
### **DEPLOYMENT OF WIRELESS SENSOR NETWORK (WSN) IN AGRICULTURAL ENVIRONMENT IN NORTHERN MALAYSIA**



# **UNIVERSITI MALAYSIA PERLIS**

2014



A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Mechatronic Engineering)

> School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS 2014

o this term is protected by original copyright

### ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. I am grateful to Him for providing the strength and means to complete this thesis. Praise be to Him Most High.

I would like to thank my main supervisor, Professor Dr. Ali Yeon Bin Md. Shakaff for his guidance and support. His endless encouragement and advice was imperative in helping me to acquire research experiences.

Special thanks to my co-supervisor, Dr. David L. Ndzi for his guidance, support, advice and his facilitation which helped me acquire the specific technical acumen in the related field. Also thanks to my other co-supervisor Professor Dr. Abdul Hamid Bin Adom for support and advice throughout the study.

Many thanks go to my colleagues and co-authors of some of my publications and all team members at Centre of Excellent for Advanced Sensor Technology (CEASTech) with who experiments were designed, data were collected and also for moral support rendered.

I would like to thank Associate Professor Dr. Mahmad Noor Bin Jaafar and his team at Institute of Agrotechnology for providing facilities and samples for studies in their precision farms and greenhouses.

Many thanks and gratitude goes to Ministry of Higher Education MoHE, and Malaysian government for financially sponsoring the study through MyBrain15 Program.

I would also like to thank my soul mate Surayya Hanim Binti Ahmad Pakri and all my children for love and care during all those years. Their loves and support have been very critical at some of the turning points in the works towards completing this thesis.

This is also a chance for me to express my gratitude to my beloved parents Harun bin Husin and Rohmah Binti Bakar and my parent-in-laws Ahmad Pakri Bin Awang and Hatiah Binti Musa for their support and understanding throughout my prolonged studies.

### **TABLE OF CONTENTS**

| THE        | SIS DE           | CLAR | ATION        |                                                    | i    |  |
|------------|------------------|------|--------------|----------------------------------------------------|------|--|
| ACK        | ACKNOWLEDGEMENTS |      |              |                                                    |      |  |
| TAB        | LE OF            | CONT | ENTS         |                                                    | iii  |  |
| LIST       | OF TA            | BLES |              | Philo                                              | ix   |  |
| LIST       | OF FIG           | GURE | S            |                                                    | xi   |  |
| LIST       | OF AB            | BREV | <b>IATIO</b> | NS                                                 | xvii |  |
| ABS        | FRAK             |      |              | 101                                                | xix  |  |
| ABS        | <b>FRACT</b>     |      |              | NS orieinal copyright<br>Led by orieinal copyright | xix  |  |
| СНА        | PTER 1           | BAC  | KGRO         | UND AND INTRODUCTION                               |      |  |
|            |                  | 1.1  | Introd       | uction                                             | 1    |  |
|            | c'               | 1.2  | Proble       | em Statement                                       | 2    |  |
| ٠          | IS TE            | 1.3  | Resea        | rch Objectives                                     | 2    |  |
| -XX        |                  | 1.4  | Metho        | odology                                            | 4    |  |
| $\bigcirc$ |                  | 1.5  | Benef        | its and Contributions of This Thesis               | 7    |  |
|            |                  | 1.6  | Layou        | t of Thesis                                        | 8    |  |
| СНА        | PTER 2           | LITE | ERATU        | <b>RE REVIEW AND THEORIES</b>                      |      |  |
|            |                  | 2.1  | Introd       | uction                                             | 10   |  |
|            |                  |      | 2.1.1        | WSN Application in Agriculture                     | 11   |  |
|            |                  |      | 2.1.2        | WSN Systems and Technologies                       | 12   |  |
|            |                  |      | 2.1.3        | Challenges in WSN Applications in Agriculture      | 13   |  |
|            |                  |      |              | 2.1.3.1 Coverage and Connectivity                  | 14   |  |

