that the FCC code can accommodate 150 users, where FCC code offers 66%, 172%, 650% and 900% improvement as a contrast to 90, 55, 20 and 15 numbers of users for Dynamic Cyclic Shift (DCS), Modified Double Weight (MDW), Modified Frequency Hoping (MFH) and Hadamard codes, respectively, for a permissible bit error rate (BER) of 10^{-9} . The FCC code indicates optical received power P_{sr} of -25 dBm, thus, the detection system is more sensitive via utilizing FCC code. The performance of OCDMA codes were simulated using OptiSystem software from OptiwaveTM. The performance of the systems were characterized by referring to the BER, bit rate, optical received power P_{sr} and fiber length. The results shown that the FCC code performs adequately for 45 km as opposed to 21 km for MDW code within bit rate of 155 Mbps and BER of 10^{-9} . In this work, AND subtraction detection technique is employed at the receiver end in order to reduce the receiver complexity, and improve the system performance in terms of distance and number of active users. It has been shown through theoretical and simulation results, the performance of the system with AND subtraction detection technique improved significantly. Based on the validation of theoretical and simulation results employing back-to-back (B2B) transmission, a receiver's power marginal of -36 dB is obtained at a bit rate of 155 Mbps and BER of 10^{-9} over 10 km fiber length.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Telecommunication systems and networks are expected to provide a variety of integrated broadband services to the customers. Optical fiber is one of the most popular type of optical transmission medium. Fiber is the best waveguide in light applications. It has lots of advantages such as high bandwidth, less loss and inherent security of data transmission (Wei Huang, 2000). Due to that, an optical fiber provides high bandwidth utilization for multiple access operations where a number of users can access a single channel simultaneously for a one time transmission.

There are two major multiple access techniques where each user is allocated at a specific time slot in time division multiple access (TDMA) and a specific frequency (wavelength) slot in frequency or wavelength division multiple access (F/WDMA). The design of optical TDMA is to ensure maximum use of the available optical fiber bandwidth, for information transmission since the multiplexed information stream requires very high capacity links. To increase the capacity further, F/WDMA techniques that make use of the wide spectral transmission window are employed. Both techniques have been extensively explored and utilized in optical communication systems (Castaneda-Camacho, J. & Lara-Rodriguez, D., 2005).

In optical code division multiple access (OCDMA) technology was steadily growing during recent decades ago due to tremendous demand for bandwidth utilization, internet services including electronic commerce and tele-networking (Fouli, K., & Maier, M., 2007). The first proposal appeared almost immediately following or concurrently with those in wireless communications. The motivation was the promise to accommodate a high number of users at low bit rate to communicate simultaneously through the fiber. In OCDMA system, each user is identified by different codes or addresses where it is an exciting development in short-haul optical networking because it can support both wide and narrow bandwidth applications on the same network and can have a large number of asynchronous users (Laura Cottatellucci, 2010).

The principles of spread-spectrum were implemented in optical signal is to spread the energy over the frequency band that is much wider than the minimum bandwidth required to send a bit of information (HongXi Yin & David J. Richardson, 2009). Many researchers have attempted to implement code division multiple access (CDMA) techniques in optics after such techniques have been established in wireless communication technologies. These efforts have become the first implementations of optical CDMA (OCDMA) techniques. However, researchers have encountered severe difficulties in the practical implementation of OCDMA techniques and the developed systems are unable to display comparable success with those implemented in wireless technologies. This result can be mainly attributed to the fundamental difference between CDMA and OCDMA environments. For example, in OCDMA, auto-correlation is fixed, whereas in-phase cross-correlation can be controlled to achieve a reliable code length (bandwidth), thus ensuring that a good correlator, efficient bandwidth utilization and an original signal are discernible at the receiver end. By contrast, in a CDMA source, inphase cross-correlation cannot be controlled and a complex architecture is required for an access communication system. Given these challenges, research on OCDMA is becoming increasingly attractive to develop novel encoding methods for achieving CDMA objectives. The problems encountered in OCDMA systems are discussed in detail in next Section 1.2.

1.2 Problem Statements

In OCDMA system, the most important consideration is the code design where inappropriate code designed and more simultaneous users can be seriously degraded the system performance due to existing of multi access interference (MAI) (Anuar, M. S., 2009). MAI is the interference from other users transmitting at the same time, which will limit the effective error probability with the exist noise in the overall system. Thus, an intelligent code design and suitable detection at the receiver is important to eliminate the effect of MAI (Abd, T. H., 2012).

There are also several intrinsic noise sources arising from the physical effects of the system design itself, such as relative intensity noise (RIN), phase induced intensity noise (PIIN). Thermal and Shot noises, respectively. PIIN is deeply related to MAI due to overlapping spectra from different users. This noise is due to spontaneous emission of the broadband light source. PIIN depends on the number of interfering users and cannot be improved by increasing the transmitted power or added amplification at the receiver side since, signal amplification is always accompanied by an equal amount of noise and cannot improve the ratio of signal power to noise power.

One of the effective solutions for PIIN suppression is to decrease the number of interferences between the signals of different users while the value of cross-correlation should be kept as small as possible (Zou Wei & Ghafouri-Shiraz, H., 2002). Therefore,

the OCDMA coding system should have an efficient address code sequence with reliable cross-correlation. Unsuitable cross-correlation among the address sequences will cause PIIN between code sequences increased (Anuar, M. S., 2009).

