THE PROPERTIES OF STYRENE BUTADIENE RUBBER/RECYCLED CHLOROPRENE RUBBER (SBR/CRr) BLENDS

AHMAD AZREM BIN AZMI

UNIVERSITI MALAYSIA PERLIS 2014

The Properties of Styrene Butadiene Rubber/Recycled Chloroprene Rubber (SBR/CRr) Blends

By

Ahmad Azrem Bin Azmi 1130410611

othis item is protected by A thesis submitted In fulfillment of the requirement for the degree of Master of Science (Materials Engineering)

> **School of Materials Engineering UNIVERSITI MALAYSIA PERLIS**

> > 2014

AKNOWLEDGEMENT

ـــم الله الرَّحْمَن اررَّحِيم

In the name of Allah, the most Beneficent, the most Merciful Praise be to Allah who gave me the power, the undying strength and the patience bestowed upon me during the course of this study; and blessings and peace be upon our prophet Muhammad.

First of all, I would like to acknowledge the support of Universiti Malaysia Perlis and School of Materials Engineering especially for providing the opportunity to undertake this study. My special acknowledgement goes to my main-supervisor, Dr. Nik Noriman Zulkepli for his constant encouragement, guidance and assistance during my period of study. The constant guidance and assistance offered by my co-supervisor, Dr. Razif Mohd Nordin are gratefully acknowledged. Special thanks go to my mother, brother, sister and my wife especially, Norasmira for their encouragements, prayers and endless love.

There are many people who deserve my gratitude since they have been contributing to this thesis. Special thanks go to my colleagues in Polymer Research Group, Lokman, Salihin, Dr. Shahnaz, Dr. Luqman, Nik Zakaria and Ridwan for their help, support and co-operation. I would also like to express my gratitude to the support given by the Laboratory Assistants namely Azmi, Nasir, Ku Hasrin, Zaidi, Hadzrul, and Idrus for their assistance and guidance.

I extend my appreciation to all staff of School of Materials Engineering and members of Center of Excellence Geopolymer and Green Technology (CEGeoGTech) especially Assoc. Prof. Che Muhd Ruzaidi, Dr. Mohd Mustafa Al Bakri, Mohd Arif Anuar, Dr. Sam Sung Ting, Wan Mohd Arif, Alida, Tamizi, Faisol and all the numerous friends whose names have not been mentioned, it was nice knowing you all.

Lastly, it is pleasure to thank those who made this thesis possible. I offer my regards and blessing to all of those who supported me in any respect during the completion of the dissertation.

Ahmad Azrem Azmi

February 2014

o This item is protected by original copyright

SIFAT-SIFAT ADUNAN GETAH STIRENA BUTADIENA/GETAH KITAR SEMULA KLOROPRENA (SBR/CRr)