|                                         |      |         | 2.1.3.1.1              | Area/Point Coverage          | 15     |
|-----------------------------------------|------|---------|------------------------|------------------------------|--------|
|                                         |      |         | 2.1.3.1.2              | Path Coverage                | 16     |
|                                         |      |         | 2.1.3.1.3              | Factors Affecting Network    | 16     |
|                                         |      |         | 2.1.3.1.4              | Conectivity Recovery Techniq | jue 17 |
|                                         |      |         | 2.1.3.2 Energy Cons    | umption                      | 19     |
|                                         |      | 2.1.4   | Channel Models and     | Modeling                     | 20     |
|                                         |      | 2.1.5   | Radio Energy Model     | ling                         | 28     |
|                                         | 2.2  | Electro | omagnetic Wave Prop    | agation                      | 31     |
|                                         | 2.3  | Wirele  | ess Communication      |                              | 36     |
|                                         |      | 2.3.1   | Narrowband             |                              | 36     |
|                                         |      | 2.3.2   | Wideband               |                              | 37     |
|                                         |      | 2.3.3   | Signal Propagation N   | Aechanism                    | 37     |
|                                         | Ś    | ,0°     | 2.3.3.1 Reflection     |                              | 38     |
| Thiste                                  | ('S' | •       | 2.3.3.2 Reflection fro | om Dielectrics               | 39     |
| ······································· |      |         | 2.3.3.3 Reflection fro | om Perfect Conductor         | 40     |
| This                                    |      |         | 2.3.3.4 Diffraction    |                              | 41     |
| $\bigcirc$                              |      |         | 2.3.4.5 Scattering     |                              | 42     |
|                                         |      | 2.3.4   | Small Scale Multipa    | th Propagation               | 44     |
|                                         |      |         | 2.3.4.1 Factors Influe | encing Small Scale Fading    | 45     |
|                                         | 2.4  | Mesh    | Network Types and C    | haracteristics               | 46     |
|                                         |      | 2.4.1   | Infrastructure/backbo  | one WMN                      | 46     |
|                                         |      | 2.4.2   | WMN Client             |                              | 48     |
|                                         |      | 2.4.3   | Hybrid WMN             |                              | 48     |
|                                         |      | 2.4.4   | WMN Characteristic     | S                            | 49     |

### **CHAPTER 3 WSN ENERGY CONSUMPTION ANALYSIS**

|             | 3.1    | Introd | uction                                              | 51 |
|-------------|--------|--------|-----------------------------------------------------|----|
|             | 3.2    | Exper  | iment to Study the Rate of Battery Energy Depletion | 52 |
|             |        | 3.2.2  | Experimental Setup                                  | 52 |
|             | 3.3    | Meası  | arement Results                                     | 54 |
|             |        | 3.3.1  | Power Consumption Profile for Iris and Microchip    | 54 |
|             | 3.4    | Discu  | ssions and Implications                             | 57 |
| CHAPTER 4   | 4 EXPE | RIME   | NTAL MEASUREMENTS OF PROPAGATION PA                 | ТН |
|             | LOSS   | IN DI  | FFERENT ENVIRONMENTS                                |    |
|             | 4.1    | Exper  | imental Systems                                     | 59 |
|             | 4.2    | Types  | of Environment                                      | 60 |
|             | Ś      | 4.2.1  | Mixed Crop                                          | 60 |
|             | 17     |        | 4.2.1.1 Open Grass Covered Field                    | 63 |
| ·Site       |        |        | 4.2.1.2 Open Ground with Soil and Gravel Covering   | 64 |
| © This iter |        |        | 4.2.1.3 Plastic Covered Bed with Young Seedling     | 64 |
| $\bigcirc$  |        |        | 4.2.1.4 Corn Field                                  | 65 |
|             |        |        | 4.2.1.5 Cashew Plants                               | 67 |
|             |        |        | 4.2.1.6 Misai Kucing Herb                           | 68 |
|             |        |        | 4.2.1.7 Guava Trees                                 | 68 |
|             |        | 4.2.2  | Greenhouses                                         | 69 |
|             |        |        | 4.2.2.1 Mango Greenhouse Measurement                | 69 |
|             |        |        | 4.2.2.2 Grape Greenhouse Measurement                | 70 |
|             |        |        | 4.2.2.3 Mango Orchard Measurement                   | 72 |