In terms of the correlation properties, high auto-correlation and low crosscorrelation are the main of spreading sequences designed. The cross-correlation dominate the MAI which is a general and an important issue in the OCDMA systems. The higher the cross-correlation between any two code words, will produce stronger impact of the MAI and erroneous decisions which will degrade the system performance of BER (Karbassian & Kueppers, 2010). Therefore, the correlation properties of the code addresses play a significant part in the performances of OCDMA systems. Furthermore, when it involves the correlation properties it also noticed issues of the code size and the code length. The code length has a limitation to the number of simultaneous users that the OCDMA systems can accommodate (Chi Shun Weng & Jingshown Wu, 2003).

Most codes have been proposed for the OCDMA systems such Dynamic Cyclic Shift (DCS), Modified Frequency Hopping (MFH), Modified Double Weight (MDW) and Hadamard codes (Abd, T. H, 2012; Zou Wei, Ghafouri-Shiraz, H., & Shalaby, H. M. H., 2001; Aljunid, S. A., 2004; Smith, E. D. J., 1998). However, these codes have several limitations such as the code is either too long (e.g. MFH code), construction is complicated (e.g. DCS code), or poorer cross-correlation (e.g. Hadamard code) and fixed an even natural number for MDW code. Finally, the longer code length had limited the flexibility of the codes since it will need a wide bandwidth source (e.g. MDW, Hadamard, MFH codes). It is highly expected that the new proposed OCDMA code sequence will improve system performance in term of high number of active users,

an optimum auto and cross-correlations, enhance the BER error floor, which limited by the impacts of the MAI and PIIN noises.

1.3 Research Objectives

The main aims of this research are as follows;

- a) To study various OCDMA codes and their properties such as code length, weight and cross-correlation.
- b) To develop a new class of OCDMA codes that have the following properties: the code is optimum in the sense that the code length is shorter for any given number of users, weights and cross-correlation function.
- c) To develop a new mathematical model for the OCDMA coding system based on the newly proposed code characteristics and evaluates the performance with the presence of different noises.
- d) To analyze the theoretical and simulated results based on the new proposed code.

1.4 Scope of Research Works

Figure 1.1 shows a scope of the research works model which is focused on code development for multiple access technique in OCDMA systems. The development of the proposed codes was focusing on incoherent 1-D spectral amplitude coding based on the matrix combinatorial method which is previously used in former OCDMA codes such as MDW, Hadamard and DCS codes. The performance of new proposed code has

been compared with former OCDMA codes such as DCS, MDW, MFH and Hadamard codes, respectively.

Nevertheless, as far as the scope of research works is concerned the software simulation is expected to be sufficient to prove the viability of the proposed code and their superior performance. During the development of a new proposed code, deeply research and study need to be done for mathematical derivation, codes properties design and an ability to differentiate between worst and average condition in the system performance most require and must understand well.

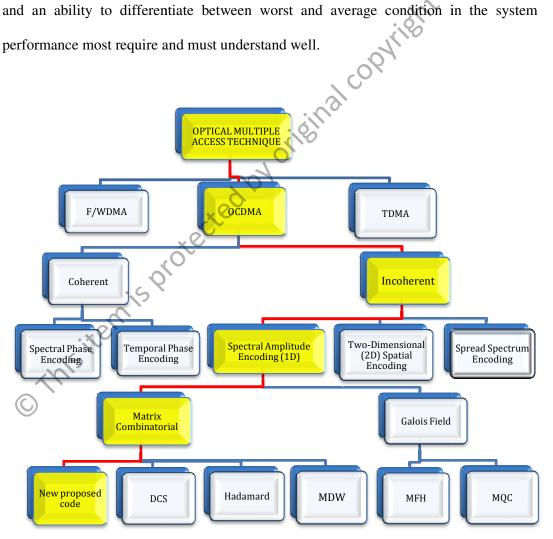


Figure 1.1: General model scope of works.

1.5 Thesis Outline

Chapter 1 provides an introduction to this study and an overview of each succeeding chapter. Chapter 2 reviews the optical multiple access and detection schemes of OCDMA systems. This chapter also includes a discussion on OCDMA coding techniques and presents a few examples of existing spectral amplitude coding OCDMA codes.

Chapter 3 describes the research method for developing OCDMA codes and compares existing codes in terms of characteristics and techniques. Section 3.3 provides the design and performance parameters involved in the theoretical and simulation results. Sections 3.7 and 3.8 elaborate on the different types of modulation techniques and the AND subtraction detection technique that will be used for the proposed code. Section 3.9 describes the receiver components that will be used in the proposed system. Chapter 4 presents the proposed code algorithm, performance analysis, and code comparison in terms of the length of various OCDMA codes. Moreover, this chapter elaborates on the encoder-decoder design of the proposed code for the simulation results.

The first three sections of Chapter 5 (Sections 5.1 to 5.3) discuss interference and the occurrence of different noises. Section 5.4 provides a brief background of theoretical performance analysis in mathematical preliminaries, signal-to-noise ratio (SNR) and bit error rate (BER) derivation. Section 5.5 reviews the theoretical results of the proposed code by using the provided typical related parameters. The simulation results are discussed in detail in Section 5.6. In Section 5.7, the theoretical and simulation results for the proposed code are validated.