

Development of Portable, Application Specific Electronic Nose for Agriculture

ectedby

C this item is pote (0640610079)

In fulfillment of the requirements for the degree of

Doctor of Philosophy (Mechatronic Engineering)

School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

2014

ACKNOWLEDGEMENT

First I wish to thank my supervisors Prof. Dr. Abdul Hamid bin Adom, Prof. Dr. Ali Yeon bin Mohd Shakaff and Prof. Dr. Mohd Noor bin Ahmad for giving me the opportunity to work with them as part of the Center of Excellence Advanced Sensor Technology (CEASTech) research group. I would like to acknowledge their valuable guidance, inspiring advice and encouragement during my research work and the completion of this thesis.

Special thanks to my fellow CEASTech friends and Universiti Malaysia Perlis (UniMAP) colleagues for the assistance and support towards the completion of this work. It is also impossible to complete this thesis without the help and support of my wife, kids and family. My gratitude also goes to those who had contributed to complete this thesis. I would also like to give heartfelt thanks to everyone who has provided me with such support.

My deepest appreciation is also to all the School of Mechatronic Engineering members and UniMAP staffs for their help and kind hospitality.

I would like to gratefully thank UniMAP and Malaysia Ministry of Higher Education for granted me the study leave and providing the research grants which funded this research work.

Last but not least I owe my deepest gratitude to Allah, Amin.

TABLE OF CONTENTS

THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	xi
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xxiii
LIST OF SYMBOLS	xxvii
ABSTRAK (BAHASA MALAYSIA)	xxviii
ABSTRACT (ENGLISH)	xxix
an is	
CHAPTER 1 INTRODUCTION	
1.1 Introduction	1
1.2 Problem Statement	4
1.3 Research Objectives	5
1.4 Innovative Aspects	6
1.5 Structure of the Thesis	7

CHAPTER 2 LITERATURE REVIEW

2.1	Olfaction System	9
2.2	Human Olfaction	10

2.3	Odou	Characteristics	12
	2.3.1	Detection Threshold	12
	2.3.2	Intensity	12
	2.3.3	Hedonic Tone	13
	2.3.4	Quality	13
	2.3.5	Odour Units (OU)	13
2.4	Introd	uction to Electronic Nose	14
2.5	Electr	onic Nose System	17
	2.5.1	Sensor Chambers	17
		2.5.1.1 Chamber Structure	18
		2.5.1.2 Chamber Materials	19
		2.5.1.3 Analysis Using Computational Fluid Dynamic (CFD)	20
		2.5.1.4 Connector	23
	2.5.2	The Sensor	23
	. S.X	2.5.2.1 Gas Sensors	24
	(h)	2.5.2.2 Sensor Drift	28
\bigcirc		2.5.2.3 Sensor Selection	29
	2.5.3	Microcontroller System	31
	2.5.4	Signal Conditioning	32
	2.5.5	Display Unit	33
	2.5.6	Power Supply	33
	2.5.7	Odor Handling and Delivery Systems	33
2.6	Data I	Processing	35
	2.6.1	Pre-Processing	36

		2.6.1.1 Feature Selection	36
		2.6.1.2 Baseline Manipulation	36
		2.6.1.3 Normalisation	37
	2.6.2	Normality Test	38
	2.6.3	Manual Pattern Recognition	38
	2.6.4	Multivariate Statistical Analysis	39
		2.6.4.1 Principal Component Analysis (PCA)	39
		2.6.4.2 Linear Discriminant Analysis (LDA)	40
		2.6.4.3 K-Nearest Neighbors (KNN)	41
		2.6.4.4 Leave-One Out (LOO)	42
	2.6.5	The Artificial Neural Networks (ANN)	42
		2.6.5.1 Multilayer Perceptron (MLP)	46
		2.6.5.2 Probabilistic Neural Network (PNN)	48
		2.6.5.3 Radial Basis Functions (RBF)	48
	2.6.6	Embedded Artificial Neural Network	49
2.7 🗸	Electr	onic Nose Applications	50
2.8	Concl	usion	52

CHAPTER 3 DEVELOPMENT OF ELECTRONIC NOSE SYSTEM

3.1	Introd	uction	56
3.2	Electr	onic Nose System	57
	3.2.1	Sensing Unit	57
	3.2.2	Sensor Chamber Design and Development	63
		3.2.2.1 Sensor Chamber Simulation Version 1.0	64