ABSTRAK

Kesan terhadap sifat-sifat pematangan, sifat-sifat fizikal dan mekanikal dan sifat-sifat morfologi adunan getah stirena butadiena/getah kitar semula kloroprena (SBR/CRr) telah dikaji. Adunan SBR/CRr dengan nisbah adunan iaitu 95/5, 85/15, 75/25, 65/35 dan 50/50 telah disediakan dengan menggunakan penggiling bergulung dua pada suhu bilik dan diikuti oleh pengacuan mampatan. Keputusan terhadap perbandingan adunan getah stirena butadiena/getah asli kloroprena (SBR/CRv) dengan SBR/CRr menunjukkan bahawa pada nisbah adunan yang sama, terutamanya sehingga 15 phr, adunan getah SBR/CRr menunjukkan peningkatan pada kekuatan tegasan manakala M100, kekerasan dan ketumpatan penyambungsilangan adunan getah SBR/CRr menunjukkan peningkatan dalam semua nisbah. Saiz CRr yang paling halus, S1 (346-486 µm) bagi adunan getah SBR/CRr menunjukkan sifat-sifat pematangan dan sifat-sifat mekanikal yang lebih baik berbanding dengan semua nisbah adunan bagi S2 (664-891 µm) dan S3 (0.3-0.7 mm). Tambahan pula, pemprosesan akan menjadi lebih efisien dan luas kawasan permukaan sentuhan akan meningkat di mana akan menyebabkan ikatan pelekatan-pelekatan yang lebih efisien. Keserasian bagi adunan getah SBR/CRr dengan 3 phr getah trans- polyoctylene (TOR) telah menambahbaik pelekatan antara-muka bagi CRr dan matrik SBR. Seterusnya, meningkatkan keserasian adunan getah SBR/CRr. Sifat-sifat pematangan adunan getah SBR/CRr yang dicampurgaul dengan TOR mempunyai masa skorj, t₂ dan masa pematangan, t₉₀ yang lebih singkat berbanding adunan getah SBR/CRr yang tidak dicampurgaul dengan TOR. Adunan getah SBR/CRr yang dicampurgaul dengan TOR menunjukkan minimum tork, (M_L) yang lebih rendah berbanding adunan getah SBR/CRr yang tidak dicampurgaul dengan TOR pada semua nisbah adunan. Walau bagaimanapun, maksimum tork, (M_H) bagi adunan getah SBR/CRr yang dicampurgaul dengan TOR menunjukkan trend yang bertentangan berbanding dengan adunan getah SBR/CRr yang tidak dicampurgaul dengan TOR pada semua nisbah adunan. Kekuatan tegasan, M100, kekerasan dan ketumpatan penyambungsilangan adunan getah SBR/CRr yang dicampurgaul dengan TOR juga bertambah baik berbanding dengan adunan getah SBR/CRr yang tidak dicampurgaul dengan TOR. Masa pematangan, t₉₀ bagi adunan getah SBR/CRr/CB dan adunan getah SBR/CRr/CaCO₃ menurun dengan peningkatan kandungan CRr dalam kedua-dua adunan. Walau bagaimanapun, masa skorj, t₂, meningkat dengan peningkatan kandungan CRr bagi kedua-dua adunan. Adunan getah SBR/CRr/CB menunjukkan minimum tork, (M_L) yang lebih tinggi berbanding adunan getah SBR/CRr/CaCO₃ pada semua nisbah adunan. Walau bagaimanapun, maksimum tork, (M_H) bagi adunan getah SBR/CRr/CB menunjukkan trend yang bertentangan berbanding dengan adunan getah SBR/CRr/CaCO3. Adunan getah SBR/CRr/CB mempamerkan keputusan yang lebih baik dalam semua sifat-sifat mekanikal/fizikal berbanding dengan adunan getah SBR/CRr/CaCO₃ bagi semua nisbah adunan.

THE PROPERTIES OF STYRENE BUTADIENE RUBBER/RECYCLED CHLOROPRENE RUBBER (SBR/CRr) BLENDS

ABSTRACT

The effects of cure characteristics, physical and mechanical properties and morphological properties on styrene butadiene rubber/recycled chloroprene rubber (SBR/CRr) blends were investigated. SBR/CRr blends with blend ratios 95/5, 85/15, 75/25, 65/35 and 50/50 were prepared using two roll mill at room temperature and followed by compression moulding. The results on comparison of styrene butadiene rubber/virgin chloroprene rubber (SBR/CRv) blends with SBR/CRr blends showed that at similar blend ratios, particularly up to 15 phr, SBR/CRr blends exhibited improvement in tensile strength while the M100, hardness and crosslink density of SBR/CRr blends exhibited increment value in all blend ratios. The smallest size of CRr particles S1 (346-486 µm) in SBR/CRr blends showed a better cure characteristics and mechanical properties compared with all other blend ratios in S2 (664-891 µm) and S3 (0.3-0.7 mm). Futhermore, the processing become more efficient and the contact surface area increased which provided more efficient interfacial bonds. The compatibilization of SBR/CRr blends with 5 phr of *trans*-polyoctylene rubber (TOR) improved the adhesion between CRr and the SBR matrix, thus, improving the compatibility of SBR/CRr blends. Cure characteristics of compatibilised SBR/CRr blend have shorter scorch time, t₂ and cure time, t₉₀ than uncompatibilised SBR/CRr blends. Compatibilised SBR/CRr blends showed lower minimum torque (M₁) compared to uncompatibilised SBR/CRr blends at all blend ratios. However, maximum torque (M_H) of compatibilised SBR/CRr blends exhibit the opposite trend compared with the uncompatibilised SBR/CRr blends. The tensile strength, M100, hardness and crosslink density of compatibilised SBR/CRr blends also improved compared with uncompatibilised SBR/CRr blends. The cure time, t₉₀ of SBR/CRr/CB blends and SBR/CRr/CaCO₃ blends decreased with increasing CRr content in both blends. However, scorch time, t₂, increased with increasing CRr content in both blends. SBR/CRr/CB blends showed higher minimum torque (M_L) compared to SBR/CRr/CaCO₃ blends at all blend ratios. However, maximum torque (M_H) of SBR/CRr/CB blends exhibit the opposite trend compared with the SBR/CRr/CaCO₃ blends. SBR/CRr/CB blends exhibited a better result in all mechanical and physical properties compared with SBR/CRr/CaCO₃ blends at all blend ratios.