|                                       |        | 4.2.3   | Aquaculture Spatial and Temporal Measurement      | 74  |
|---------------------------------------|--------|---------|---------------------------------------------------|-----|
|                                       |        | 4.2.4   | Mono Crop Plantation                              | 75  |
|                                       |        |         | 4.2.4.1 Rubber Plantation Measurement             | 76  |
|                                       |        |         | 4.2.4.2 Palm Oil Plantation Measurement           | 77  |
| CHAPTER :                             | 5 ANAI | LYSIS A | AND MODELING DISCUSSIONS                          |     |
|                                       | 5.1    | Mixed   | Crop Precision Farm                               | 79  |
|                                       |        | 5.1.1   | Open Grass Covered Field                          | 79  |
|                                       |        | 5.1.2   | Plastic Covered Bed with Young Seedling           | 81  |
|                                       |        | 5.1.3   | Corn field                                        | 82  |
|                                       |        | 5.1.4   | Cashew Nut Plants (Shrubs)                        | 83  |
|                                       |        | 5.1.5   | Signal Propagation Modeling                       | 84  |
|                                       | 5.2    | Greenl  | nouses                                            | 87  |
|                                       | Ś      | 5.2.1   | Mango Greenhouse                                  | 87  |
| Thisite                               | nis    |         | 5.2.1.1 Antenna Height Comparison                 | 87  |
| · · · · · · · · · · · · · · · · · · · |        |         | 5.2.1.2 Measurement in Between Trees              | 89  |
| Thur                                  |        |         | 5.2.1.3 Comparison between Greenhouse and Orchard | 91  |
| $\bigcirc$                            |        |         | 5.2.1.4 Signal Propagation Modeling               | 93  |
|                                       |        | 5.2.2   | Grape Greenhouse                                  | 101 |
|                                       |        |         | 5.2.1.1 Antenna Height Effect                     | 101 |
|                                       |        |         | 5.2.1.2 Signal Propagation Modeling               | 103 |
|                                       | 5.3    | Aquac   | ulture Environment                                | 107 |
|                                       |        | 5.3.1   | Measurement Results and Analysis                  | 107 |
|                                       |        | 5.3.2   | Modeling and Discussion                           | 115 |
|                                       | 5.4    | Mono    | Crop – Rubber Plantation                          | 117 |

|            |          | 5.4.1 Frequency Variat  | ion Effect                   | 117 |
|------------|----------|-------------------------|------------------------------|-----|
|            |          | 5.4.2 Antenna Height H  | Effect                       | 122 |
|            |          | 5.4.3 Signal Propagatio | on Modeling                  | 124 |
|            | 5.5      | Mono Crop – Palm Oil P  | lantation                    | 132 |
|            |          | 5.5.1 Frequency Variat  | ion Effect                   | 132 |
|            |          | 5.5.2 Antenna Height H  | Effect                       | 134 |
|            |          | 5.5.3 Signal Propagatio | on Modeling                  | 135 |
|            | 5.6      | Summary                 |                              | 139 |
|            |          | 5.6.1 Mixed Crop Find   | ings                         | 139 |
|            |          | 5.6.2 Greenhouses Find  | lings                        | 140 |
|            |          | 5.6.3 Aquaculture Envi  | ronment Findings             | 141 |
|            |          | 5.6.4 Mono Crop Findi   | ngs                          | 142 |
| СНАРТЕ     | R 6 WSN  | O<br>IETWORK MODELIN    | G AND PLANNING               |     |
|            | 6.1      | Network Coverage and S  | ensor Communication          | 144 |
| · ~ *      | <u>e</u> | 6.1.1 Factors Affecting | Coverage Performance         | 145 |
| THIS       | 6.2      | Network Connectivity    |                              | 145 |
| $\bigcirc$ | 6.3      | Network Energy Consum   | nption Modeling and Planning | 145 |
|            |          | 6.3.1 Modeling Assum    | ptions                       | 146 |
|            |          | 6.3.2 Energy Consump    | tion and Network Coverage    | 147 |
|            |          | 6.3.3 Further Discussio | n                            | 155 |
|            | 6.4      | Summary                 |                              | 155 |
| CHAPTE     | R 7 CON  | LUSIONS AND FUTU        | RE WORKS                     |     |
|            | 7.1      | Conclusions             |                              | 157 |
|            |          |                         |                              |     |