		3.2.2.2 Sensor Chamber Simulation Version 2.0	65
		3.2.2.3 Sensor Chamber Simulation Version 3.0	66
		3.2.2.4 The Developed Sensor Chamber	67
	3.2.3	The Microcontroller	70
	3.2.4	Signal Conditioning	72
		3.2.4.1 Interface circuit	72
		3.2.4.2 Amplifier	74
		3.2.4.3 Filter	74
		3.2.4.4 Analog to Digital Converter (ADC)	75
	3.2.5	Wireless Module	75
	3.2.6	Input and Output Unit	75
	3.2.7	The DC Power supply	76
	3.2.8	The Enclosure	77
3.3	Softwa	are Development	78
	3.3.1	Data Collection	78
Å	3.3.2	Odour Classification	81
\bigcirc	3.3.3	Utilities	81
3.4	The In	asniff Testing	81
	3.4.1	The Insniff Sampling Technique	82
	3.4.2	The Cyranose 320	84
	3.4.3	The Cyranose C320 Sampling Technique	85
	3.4.4	Sensor Response	86
	3.4.5	Feature Selection	87
	3.4.6	Digital Filter	88

	3.4.7	Baseline Manipulation	89
	3.4.8	Normality Test	91
	3.4.9	Principal Component Analysis (PCA)	92
	3.4.10	Linear Discriminate Analysis (LDA)	94
	3.4.11	K-Nearest Neighbours (KNN)	97
	3.4.12	Leave-One-Out (LOO) Cross-Validation	97
	3.4.13	Artificial Neural Networks (ANN)	98
	3.4.14	Embedded ANN	103
3.5	The In	sniff Calibration	110
	3.5.1	Sensor Response	110
	3.5.2	Normality Test	111
	3.5.3	Principal Component Analysis (PCA)	112
	3.5.4	Linear Discriminate Analysis (LDA)	112
	3.5.5	K-Nearest Neighbours (KNN)	114
	3.5.6	Leave-One-Out (LOO) Cross-Validation	114
Å	3.5.7	Artificial Neural Networks (ANN)	115
3.6	Conclu	usion	116

CHAPTER 4 BASAL STEM ROT (BSR) DISEASE DETECTION

4.1	Introd	uction	119
4.2	Basal	Stem Rot (BSR) Disease	119
4.3	3 Chemical Compounds Analysis of Ganoderma <i>Boninense</i>		123
	4.3.1	Ganoderma Boninense Functional Group Analysis	123
	4.3.2	Ganoderma Boninense GC-MS Analysis	125

4.4	Sampl	ing Technique	128
4.5	Result	s and Discussions	129
	4.5.1	Sensor Response	129
	4.5.2	Normality Test	130
	4.5.3	Principal Component Analysis (PCA)	132
	4.5.4	Linear Discriminant Analysis (LDA)	133
	4.5.5	K-Nearest Neighbours (KNN)	135
	4.5.6	Leave-One-Out (LOO) Cross-Validation	136
	4.5.7	Artificial Neural Network (ANN)	136
	4.5.8	Embedded ANN	139
4.6	Concl	usion	139
СНА	PTER 5	AROMATIC RICE CLASSIFICATION	
5.1	Introd	uction	141
5.2	Arom	atic Rice Quality	143
	5.2.1	Location and climate condition	143
\bigcirc	5.2.2	Genetic	143
	5.2.3	Post Harvest Activities	144
5.3	Aroma	atic Rice Classification Technique	144
5.4	New .	Aromatic Rice Chemical Analysis	147
	5.4.1	The Fourier Transform Infrared (FTIR)	147
	5.4.2	Gas Chromatography-Mass Spectrometry (GC-MS) Analysis	150
5.5	Sensor	r Suitability	153
5.6	Mater	ials and Sampling Methods	154