UNIVERSITI MALAYSIA PERLIS

	DECLARATION OF THESIS	
Author's full name :	AHMAD AZREM BIN AZMI	
	21.01.1985	
Date of birth :	21.01.1905	
Title :	THE PROPERTIES OF STYRENE BUTADIENE RUBBER/ RECYCLED CHLOROPRENE RUBBER (SBR/CRr) BLENDS	
	, chi	
Academic Session :	SEMESTER II 2013	
I hereby declare that the thes at the library of UniMAP. This	sis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed s thesis is classified as :	
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*	
	(Contains restricted information as specified by the organization where research was done)*	
OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)	
I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of years, if so requested above). Certified by:		
SIGNATURE	SIGNATURE OF SUPERVISOR	
850121-03-52 (NEW IC NO. / PASS		
Date : <u>28. 02.2014</u>	Date :28.02.2014	
	i	

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

TABLE OF CONTENTS

			PAGES
THE	SIS DEC	LARATION	i
ACK	NOWLE	DGEMENT	ii
TAB	LE OF C	ONTENTS	iv
LIST	OF TAB		viii
LIST	OF FIG	URES	ix
LIST	OF ABB	BREVIATIONS	xii
LIST	OF SYN	IBOLS ON	xiv
ABS	ΓRAK		XV
ABS	FRACT		xvi
СНА	PTER 1:	URES BREVIATIONS IBOLS INTRODUCTION	1
1.1	Recyclin		1
1.2	Uses of	Recycled Materials	2
1.3	Waste R	ubber Recycling	3
1.4	Backgro	und of Studies	4
1.5	Problem	Statement	5
1.6	Objectiv	ves of Study	6
1.7	1.7 Thesis Outline7		7
\sim			
СНА	PTER 2:	LITERATURE REVIEW	8
2.1	Introdu	ction	8
2.2	Recycli	ng of Rubber	9
2.3	Malaysi	an Rubber and It's Products	13
	2.3.1	Rubber Products	14
	2.3.2	Export of Selected Products	14
2.4	Natural	Rubber	16
2.5	Synthet	ic Rubber	16
	2.5.1	Styrene Butadiene Rubber	18
		2.5.1.1 Emulsion SBR Compared to Solution SBR	20
		2.5.1.2 Types of E-SBR	21

		2.5.1.3 SBR-1500	22
	2.5.2	Chloroprene Rubber	23
	2.5.3	Blending of SBR and CR	26
2.6	Polymer	Blends	27
	2.6.1	Definition of Polymer Blends	28
	2.6.2	Classification of Polymer Blends	28
2.7	Vulcaniz	ation	30
	2.7.1	Sulfur Crosslink Structures in Vulcanization	32
	2.7.2	Crosslinking Efficiency by Sulfur Vulcanization	33
2.8	Role of G	Compatibilizers	33
	2.8.1	Trans Polyoctylene Rubber (TOR)	35
2.9	Fillers		37
	2.9.1	Classification of Fillers	38
	2.9.2	Reinforcing Agents and Extenders	39
	2.9.3	Carbon Black	40
	2.9.4	Calcium Carbonate (CaCO ₃)	42
	2.9.5	Particle Size of Fillers	44
	2.9.6	Particle Shape of Fillers	47
		· (5 *	
CHAI	PTER 3: 1	METHODOLOGY	48
3.1	Introduct	tion	48
3.2	Materials	S	48
\bigcirc	3.2.1	Styrene Butadiene Rubber (SBR)	48
	3.2.2	Chloroprene Rubber (CR)	49
	3.2.3	Recycled Chloroprene Rubber (CRr)	49
	3.2.4	Carbon Black (N330)	49
	3.2.5	Sulfur Vulcanization Additives: (Activator and Accelerator)	50
	3.2.6	Trans Polyoctylene Rubber (TOR) as a Compatibilizer	51
	3.2.7	Calcium Carbonate (CaCO ₃) as a Filler	51
3.3	Equipme	ents	51
	3.3.1	Grinder	51
	3.3.2	Two Roll Mill	52
	3.3.3	Hot Press	52