7.2Future Works160

### LIST OF PUBLICATIONS

o this term is protected by original coopright

161 169

### LIST OF TABLES

| NO  |                                                                                                                                                                                                                           | PAGE |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1 | Some of the popular available RF chipset in the market                                                                                                                                                                    | 5    |
| 2.1 | Power consumption values for Atmel at86rf230 radio transceiver during transmission                                                                                                                                        | 30   |
| 2.2 | Material parameters at various frequencies                                                                                                                                                                                | 40   |
| 4.1 | Summary of system and equipment used for research in various agricultural environments                                                                                                                                    | 61   |
| 4.2 | Rubber tree diameters (in cm) under study                                                                                                                                                                                 | 77   |
| 4.3 | Palm oil tree circumferences (in m) under study                                                                                                                                                                           | 78   |
| 5.1 | Summary of all RMSE for all calculated surfaces and vegetations                                                                                                                                                           | 86   |
| 5.2 | Average model parameter values estimates from fitting generic models to data with some established models for comparison and average fitted RMS errors from frequency 1 GHz to 4.2 GHz and those frequencies close to ISM | 100  |
| 5.3 | Boundary distance for first Fresnel zone for multiple frequencies and antenna heights                                                                                                                                     | 101  |
| 5.4 | Average RMSE for frequencies from 1 GHz to 4.2 GHz and average RMSE for ism bands and frequencies close to the band                                                                                                       | 106  |
| G.5 | Correlation coefficient between measured parameter values                                                                                                                                                                 | 115  |
| 5.6 | Average model parameter values estimates from fitting vegetation attenuation models to measured data and average fitted RMSE                                                                                              | 128  |
| 5.7 | Fresnel zone clearances for various antenna heights in rubber plantations                                                                                                                                                 | 129  |
| 5.8 | RMSE of fitting of models to measured data to assess possible effect of ground and canopy reflections                                                                                                                     | 130  |
| 5.9 | Average model parameter values estimates from fitting generic models to data with some established models for comparison and average fitted RMSE from frequency 1 GHz to 4.2 GHz and those frequencies close to ISM       | 139  |

150

o this item is protected by original convitent

### LIST OF FIGURES

|   | NO  |                                                                                                                                                                                    | PAGE |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | 1.1 | Thesis methodology summary                                                                                                                                                         | 7    |
|   | 2.1 | Ray tracing geometry of the direct $-1$ , Ground reflected $-2$ , Tree-<br>canopy reflected wave $-3$                                                                              | 22   |
|   | 2.2 | Small scale and large scale fading example                                                                                                                                         | 38   |
|   | 2.3 | Geometry for calculating the reflection coefficient between two<br>dielectrics; (a) when E-field is in the plane of incidence and (b) when<br>E-field normal to plane of incidence | 40   |
|   | 2.4 | Wireless mesh network infrastructure/backbone type                                                                                                                                 | 47   |
|   | 2.5 | Wireless Mesh Network Client Type                                                                                                                                                  | 48   |
|   | 2.6 | Wireless Mesh Network Hybrid Type                                                                                                                                                  | 49   |
|   | 3.1 | (a) IRIS, (b) EKO and (c) Microchip WSN nodes employed in the experiment                                                                                                           | 54   |
|   | 3.2 | Experiment setup to measure power consumption in WSN node                                                                                                                          | 54   |
|   | 3.3 | Power consumption of IRIS node for 3s and 5s transmission interval for a fixed range                                                                                               | 54   |
| ( | 3.4 | Power consumption of Microchip node for 1s, 3s and 5s transmission interval for a fixed range                                                                                      | 55   |
|   | 4.1 | RF equipment setup used to conduct measurement                                                                                                                                     | 60   |
|   | 4.2 | Open field for preliminary testing                                                                                                                                                 | 64   |
|   | 4.3 | Open ground with soil and gravel covering under study                                                                                                                              | 64   |
|   | 4.4 | Plastic covering for young seedling under study                                                                                                                                    | 65   |
|   | 4.5 | Corn field under study                                                                                                                                                             | 66   |
|   | 4.6 | Graphical description of measurement methodology in Corn field                                                                                                                     | 66   |
|   | 4.7 | Cashew row under study                                                                                                                                                             | 67   |

| 4.8  | Illustration on the measurement done in cashew field                                   | 67 |
|------|----------------------------------------------------------------------------------------|----|
| 4.9  | Misai kucing herb matured and ready to be harvested                                    | 68 |
| 4.10 | Guava trees under study                                                                | 69 |
| 4.11 | Graphical description of measurement methodology for Guava trees                       | 69 |
| 4.12 | Large greenhouse full of high value mangoes under study                                | 70 |
| 4.13 | Graphical description of measurement methodology in mango greenhouse                   | 70 |
| 4.14 | Greenhouses used for grapes cultivation                                                | 71 |
| 4.15 | Measurement being made in grape greenhouse                                             | 71 |
| 4.16 | Graphical representation of measurement for Tx at 1.2 m                                | 72 |
| 4.17 | Graphical representation of measurement for Tx at 1.5 m                                | 72 |
| 4.18 | Mango orchard under study                                                              | 73 |
| 4.19 | Orchard mango under study with Tx and Rx in position                                   | 73 |
| 4.20 | Aquaculture measurement environment                                                    | 74 |
| 4.21 | Graphical illustration of signal variations with meteorological conditions measurement | 75 |
| 4.22 | Rubber plantation under study (a) and palm plantation (b)                              | 76 |
| 4.23 | Measurement methodology for rubber plantation                                          | 76 |
| 4.24 | Measurement methodology for palm oil plantation                                        | 78 |
| 5.1  | Signal variation with distance for open grass field                                    | 80 |
| 5.2  | Signal variation for plastic covered bed with young seedling                           | 81 |
| 5.3  | Signal variation for corn field                                                        | 82 |
| 5.4  | Signal variation for Cashew plants                                                     | 84 |
| 5.5  | Signal attenuation through corn plants at 1 m antenna fit with multiple models         | 85 |