5.7	Result	s and Discussion	155
	5.7.1	Sensor Response	155
	5.7.2	Normality Test	158
	5.7.3	Principal Component Analysis (PCA)	160
	5.7.4	Linear Discriminant Analysis (LDA)	163
	5.7.5	K-Nearest Neighbours (KNN)	168
	5.7.6	Leave-One-Out (LOO) Cross-Validation	170
	4.5.7	Artificial Neural Network (ANN)	170
	5.7.8	Embedded ANN	176
5.8	Concl	usion	177
CHA	PTER 6	MALODOUR MONITORING FOR POULTRY INDUSTRY	
6.1	Introd	uction X	179

6.1	Introd	luction	179
6.2	The I	nsniff Sensor Suitability for Poultry Farm Application	183
6.3	Syste	m Description	184
6.4	Mobil	e Olfaction	187
\bigcirc	6.4.1	Mobile Olfaction System Architecture	188
	6.4.2	Mobile Olfaction Testing	191
6.5	Maloo	lour Sampling Technique	192
6.6	Resul	ts and Discussions	193
	6.6.1	Sensor Response	193
	6.6.2	Normality Test	196
	6.6.3	Principal Component Analysis (PCA)	197
	6.6.4	Linear Discriminant Analysis (LDA)	200

	6.6.5	K-Nearest Neighbours (KNN)	204
	6.6.6	Leave-One-Out (LOO) Cross-Validation	206
	6.6.7	Artificial Neural Network (ANN)	206
	6.6.8	The Embedded Artificial Neural Network (ANN)	212
	6.6.9	The Web-Based System	215
	6.6.10	Ammonia (NH ₃) and Hydrogen Sulphide (H ₂ S) Sensor Responses	217
6.7	Conclu	usion	218
CHA	PTER 7	DISCUSSION, CONCLUSION AND FUTURE WORK	
7.1	Discus	sion	220
	7.1.1	The Insniff Development	220
	7.1.2	Basal Stem Rot (BSR) Disease Detection	223
	7.1.3	Aromatic Rice Classification	224
	7.1.4	Malodour Monitoring For Poultry Farms	225
7.2	Conch	ision	226
7.3	Future	Work	227
\bigcirc			
REFE	ERENCI	ES	229
APPE	ENDIX A	A MICROCONTROLLER BOARD CIRCUIT DIAGRAM	252
LIST	OF PU	BLICATIONS	253
LIST	OF AW	VARDS	255
INTE	LLECI	UAL PROPERTY	256

Х

LIST OF TABLES

NO		PAGE
2.1	The odour group	13
2.2	The brief history of electronic nose	14
2.3	The commercial portable electronic nose	15
2.4	Research on portable electronic nose	16
2.5	Material for sensor chamber	20
2.6	Type of flow	22
2.7	Ideal sensor characteristics	24
2.8	Types of e-nose sensor	30
2.9	Types of embedded system architecture	31
2.10	Baseline manipulation method	37
2.11	The e-nose in plant diseases	50
2.12	The e-nose in food assessment	51
2.13	The e-nose in environmental monitoring	52
3.1	The initial sensors	59
3.2	The sensor selection process	61
3.3	The selected sensors	61
3.4	The microcontroller board components	71
3.5	The Insniff power consumption	76
3.6	The Insniff sampling parameter	83
3.7	The setting of the Cyranose C320	85
3.8 (a)	The Insniff normality test of the food essences	91

3.8 (b)	The Cyranose C320 normality test of the food essences	92
3.9 (a)	The Insniff LDA classification of the food essences	96
3.9 (b)	The Cyranose C320 LDA classification of the food essences	96
3.10 (a)	The Insniff KNN classification of the food essence	97
3.10 (b)	The Cyranose C320 KNN classification of the food essences	97
3.11	The LOO cross-validation of the food essences	98
3.12	The experiment to select the hidden layer	100
3.13	The parameter setup for MLP network training	100
3.14 (a)	The Insniff MLP confusion matrix of the food essences	101
3.14 (b)	The Cyranose C320 MLP confusion matrix of the food essences	101
3.15 (a)	The Insniff PNN confusion matrix of the food essences	102
3.15 (b)	The Cyranose C320 PNN confusion matrix of the food essences	102
3.16 (a)	The Insniff RBF confusion matrix of the food essences	102
3.16 (b)	The Cyranose C320 RBF confusion matrix of the food essences	103
3.17	The ANN classification performance of the food essence	103
3.18	The embedded ANN classification performance of the food essences	107
3.19	The Insniff normality test of the calibration	111
3.20	The Insniff LDA of the calibration	113
3.21	The Insniff KNN of the calibration	114
3.22 (a)	The Insniff MLP confusion matrix of the calibration	115
3.22 (b)	The Insniff PNN confusion matrix of the calibration	115
3.22 (c)	The Insniff RBF confusion matrix of the calibration	116
3.23	The Insniff ANN classification success of the calibration	116
4.1	BSR disease detection techniques	122