3.4 T	The Blends	s Preparation and Formulations	52
	3.4.1	The SBR/CRv Blends and SBR/CRr Blends	52
	3.4.2	The SBR/CRr Blends With Different Recycled CR Size	53
	3.4.3	The SBR/CRr Blends With TOR as Compatibilizer	53
	3.4.4	The SBR/CRr Blends with Different Fillers	54
3.5	Characte	erization and Properties of Rubber Blends	54
	3.5.1	Fourier Transform Infrared (FTIR)	54
	3.5.2	Curing Charateristics of Rubber Blends	55
	3.5.3	Mechanical and Physical Properties of Rubber Blends	55
		3.5.3.1 Tensile Properties	55
		3.5.3.2 Crosslinked Density	55
		3.5.3.3 Hardness	56
		3.5.3.4 Resillience	57
	3.5.4	Morphology Studies Using Scanning Electron Microscopy	58
		(SEM)	
3.6	Experin	nental Chart	59
		XCC -	
		CHARACTERIZATION OF RECYCLED	60
CHL	OROPRE	ENERUBBER	
4.1	The Ma	le External Catheter	60
4.2	Particle	Size Distribution	61
4.3	Fourier	Transform Infrared (FTIR)	62
4.4	The Sca	anning Electron Microscopy and Image Analyzer	63
		COMPARISON OF MECHANICAL, PHYSICAL AND	65
	CRr BLE	GICAL PROPERTIES OF SBR/CRv BLENDS AND CNDS	
5.1	Cure Ch	aracteristics	65
5.2		ical and Physical Properties	67
5.3		logy Studies	72
5.5	morpho	105y bruuros	14

BLE	APTER 6: THE EFFECTS OF DIFFERENT SIZE OF CRr AND IT'S ND RATIOS ON MECHANICAL, PHYSICAL AND RPHOLOGICAL PROPERTIES OF SBR/CRr BLENDS	74
6.1	Cure Characteristics	74
6.2	Mechanical and Physical Properties	76
6.3	Morphology Studies	81
(TO	APTER 7: THE EFFECTS OF <i>TRANS</i> -POLYOCTYLENE RUBBER R) AS A COMPATIBILIZER ON MECHANICAL, PHYSICAL AND RPHOLOGICAL PROPERTIES OF SBR/CRr BLENDS	83
7.1	Cure Characteristics Mechanical and Physical Properties Morphology Studies	83
7.2	Mechanical and Physical Properties	85
7.3	Morphology Studies	91
ME	APTER 8: THE EFFECTS OF DIFFERENT FILLERS ON CHANICAL, PHYSICAL AND MORPHOLOGICAL PROPERTIES SBR/CRr BLENDS	93
8.1	Cure Characteristics	93
8.2	Mechanical and Physical Properties	95
8.3	Morphology Studies	100
CHA	APTER 9: CONCLUSION	102
9.1	Conclusion	102
9.2	Recommendations for Future Project	103
DEF		104
	ERENCES	104
APP	ENDICES	116

LIST OF TABLES

Table		Pages
2.1	Malaysia's Export of Selected Rubber Products, 2006 – 2012	15
2.2	Advantages and disadvantages of some types of rubber	17
2.3	Classification systems for emulsion SBR	22
2.4	Physico-mechanical properties of typical CaCO ₃	43
2.5	The average particle size of different fillers	45
2.6	Typical shapes of fillers particles	47
3.1	Product description of SBR	48
3.2	Typical properties of chloroprene rubber (CR)	49
3.3	Material specification of carbon black, N330	50
3.4	Properties of Trans-Polyoctylene Rubber (TOR)	51
3.5	The SBR/CRy blends and SBR/CRr blends	53
3.6	The SBR/CRr blends with different recycled CR size	53
3.7	The SBR/CRr blends with <i>Trans</i> -Polyoctylene Rubber (TOR) as a compatibilizer	54
3.8	The SBR/CRr blends with different fillers	54
© _{5.1}	The curing characteristics of SBR/CRv blends and SBR/CRr blends	66
6.1	The effects of different size on cure time, t_{90} and scorch time, t_2 of SBR/CRr blends	75
6.2	The effect of different size on minimum torque, M_L and maximum torque, M_H of SBR/CRr blends	75
7.1	The effect of curing characteristics of uncompatibilized and compatibilized SBR/CRr blends	84
8.1	The effects of different fillers ont_{90} and t_2 of SBR/CRr blends	94
8.2	The effects of different fillers on M_L and M_H of SBR/CRr blends	94

