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ABSTRAK 

 

Kuantiti yang banyak bongkah cendawan tiram terpakai (MSM)  telah dilupuskan 
sebagai sisa pertanian ke alam sekitar dan dengan itu telah menimbulkan pencemaran 
alam sekitar. Penggunaan semula secara ekonomi bongkah cendawan terpakai untuk 
menghasilkan glukosa mungkin menjadi satu penyelesaian yang berjaya selain 
pelupusan. Oleh itu, kajian ini dijalankan untuk meningkatkan nilai tambah bongkah 
cendawan terpakai sebagai sumber glukosa alternatif kepada tanaman gula dan produk 
berkanji yang mahal sekarang. Pertama sekali, ciri-ciri kimia, morfologi permukaan, 
dan kesesuaian bongkah cendawan terpakai berbanding dengan habuk kayu getah 
(RSD), dan medium pertumbuhan (GM ) telah pertama diperiksa untuk mengkaji 
potensinya sebagai sumber bahan mentah baru untuk glukosa. Analisis komposisi kimia 
membuktikan terdapat pengurangan kandungan lignoselulosik selepas penanaman 
Pleurotus sajor-caju. Jumlah kandungan lignin, hemiselulosa, dan selulosa di dalam 
MSM menunjukkan nilai yang lebih rendah daripada yang terkandung di dalam RSD 
dan GM iaitu masing-masing sebanyak 22.40, 29.30, dan 29.07%. Morfologi 
permukaan MSM pula kelihatan kasar dan terdapat banyak kesan rekahan pada 
permukaan gentian yang terhasil akibat daripada proses penanaman cendawan. RSD dan 
GM mempunyai permukaan  licin dan rata serta menunjukkan struktur permukaan tegar 
dan sangat tersusun. Kajian awal mengenai keberkesanan dan kesenangan tiga teknik 
prarawatan (autoklaf pada suhu 121°C, pemanasan di dalam pemanas air, rendam pada 
suhu bilik) dengan kepekatan NaOH yang berbeza pada RSD, GM, dan MSM 
mendedahkan hasil yang terbaik dengan 30.13 g glukosa/100 g substrat kering dan 
33.50% penurunan berat hidrolisis diperolehi daripada MSM yang telah dirawat di 
dalam pemanas air pada suhu 90°C selama 2 jam. Imej imbasan electron mikroskop 
(SEM) terhadap MSM hidrolisat berkenaan menunjukkan kerosakan teruk pada struktur 
biomas dan banyak retakan yang tidak teratur dan liang-liang pori. Kaedah satu faktor 
pada satu masa diaplikasi untuk menyaring nilai beberapa parameter dan kaedah 
respons permukaan (RSM) berdasarkan reka bentuk Box-Behnken telah diguna pakai 
untuk mengoptimumkan kondisi di dalam prarawatan NaOH (melalui kaedah 
pemanasan di dalam pemanas air) dan enzimatik sakarifikasi pada MSM. Keadaan 
optimum untuk prarawatan terhadap MSM pada konsentrasi substrat sebanyak 5.0% 
(w/v) adalah pada kepekatan NaOH sebanyak 2.63 M, suhu reaksi pada 92.26° C, dan 
masa rawatan sebanyak 112.92 minit dengan hasil glukosa maksimum sebanyak 34.55 
g/100 g substrat kering selepas 48 jam enzimatik sakarifikasi pada  kadar enzim yang 
tetap sebanyak 67 FPU/g substrat kering dan konsentrasi hidrolisat sebanyak 1.0% 
(w/v). Hidrolisat MSM yang diperoleh daripada prarawatan NaOH yang optimum telah 
digunakan untuk mengoptimumkan keadaan proses enzimatik sakarifikasi pada 
konsentrasi subtrat yang tetap sebanyak 1.0% (w/v). Di bawah keadaan optimum 
(kelajuan agitasi sebanyak 150.74 rpm, muatan enzim sebanyak 94.92 FPU/g substrat, 
dan masa hidrolisis sebanyak 56.89 jam), hasil glukosa maksimum sebanyak  71.21 
g/100 g substrat kering telah dicapai. Analisis varian (ANOVA ) menunjukkan bahawa 
model dan semua parameter dianggap penting secara statistik pada 95% untuk kedua-
dua kajian pengoptimuman menggunakan persamaan polinomial peringkat kedua. 
Selain itu, pengesahan model menunjukkan perkaitan yang rapat antara keputusan 
eksperimen dan ramalan respon. Oleh itu, model-model ini boleh digunakan dengan 
jayanya untuk mengenal pasti kombinasi yang berkesan daripada tiga faktor yang 
berbeza di dalam kedua-dua kajian pengoptimuman untuk meramalkan hasil glukosa 
daripada MSM.   
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ABSTRACT 

  