4.2	Functional group of Ganoderma boninense using IR spectroscopy	124
4.3 (a)	The Insniff normality test of the Ganoderma	130
4.3 (b)	The Cyranose C320 normality test of the Ganoderma	131
4.4 (a)	The Insniff LDA classification of the Ganoderma	135
4.4 (b)	The Cyranose C320 LDA classifications of the Ganoderma	135
4.5 (a)	The Insniff KNN classification of the Ganoderma	135
4.5 (b)	The Cyranose C320 KNN classifications of the Ganoderma	135
4.6	The LOO cross-validation of the Ganoderma	136
4.7 (a)	The Insniff MLP confusion matrix of the Ganoderma	136
4.7 (b)	The Cyranose C320 MLP confusion matrixes of the Ganoderma	137
4.8 (a)	The Insniff PNN confusion matrix of the Ganoderma	137
4.8 (b)	The Cyranose C320 PNN confusion matrixes of the Ganoderma	137
4.9 (a)	The Insniff RBF confusion matrix of the Ganoderma	138
4.9 (b)	The Cyranose C320 RBF confusion matrixes of the Ganoderma	138
4.10	The ANN model classification of the Ganoderma	138
4.11	The Insniff embedded ANN classification of the Ganoderma	139
5.1	Techniques to determine the quality of aromatic rice	146
5.2	The Insniff sensor suitability for the aromatic rice	153
5.3 (a)	The Insniff normality test for three varieties of aromatic rice	158
5.3 (b)	The Cyranose C320 normality test for three varieties of aromatic rice	159
5.4 (a)	The Insniff LDA for three varieties of paddy	167
5.4 (b)	The Cyranose C320 LDA for three varieties of paddy	167
5.5 (a)	The Insniff LDA for three varieties of brown rice	167
5.5 (b)	The Cyranose C320 LDA for varieties types of brown rice	167

XIII

5.6 (a)	The Insniff LDA for three varieties of rice	167
5.6 (b)	The Cyranose C320 LDA for three varieties of rice	168
5.7	The classification using LDA for three varieties of aromatic rice	168
5.8 (a)	The Insniff KNN for three varieties of paddy	169
5.8 (b)	The Cyranose C320 KNN for three varieties of paddy	169
5.9 (a)	The Insniff KNN for three varieties of brown rice	169
5.9 (b)	The Cyranose C320 KNN for three varieties of brown rice	169
5.10 (a)	The Insniff KNN for three varieties of rice	169
5.10 (b)	The Cyranose C320 KNN for three varieties of rice	169
5.11	The classification using KNN for three varieties of aromatic rice	170
5.12	The LOO cross-validation for three varieties of aromatic rice	170
5.13 (a)	The Insniff MLP confusion matrix for three varieties of paddy	171
5.13 (b)	The Cyranose C320 MLP confusion matrix for three varieties of paddy	171
5.14 (a)	The Insniff MLP confusion matrix for three varieties of brown rice	171
5.14 (b)	The Cyranose MLP confusion matrix for three varieties of brown rice	171
5.15 (a)	The Insniff MLP confusion matrix for three varieties of rice	172
5.15 (b)	The Cyranose C320 MLP confusion matrix for three varieties of rice	172
5.16 (a)	The Insniff PNN confusion matrix for three varieties of paddy	172
5.16 (b)	The Cyranose C320 PNN confusion matrix for three varieties of paddy	173
5.17 (a)	The Insniff PNN confusion matrix for three varieties of brown rice	173
5.17 (b)	The Cyranose PNN confusion matrix for three varieties of brown rice	173
5.18 (a)	The Insniff PNN confusion matrix for three varieties of rice	173
5.18 (b)	The Cyranose C320 PNN confusion matrix for three varieties of rice	173
5.19 (a)	The Insniff RBF confusion matrix for three varieties of paddy	174