| 5.6  | Grass surface effect on signal attenuation at 15cm antenna fit with multiple models                                                         | 85  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.7  | Signal strength variation for mango in greenhouse                                                                                           | 88  |
| 5.8  | Signal variation for 1.2 m and 1.75 m receiver antenna heights in mango greenhouse                                                          | 89  |
| 5.9  | Signal variation for 1.2 m and 1.75 m antenna height for frequency range (a) 1.0 GHz to 1.1 GHz and (b) 2.4 GHz to 2.5 GHz                  | 91  |
| 5.10 | Signal variation for 1.2 m and 1.65 m antenna height for frequency range from (a)1.0 GHz to 1.1 GHz and (b)2.4 to 2.5 GHz                   | 93  |
| 5.11 | Data for mango at 1.2 m and 1.75m antenna heights for frequency at 1 GHz                                                                    | 94  |
| 5.12 | Vegetation attenuation for frequency 2.4GHz and 2.5GHz in mango greenhouse                                                                  | 95  |
| 5.13 | Vegetation attenuation for frequency (a) 1 GHz, (b) 2.4 GHz and (c) 2.5 GHz in mango greenhouse between two rows of mango trees             | 96  |
| 5.14 | Vegetation attenuation for frequency 1 GHz for (a) 1.2 m, (b) 1.75 m in mango greenhouse comparison along and middle                        | 97  |
| 5.15 | Vegetation attenuation for frequency 2.4 GHz for (a) $1.2 \text{ m}$ , (b) $1.75 \text{ m}$ in mango greenhouse comparison along and middle | 97  |
| 5.16 | Vegetation attenuation for frequency 2.5 GHz for (a) 1.2 m , (b) 1.75 m in mango greenhouse comparison along and middle                     | 98  |
| 5.17 | Signal attenuation comparison between greenhouse mango and orchard for (a) 1 GHz, (b) 2.4 GHz and (c) 2.5 GHz                               | 99  |
| 5.18 | Signal variations for Tx antenna at 1.2 m for frequency (a) 1.0 GHz and 1.1 GHz (b) 2.4 GHz and 2.5 GHz                                     | 102 |
| 5.19 | Grape greenhouse comparison between multiple receiver antenna heights at 1.2 m transmitter                                                  | 104 |
| 5.20 | Grape greenhouse comparison between multiple receiver antenna heights at 1.5 m transmitter                                                  | 104 |
| 5.21 | Grape greenhouse comparison between multiple receiver antenna heights at comparison                                                         | 105 |

| 5.22 | Grape greenhouse comparison between multiple receiver antenna heights comparison                                                                                                    | 106 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.23 | Comparison of signal power variation with distance over two ponds<br>and along vegetations on the side of the ponds                                                                 | 108 |
| 5.24 | Variation of atmospheric conditions with time at 15 cm and 5 m antenna heights (a) temperature, (b) humidity, (c) pressure and (d) computed refractivity (N), over 24 hours periods | 110 |
| 5.25 | Variation of received signal power at 69 m antenna separation at 15 cm and 5 m antenna heights measurements (a) Day 1, (b) Day 2                                                    | 111 |
| 5.26 | Anomaly: (a) Refractivity, (b) Signal levels and, (c) Cumulative distribution of received signal power, at 15 cm and 5 m antenna heights during anomalous conditions                | 113 |
| 5.27 | Measured signal level and fitted 2-ray model                                                                                                                                        | 116 |
| 5.28 | Multi-ray modeling of direct, reflected and tree-scattered components with path length                                                                                              | 117 |
| 5.29 | Signal variation for antenna at 2.3 m (trunk level) for indicated frequency range                                                                                                   | 118 |
| 5.30 | Signal variation for antenna at 3.7 m (branch level) for indicated frequency range                                                                                                  | 119 |
| 5.31 | Signal variation for antenna at 2.0 m (trunk level) for indicated frequency range (second measurement)                                                                              | 120 |
| 32   | Signal variation for antenna at 3.7 m (branch level) for indicated frequency range (second measurement)                                                                             | 120 |
| 5.33 | Signal variation for antenna at 5.5 m (canopy level) for indicated frequency range (second measurement)                                                                             | 121 |
| 5.34 | Signal variation for multiple antenna height for indicated frequency range                                                                                                          | 122 |
| 5.35 | Signal variation for multiple antenna height for indicated frequency range                                                                                                          | 123 |
| 5.36 | Signal variation for multiple antenna height for 900MHz frequency (second measurement)                                                                                              | 124 |
| 5.37 | Signal variation for multiple antenna height for indicated 2.4 GHz xiv                                                                                                              | 124 |
|      | AIV                                                                                                                                                                                 |     |