Large quantities of oyster mushroom spent medium (MSM) were disposed of as 
agricultural waste to the environment and thereby constituting environmental pollution. 
Economic reuse of the waste mushroom medium to produce glucose might be a viable 
solution instead of disposal. Therefore, the study was conducted to improve the added 
value of mushroom spent medium as an alternative glucose source to the current 
expensive sugar crops and starchy products. Firstly, the chemical characteristics, surface 
morphology, and suitability of mushroom spent medium in comparison to rubber 
sawdust (RSD) and growth medium (GM) were examined in order to investigate its 
potential as a new glucose feedstock. The composition analysis proved that decreases in 
lignocellulosic contents occurred after cultivation of Pleurotus sajor caju. The amount 
of lignin, hemicelluloses, and cellulose in MSM showed lower values than those in RSD 
and GM which were 22.40, 27.93, and 27.97% respectively. The surface morphology of 
MSM appeared to be rough and broken and traces of hyphen on the fibre surface were 
observed as a result from the mushroom cultivation process. RSD and FM had an even 
and smooth flat surface, indicating a rigid and highly ordered surface structure. 
Preliminary study on effectiveness and feasibility of the three pretreatment techniques 
(autoclaving at 121°C, heating in water bath, soaking at room temperature) with 
different NaOH concentration on RSD, GM, and MSM revealed the best result of 30.13 
g glucose/100g dry substrate and 33.50% of hydrolysis weight decrease obtained from 
MSM, which had been treated in water bath at 90°C for 2 h. The scanning electron 
microscope (SEM) images of the corresponding MSM hydrolysate showed severe 
disruptions of biomass structure, irregular cracks, and pores. One factor at a time 
(OFAT) method was applied to screen the range of parameters in NaOH pretreatment 
via heating in water bath and enzymatic saccharification. With known parameters’ 
range, the Response surface methodology (RSM) based on Box-Behnken Design (BBD) 
was adopted to optimize the conditions of NaOH pretreatment via heating in water bath 
method and enzymatic saccharification of MSM. The optimum conditions of MSM 
pretreatment at substrate loading of 5.0% (w/v) were found to be NaOH concentration 
of 2.63 M, reaction temperature of 92.26°C, and treatment time of 112.92 min with 
maximum glucose yield of 34.55 g/100g dry substrate after 48 h of enzymatic 
saccharification at constant enzyme loading of 67 FPU/g dry substrate and substrate 
loading of 1.0% (w/v). The MSM hydrolysate obtained under optimal NaOH 
pretreatment conditions were further used to optimize enzymatic saccharification 
conditions at constant substrate loading of 1.0% (w/v). Under optimized conditions 
(agitation rate of 150.74 rpm, enzyme loading of 94.92 FPU/g substrate, and hydrolysis 
time of 56.89 h), a maximum glucose yield of 71.21 g/100 g dry substrate was achieved. 
The Analysis of Variance (ANOVA) test revealed that the model and all independent 
parameters were considered statistically significant at 95% for both optimization studies 
using the second order polynomial equation. The model validation showed a good 
agreement between experimental results and the predicted responses. Therefore the 
models could be successfully used to identify the effective combinations of the three 
different factors in both optimization studies for predicting the glucose yield from 
MSM.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

Glucose from sugar crops (sugarcane, sugar beets) and starchy food (potato, 

cassava, corn) can be converted into ethanol via fermentation process with the assist of 

microbes or enzymes. However, concerns about its production and use related to the 

increased food prices due to the large amount of arable land required for crops, as well 

as the energy and pollution balance of the whole cycle of ethanol production has caused 

a new source of glucose being introduced such as lignocellulosic biomass that may allay 

these concerns. Concomitantly, over the last decades, research efforts have been 

devoted to converting the promising feedstock of lignocellulosic biomass into biofuel, 

especially residues from agricultural and forestry operations due to its great availability, 

sustainability, and low cost compared to other energy feedstock (Pan et al., 2005).  

 

The rubber tree or scientific name “Hevea brasiliensis” is one of the major 

agricultural crops grown in Malaysia besides oil palm, cocoa, rice, and coconut. The 

trees are logged off after 25 to 30 years and utilized mainly for making furnitures. As a 

result of logging and lumber processes, large amount of residual biomass were 

generated, which have no significant value except its usage in the making of products 

like briquetted fuel and compressed powder boards (Srinivasakannan & Bakar, 2004). 

However, due to its high cellulose content, rubber wood waste represents a potential 

raw material for bioethanol production (Alhassan, 2010).  
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Apart from its potential as bioethanol feedstock, rubberwood sawdust maybe 

used to cultivate oyster mushroom and then, further used the remaining medium wastes 

to produce glucose for bioethanol production. Extra income could be generated and 

necessary pretreatment steps could be reduced prior to the enzymatic hydrolysis process 

with high reducing sugars yield via the aforementioned processes. According to 

previous study, lignocellulosic biomass, which has been biologically treated by fungi 

have been proven to increase the sugar produced during enzymatic saccharafication and 

lower lignin contents was detected as a result from the fully/partially digested 

lignocellulosic materials. Wan and Li (2010) has reported that, with the result of 

selective delignification, enzymatic digestibility as high as 60-80% has been obtained 

from fungal-pretreated corn stover, which was comparable to that obtained from 

chemical pretreatment. Unlike biologically pretreated biomass, the raw lignocellulosic 

biomass could not be saccharified by enzymes for high glucose yield without first 

undergoing several pretreatment including, physical, mechanical, and chemical 

pretreatment. The main cause for the recalcitrance of lignocellulosic biomass is the 

presence of lignin and hemicelluloses on the surface of cellulose. They formed a barrier 

and prevented cellulase from accessing the cellulose in the substrate (Koshy & 

Nambisan, 2012). The pretreatment of lignocellulosics was primarily employed to 

increase the accessible surface area of cellulose to enhance the conversion of cellulose 

to glucose in enzymatic saccharification.  

 

Pretreatment of lignocellulosic materials was considered as the rate-limiting step 

in an economically feasible process for enzymatic hydrolysis of cellulose. Combination 

of biological and chemical pretreatment was expected to increase the cellulose amount, 

which could be feasibly accessed by cellulase in subsequent enzymatic saccharification, 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 