5.19 (b)	The Cyranose C320 RBF confusion matrix for three varieties of paddy	174
5.20 (a)	The Insniff RBF confusion matrix for three varieties of brown rice	174
5.20 (b)	The Cyranose RBF confusion matrix for three varieties of brown rice	175
5.21 (a)	The Insniff RBF confusion matrix for three varieties of rice	175
5.21 (b)	The Cyranose C320 RBF confusion matrix for three varieties of rice	175
5.22	The ANN classification for three varieties of aromatic rice	176
5.23	The Insniff Embedded ANN classification for three type of aromatic rice	177
6.1	The use of e-nose in poultry industry	182
6.2	The Insniff sensor suitability for poultry farm	184
6.3	The mobile olfaction system applications	187
6.4	The mobile robot movement	191
6.5	The Insniff malodour sample data normality test	196
6.6 (a)	The Insniff LDA classification for 8 th day	203
6.6 (b)	The Insniff LDA classification for 15 th day	203
6.6 (c)	The Insniff LDA classification for 22 nd day	203
6.6 (d)	The Insniff LDA classification for 29 th day	203
6.6 (e)	The Insniff LDA classification for 36 th day	204
6.7	The Insniff LDA classification sucess rate of the poultry malodour	204
6.8 (a)	The Insniff KNN classification for 8 th day	204
6.8 (b)	The Insniff KNN classification for 15 th day	205
6.8 (c)	The Insniff KNN classification for 22 nd day	205
6.8 (d)	The Insniff KNN classification for 29 th day	205
6.8 (e)	The Insniff KNN classification for 36 th day	205
6.9	The Insniff KNN classification success rate of the poultry malodour	206

6.10	The Insniff LOO cross-validation of the poultry malodour	206
6.11 (a)	The Insniff MLP confusion matrix for 8 th day	207
6.11 (b)	The Insniff MLP confusion matrix for 15 th day	207
6.11 (c)	The Insniff MLP confusion matrix for 22 nd day	207
6.11 (d)	The Insniff MLP confusion matrix for 29 th day	208
6.11 (e)	The Insniff MLP confusion matrix for 36 th day	208
6.12 (a)	The Insniff PNN confusion matrix for 8 th day	208
6.12 (b)	The Insniff PNN confusion matrix for 15 th day	209
6.12 (c)	The Insniff PNN confusion matrix for 22 nd day	209
6.12 (d)	The Insniff PNN confusion matrix for 29 th day	209
6.12 (e)	The Insniff PNN confusion matrix for 36 th day	210
6.13 (a)	The Insniff RBF confusion matrix for 8 th day	210
6.13 (b)	The Insniff RBF confusion matrix for 15 th day	210
6.13 (c)	The Insniff RBF confusion matrix for 22 nd day	211
6.13 (d)	The Insniff RBF confusion matrix for 29 th day	211
6.13 (e)	The Insniff RBF confusion matrix for 36 th day	211
6.14	The ANN classification of the poultry malodour	212
6.15	The embedded ANN malodour predicted concentrated index	213
6.16	The system web based real-time data	216

LIST OF FIGURES

NO.		PAGE
2.1	Human olfactory system	10
2.2	Comparison of human olfactory system and electronic nose system	u 17
2.3 (a)	Serial sensor cell position	19
2.3 (b)	Parallel sensor cell position	19
2.4	Model of inter-grain potential barrier	25
2.5	The signal conditioning circuits	33
2.6	Headspace sampling technique	34
2.7	Electronic nose data processing block diagram	35
2.8	The three-layer Artificial Neural Network architecture	43
3.1	The Insniff block diagram	56
3.2	The sensor selection experiment setup	59
3.3	The sensor selection experiment	60
3.4	The sensors and signal conditioning PCB	62
3.5	The sensor circuit diagram	63
3.6 (a)	Chamber simulation model using parallel sensor cell structure	64
3.6 (b)	Sensor chamber simulation model version 1.0	65
3.6 (c)	Sensor chamber simulation model version 2.0	66
3.6 (d)	Sensor chamber simulation model, version 3.0	67
3.7	The Insniff sample flow speed simulation	68
3.8 (a)	The Insniff sensor chamber model	68
3.8 (b)	The Insniff sensor chamber	69