frequency (second measurement)

| 5.38 | Signal variation for multiple antenna height for indicated frequency range in rubber 4.5 m gap            | 125 |
|------|-----------------------------------------------------------------------------------------------------------|-----|
| 5.39 | Signal variation for multiple antenna height for indicated frequency range in rubber 6.5 m gap            | 126 |
| 5.40 | Example of rubber data fitted with various models                                                         | 131 |
| 5.41 | Signal variation for multiple frequency at trunk level (2 m)                                              | 132 |
| 5.42 | Signal variation for multiple frequency at branch level (4.5 m)                                           | 133 |
| 5.43 | Signal variation for multiple frequency in between tree lines (2.0 m antenna height)                      | 134 |
| 5.44 | Signal variation for multiple antenna heights for 900 MHz frequency range along palm oil plantation       | 135 |
| 5.45 | Signal variation for multiple antenna heights for 2.4 GHz frequency range along palm oil plantation       | 135 |
| 5.46 | Signal variation for multiple antenna heights in palm oil plantation with best-fit models at 800 MHz      | 136 |
| 5.47 | Signal variation for multiple antenna heights in palm oil plantation with best-fit models at 900 MHz      | 136 |
| 5.48 | Signal variation for multiple antenna heights in palm oil plantation with best-fit models at 2.4 GHz      | 137 |
| 5.49 | Signal variation for multiple antenna heights in palm oil plantation with best-fit models at 2.5 GHz      | 138 |
| 6.1  | 14-acre farmland illustration showing types of crop plots                                                 | 148 |
| 6.2  | Network coverage using measured propagation model showing unconnected nodes in each crop plots            | 149 |
| 6.3  | Node deployment based on measured propagation model for minimum node usage from coverage area perspective | 151 |
| 6.4  | Node deployment based on measured propagation model for minimum node usage from connectivity perspective  | 152 |
| 6.5  | Node deployment based on measured propagation model for increased                                         | 153 |

power by +3 dBm

6.6 Node deployment based on measured propagation model for decreased 154 power by 3 dBm

o this item is protected by original copyright

### LIST OF ABBREVIATIONS

| WSN    | Wireless Sensor Network                                                              |
|--------|--------------------------------------------------------------------------------------|
| RF     | Radio Frequency                                                                      |
| FLASH  | Fast Low-Latency Access with Seamless Handoff                                        |
| IEEE   | Institute of Electrical and Electronic Engineering                                   |
| WLAN   | Wireless Local Area Network                                                          |
| WPAN   | Wireless Local Area Network<br>Wireless Personal Area Network<br>Kilo Bit Per Second |
| Kbps   | Kilo Bit Per Second                                                                  |
| ССР    | Coverage Configuration Protocol                                                      |
| ASCENT | Adaptive Self-Configuring Sensor Networks Topologies                                 |
| OGDC   | Optimal Geographical Density Control                                                 |
| KCCS   | K-neighbors Constrained Coverage Strategy                                            |
| RIS    | Random Independent Scheduling                                                        |
| LEACH  | Low Energy Adaptive Clustering Hierarchy                                             |
| PILOT  | Pre-defined, Intelligent, Lightweight Topology management                            |
| QoS    | Quality of Service                                                                   |
| FSL    | Free Space Loss                                                                      |
| KHz    | Kilohertz                                                                            |
| MHz S  | Megahertz                                                                            |
| GHz    | Gigahertz                                                                            |
| MED    | Modified Exponential Decay                                                           |
| MA     | Maximum Attenuation                                                                  |
| NZG    | Non-Zero Gradient                                                                    |
| ITU-R  | International Telecommunications Union – Radio communications                        |
| RET    | Radiative Energy Transfer                                                            |
| Tx     | Transmit                                                                             |
| Rx     | Receive                                                                              |
| Т      | Temperature                                                                          |
| Р      | Pressure                                                                             |
| Н      | Relative Humidity                                                                    |
|        |                                                                                      |

- Received Signal Strength Indicator RSSI
- dB Decibel

Decibel with reference to isotropic antenna dBi

Decibel with reference to 1 mW dBm

- Line of sight LOS
- NLOS Non line of sight
- othis itemis protected by original copyright

## Perlaksanaan Rangkaian Sensor Tanpa Wayar (WSN) di Persekitaran Pertanian di Utara Malaysia

### ABSTRAK

Kemunculan rangkaian sensor tanpa wayar (WSN) telah sebahagian besarnya didorong oleh kemajuan pengecilan peranti elektronik dan peningkatan dalam pembuatan berkapasiti tinggi telah menjadi faktor utama untuk menyokong dari sudut ekonomi. Krisis makanan baru-baru ini berlaku di beberapa tempat di dunia yang mencetuskan kesedaran tentang keselamatan makanan dan kapasiti pengeluaran makanan. Untuk pengeluaran makanan secara moden berjaya, pemahaman yang mendalam dan pengetahuan perubahan temporal dan spatial tanaman adalah sangat kritikal. Oleh itu, penggunaan sensor dan rangkaian tanpa wayar dalam perancangan dan pelaksanaan yang betul untuk menyokong pertanian adalah kunci untuk mewujudkan liputan tanpa wayar yang optimum di ladang. Tesis ini telah ditulis berdasarkan objektif-objektif berikut; menilai penggunaan tenaga dalam nod WSN sebagai fungsi jarak penghantaran data dan penghantaran tetapan paras kuasa; mengkonfigurasi sistem untuk jarak pendek hingga pertengahan julat bagi pengukuran pautan untuk kajian dalam persekitaran pertanian. Tesis juga menilai path loss model yang sedia ada, mengenal pasti dan membangunkan model baharu untuk sistem WSN dalam persekitaran pertanian. Di samping itu, tesis juga mereka bentuk dan model bagi liputan kawasan penempatan WSN dalam persekitaran pertanian. Bagi memenuhi objektif, kajian dalam pelbagai jenis persekitaran pertanian yang meliputi penilaian di ladang campuran tanaman, kolam akuakultur, rumah hijau dan perladangan tanaman tunggal dijalankan. Path loss model telah dinilai dan hasilnya digunakan dalam simulasi WSN. Pada masa yang sama, penilaian tenaga WSN nod telah dijalankan dan hasilnya digunakan dalam simulasi WSN. Hasil pengukuran yang diperoleh daripada kajian menunjukkan bahawa model Log distance adalah yang terbaik dan model patut untuk ukuran, dalam lading tanaman campuran, manakala model 2-ray adalah mencukupi untuk menggambarkan persekitaran akuakultur. Perubahan isyarat dalam akuakultur dipengaruhi oleh perubahan suhu, kelembapan dan indeks biasan. Kajian di rumah hijau Mangga menunjukkan bahawa turun naik isyarat yang berbeza dengan kepadatan tumbuh-tumbuhan dan Non Zero Gradient model boleh menggambarkan penyebaran isyarat global manakala Modified Exponential Decay adalah lebih sesuai untuk antenna tahap rendah. Model Non Zero Gradient parameter tertentu boleh digunakan untuk menggambarkan jenis anggur rumah hijau. Bagi lading satu tanaman, model Non Zero Gradient sesuai untuk menggambarkan isvarat bagi ISM (Industri, Saintifik and Medical) jalur frekuensi manakala Modified Exponential Decay lebih sesuai untuk julat frekuensi di antara 800 MHz dan 4.2 GHz dalam perladangan getah. Model Modified Exponential Decay adalah lebih baik untuk menggambarkan perambatan di peringkat cabang manakala Non Zero Gradient diperingkat kanopi. Bagi ladang kelapa sawit, Modified Exponential Decay adalah yang lebih baik menggambarkan perambatan isyarat di kawasan batang, manakala Maximum Attenuation di peringkat cabang. Satu simulasi model penempatan yang telah dilakukan pada akhir tesis menggambarkan liputan berpotensi berdasarkan penggunaan kuasa dalam pelbagai tingkah laku isyarat dalam perladangan tanaman campuran.