3.9 (a)	The microcontroller board (front view)	71
3.9 (b)	The Microcontroller board (back view)	71
3.10	The signal conditioning block diagram	72
3.11	The signal conditioning circuit	73
3.12	The input and output interface unit	76
3.13	The DC regulated power supply	76
3.14 (a)	The Insniff prototype version 1.0	77
3.14 (b)	The Insniff prototype version 2.0	77
3.14 (c)	The Insniff prototype version 3.0	78
3.15 (a)	The flow-chart for the odour sample collection steps for the Insniff	79
3.15 (b)	The GUI graphic display <i>pull-down</i> ' menu	80
3.15 (c)	The sensor responses waveforms	80
3.16	The Insniff static headspace sampling	82
3.17	The Cyranose C320 schematic diagram	84
3.18	The Cyranose C320 static headspace sampling	85
3.19 (a)	The Insniff sensor responses of the food essences	86
3.19 (b)	The Cyranose C320 sensor responses of the food essences	87
3.20 (a)	The Insniff dynamic and steady state sensor responses	87
3.20 (b)	The Insniff steady state sensor responses of the food essences	88
3.21	The Insniff filtered steady state sensor responses f of the food essences	89
3.22 (a)	The Insniff baseline manipulation of the food essences	90
3.22 (b)	The Cyranose C320 baseline manipulation of the food essences	90
3.23 (a)	The Insniff PCA of the food essences	93
3.23 (b)	The Cyranose PCA of the food essences	94

3.24 (a)	The Insniff LDA plot of the food essences	95
3.24 (b)	The Cyranose LDA plot of the food essences	95
3.25	The embedded ANN model training flow chart	108
3.26	The embedded ANN classification flow chart	109
3.27	The Insniff sensor responses for the calibration	111
3.28	The Insniff PCA plot of the calibration	112
3.29	The Insniff LDA plot of the calibration	113
4.1	The Basal Stem Rot (BSR) disease	120
4.2 (a)	The <i>skirting</i> symptom	123
4.2 (b)	The Ganoderma white button	123
4.3	FTIR spectrum for Ganoderma boninense	124
4.4 (a)	GC-MS plot for palm root	127
4.4 (b)	GC-MS plot for palm stem	127
4.5	The static headspace sampling system of the Ganoderma	128
4.6 (a)	The Insniff sensor response of the Ganoderma	129
4.6 (b)	The Cyranose C320 sensor response of the Ganoderma	130
4.7 (a)	The Insniff PCA plot of the Ganoderma	132
4.7 (b)	The Cyranose C320 PCA plot of the Ganoderma	133
4.8 (a)	The Insniff LDA plot of the Ganoderma	134
4.8 (b)	The Cyranose C320 LDA plot of the Ganoderma	134
5.1 (a)	Spectroscopy spectra of Q74 aromatic rice variety	148
5.1 (b)	Spectroscopy spectra of Q76 aromatic rice variety	149
5.1 (c)	Spectroscopy spectra of Q85 aromatic rice variety	150
5.2 (a)	GC-MS analysis of Q74 aromatic rice variety	151

5.2 (b)	GC-MS analysis of Q76 aromatic rice variety	152
5.2 (c)	GC-MS analysis of Q85 aromatic rice variety	152
5.3	Experiment setup for the aromatic rice	154
5.4 (a)	The Insniff sensor responses for three varietis of paddy	155
5.4 (b)	The Cyranose C320 sensor responses for three varietis of paddy	156
5.5 (a)	The Insniff sensor responses for three varietis of brown rice	156
5.5 (b)	The Cyranose C320 sensor responses for three varietis of brown rice	157
5.6 (a)	The Insniff sensor responses for three varietis of rice	157
5.6 (b)	The Cyranose C320 sensor responses for three varietis of rice	158
5.7 (a)	The Insniff PCA plot for three varietis of paddy	160
5.7 (b)	The Cyranose C320 PCA plot for three varietis of paddy	161
5.8 (a)	The Insniff PCA plot for three varietis of brown rice	161
5.8 (b)	The Cyranose C320 PCA plot for three varietis of brown rice	162
5.9 (a)	The Insniff PCA plot for three varietis of rice	162
5.9 (b)	The Cyranose C320 PCA plot for three varietis of rice	163
5.10 (a)	The Insniff LDA plot for three varietis of paddy	164
5.10 (b)	The Cyranose C320 LDA plot for three varietis of paddy	164
5.11 (a)	The Insniff LDA plot for three varietis of brown rice	165
5.11 (b)	The Cyranose C320 LDA plot for three varietis of brown rice	165
5.12 (a)	The Insniff LDA plot for three varietis of rice	166
5.12 (b)	The Cyranose C320 LDA plot for three varietis of rice	166
6.1	The Insniff in STAR network connection	185
6.2	The system web based front page	186
6.3	The mobile olfaction system architecture	189