### Deployment of Wireless Sensor Network (WSN) in Agricultural Environment in

Northern Malaysia

### ABSTRACT

The advent of Wireless Sensor Networks (WSN) has been fuelled mainly by the advancement in miniaturization of electronic devices and the rise of high volume manufacturing that has been the key supporting factor for the advancement economically. Recent food crises happening over various parts of the world triggered the consciousness over food security and food production capability. For the modern food production to be successful, a thorough understanding and awareness of temporal and spatial crops behaviour is super critical. Thus the use of sensor and wireless sensor networks and proper deployment planning to support modern precision farming is the key to optimum coverage establishment in the farmland. This thesis was written based on the following objectives; assessment energy consumption in WSN nodes as a function of data transmission interval and transmission power level setting; configure a system for short to mid-range link measurement for the study in agricultural environment. The thesis also evaluates existing signal path loss models, identifies or develops new path loss models for WSN system in agricultural environment. Additionally, the thesis also design and model a wide area WSN in agricultural environment. To meet the objectives, propagation path loss measurements were conducted in multiple types of agricultural environments which cover assessment in mixed crop plantation, aquaculture ponds, green houses and mono crop plantations. Path loss models were evaluated and or developed and results were used in WSN simulation. Concurrently WSN nodes energy consumption assessment was carried out and results used in the WSN simulation. Output from these study and measurements are energy consumption assessment in WSN nodes, path loss models and results from WSN simulation in agricultural environment. Measurement results acquired from the studies show that Log-distance model is the best fit model for measurement in mixed crop plantation while 2-ray model is sufficient to describe the propagation in aquaculture environment. Signal variation in aquaculture is influenced by changes in temperature, humidity and thus refractive index of the medium. Studies in mango greenhouse shows that signal fluctuation varies with vegetation density and Non Zero Gradient model can describe the overall signal propagation while Modified Exponential Decay is more appropriate for lower antenna height. Non Zero Gradient model with specific parameters can be used to describe overhead trellis type grape in greenhouse. For mono-crop plantation, Non Zero Gradient is suitable to describe ISM (Industrial, Scientific and Medical) band frequencies while Modified Exponential Decay is more suitable for frequency 800 MHz to 4.2 GHz in rubber plantation. Modified Exponential Decay is best describe the propagation at branch level while Non Zero Gradient at canopy level. For palm plantation, Modified Exponential Decay best describe signal propagation at trunk while Maximum Attenuation is at canopy level. A deployment model simulation was done at the end of the thesis illustrating the potential coverage based on power behavior mixed consumption in various signal in crop plantation.

### CHAPTER 1

### **BACKGROUND AND INTRODUCTION**

This chapter provides a background of the issues in the planning of wireless sensor network (WSN) coverage in agricultural environment. copyries

### **1.1 Introduction**

In most agricultural societies, agricultural practices is mainly subsistence farming. The increase in many countries has resulted in a steep decline in the number of people in agriculture. Thus there is extensive reliance on commercial farming activities. This means that food production is now done on industrial scale by fewer people and food is exported to many markets. This also means that a poor yield in one country will certainly have impact on distant cultures. As in recent example, the increase in food price in 2008 was due to a low food production in Russia which led to export ban of grain by Russian government (Cha & Zacharia, 2010). This affected a number of countries relying on Russian wheat. Apart from this, climate change is resulting in an increase in unpredictable weather which will have an impact on food production.

It is now widely believed that the application of technology is the only way to mitigate the impact of climate change and also to increase efficiency in food production. One of such technologies is the application of sensors which can be used not only to monitor crop growing condition but also to reduce the cost of food production by efficiently managing the input, e.g. fertilizer and water.

### **1.2 Problem Statement**

The application of technology in agriculture is widely referred to as precision agriculture which is a general term that is used to describe any farming technology that is tailored to reduce cost and optimize yield. In some areas, precision agriculture is undertaken through the application of manual techniques, e.g. manual soil sampling and application of input such as fertilizer and water. This practice however, is labour intensive and prone to human error. Because of the diversity and the harshness of agriculture environments, any deployment of technology has to be carefully planned. An obvious solution is to deploy systems that do not communicate via wired connections hence this makes wireless systems prime candidate for application in agriculture. However, the diversity of the type of crops that grow in agricultural environments poses a challenge to the planning and deployment of wireless system; hence detail knowledge of agricultural environment is necessary for the planning and deployment of any wireless system.

One of the important problems normally found in deployment planning is node battery energy consumption behaviour to support variety of applications. Furthermore, the propagation characteristics of wireless signal in agricultural environment are of critical factor to consider as well. Another problem associated with deployment planning is network creation and maintenance to meet connectivity and quality of service.

### **1.3 Research Objectives**

The main objective of this research is to conduct wireless signal propagation study in selected agricultural environments and utilizes the analysis to propose WSN