6.4	The omni-direction mobile robot	190
6.5	The mobile olfaction data acquisition GUI	192
6.6 (a)	The malodour sampling system	193
6.6 (b)	The malodour sampling locations	193
6.7 (a)	Sensor response on 8 th day	194
6.7 (b)	Sensor response on 15 th day	194
6.7 (c)	Sensor response on 22 nd day	195
6.7 (d)	Sensor response on 29 th day	195
6.7 (e)	Sensor response on 36 th day	196
6.8 (a)	The PCA plot on the 8 th day	197
6.8 (b)	The PCA plot on the 15 th day	198
6.8 (c)	The PCA plot on the 22^{nd} day	198
6.8 (d)	The PCA plot on the 29 th day	199
6.8 (e)	The PCA plot on the36 th day	199
6.9 (a)	The LDA plot on the 8 th day	200
6.9 (b)	The LDA plot on the 15 th day	201
6.9 (c)	The LDA plot on the 22 nd day	201
6.9 (d)	The LDA plot on the 29 th day	202
6.9 (e)	The LDA plot on the36 th day	202
6.10 (a)	The ANN plot on the 8 th day	214
6.10 (b)	The ANN plot on the 15 th day	214
6.10 (c)	The ANN plot on the 22 nd day	214
6.10 (d)	The ANN plot on the 29 th day	215
6.10 (e)	The ANN plot on the36 th day	215

6.11	The system real-time web-based data acquisition GUI	216
6.12 (a)	The ammonia (NH ₃) data measurement.	217
6.12 (b)	The hydrogen sulfide (H_2S) data measurement	217

o this item is protected by original copyright

LIST OF ABBREVIATIONS

2D	2 Dimensions			
3D	3 Dimensions			
AC	Alternating Current			
ADC	Analog to Digital Converter			
ANN	Artificial Neural Network			
ASEN	Application Specific Electronic Nose			
BP	Back-Propagation			
BSR	Basal Stem Rot			
CFD	Computational Fluid Dynamic			
СР	Conducting Polymer			
CCD	Charge Coupled Device			
CCW	Counter clockwise			
Da	Dalton			
DC	Direct Current			
DF	Discriminate Function			
DOE	Department of Environment			
DNA	Deoxyribonucleic Acid			
EI	Electron Ionization			
e-nose	Electronic Nose			
ELISA	Enzyme-Linked Immunosorbent Assay			
FFT	Fast Fourier Transform			
FTIR	Fourier Transform Infrared			

FELDA	Federal	Land	development	t Authority
-------	---------	------	-------------	-------------

- FPGA Field-Programmable Gate Array
- GA Genetic Algorithm
- GUI Graphic User Interface
- GC-MS Gas Chromatography Mass Spectrum
- GC Gas Chromatograph
- GIS Geographical Information System
- GABA Gamma Amino Butyric Acid
- HPLC High Pressure Liquid Chromatography
- INDEX Inside-Needle Dynamic Extraction
- ICs Integrated Circuits
- IDE Integrated Development Environment
- Insniff The developed e-nose
- KNN *k*-Nearest Neighbours
- LDA Linear Discriminate Analysis
- LOO Leave-One-Out
- LiPo Lithium-Ion Polymer
- LPF Low Pass Filters
- LM Levenberg-Marquardt
- MLP Multilayer Feed-Forward Perceptron
- MOS Metal-Oxide Semiconductor
- MSE Mean Squared Error
- MEA Malt Extract Agar
- MARDI Malaysian Agricultural Research and Development Institute

copyright