LIST OF FIGURES

Figure		Pages
2.1	The formation of styrene butadiene rubber	20
2.2	The formation of chloroprene rubber	26
2.3	Three typical types of stress-strain curves	30
2.4	Structural features of a vulcanized rubber	32
2.5	Schematic representation of the processes occurring during the melt blending of two polymers	34
4.1	The CRr catheter obtained from Teleflex Medical Sdn. Bhd.	61
4.2	The CRr particle size of (S1)	61
4.3	The CRr particle size of (S2)	62
4.4	FTIR spectrum of CRr catethers	63
4.5	The scanning electron microscopy of CRr (S1) at 100x magnification	63
4.6	The scanning electron microscopy of CRr (S2) at 100x magnification	64
4.7	The size of CRr (S3) in range 0.3-0.5 mm	64
5.1	The effects of CRv and CRr on tensile strength of SBR/CRv and SBR/CRv blends	67
5.2	The effects of CRv and CRr on elongation at break, E_b of SBR/CRv and SBR/CRr blends	68
5.3	The effects of CRv and CRr on M100 of SBR/CRv and SBR/CRr blends	69
5.4	The effects of CRv and CRr on hardness of SBR/CRv and SBR/CRr blends	70
5.5	The effects of CRv and CRr on crosslink density of SBR/CRv and SBR/CRr blends	70
5.6	The effects of CRv and CRr on resilience of SBR/CRv and SBR/CRr blends	71
5.7	Scanning electron micrograph of tensile fracture surface of SBR/CRv blends (a1) 85/15 and (b1) 50/50; and SBR/CRr blends, (a2) 85/15 and (b2) 50/50 at 300x magnification	72

5.8	Scanning electron micrograph of tensile fracture surface of SBR/CRv blends (c1) 85/15 and (d1) 50/50; and SBR/CRr blends, (c2) 85/15 and (d2) 50/50 at 2000x magnification	73
6.1	The effect of different size on CRr and blend ratio on tensile strength of SBR/CRr blends	77
6.2	The effect of different size on CRr and blend ratio on M100 of SBR/CRr blends	78
6.3	The effect of different size on CRr and blend ratio on hardness of SBR/CRr blends	78
6.4	The effect of different size on CRr and blend ratio on elongation at break, E_b of SBR/CRr blends	79
6.5	The effect of different size on CRrand blend ratio on crosslink density of SBR/CRr blends	80
6.6	The effect of different size on CRr and blend ratio on resilience of SBR/CRr blends	80
6.7	Scanning electron micrograph of tensile fracture surface of SBR/CRr blends at 85/15 blend ratio (S1 (a), S2 (a), S3 (a)) and at 50/50 blend ratio (S1 (b), S2 (b), S3 (b)) at 300x magnification	81
6.8	Scanning electron micrograph of tensile fracture surface of SBR/CRr blends at 85/15 blend ratio (S1 (a), S2 (a), S3 (a)) and at 50/50 blend ratio (S1 (b), S2 (b), S3 (b)) at 2000x magnification	82
7.1	The effects of TOR on tensile strength of uncompatibilized and compatibilized SBR/CRr blends	86
7.2	The effects of TOR on elongation at break, E_b of uncompatibilized and compatibilized SBR/CRr blends	86
7.3	The effects of TOR on M100 ofuncompatibilized and compatibilized SBR/CRr blends	87
7.4	The effects of TOR on hardness of uncompatibilized and compatibilized SBR/CRr blends	88
7.5	The effects of TOR on crosslink density of uncompatibilized and compatibilized SBR/CRr blends	89
7.6	The effects of TOR on resilience of uncompatibilized and compatibilized SBR/CRr blends	90

7.7	Scanning electron micrograph of tensile fracture surface of SBR/CRr blends at (a) 85/15 and (c) 50/50 without TOR; and SBR/CRr blends at (b) 85/15 and (d) 50/50 with TOR at 300x magnification	91
7.8	Scanning electron micrograph of tensile fracture surface of SBR/CRr blends at (a) 85/15 and (c) 50/50 without TOR; and SBR/CRr blends at (b) 85/15 and (d) 50/50 with TOR at 2000x magnification	92
8.1	The effects of different fillers on tensile strength of SBR/CRr/CB and SBR/CRr/CaCO ₃ blends	96
8.2	The effects of different fillers on elongation at break, E _b of SBR/CRr/CB and SBR/CRr/CaCO ₃ blends	96
8.3	The effects of different fillers on M100 of SBR/CRr/CB and SBR/CRr/CaCO ₃ blends	97
8.4	The effects of different fillers on hardness of SBR/CRr/CB and SBR/CRr/CaCO ₃ blends	98
8.5	The effects of different fillers on crosslink density of SBR/CRr/CB and SBR/CRr/CaCO ₃ blends	98
8.6	The effects of different fillers on resilience of SBR/CRr/CB blends and SBR/CRr/CaCO ₃ blends	99
8.7	Scanning electron micrograph of tensile fracture surface of SBR/CRr/CB blends (a) 85/15 and (c) 50/50; and SBR/CRr/CaCO ₃ blends, (b) 85/15 and (d) 50/50 at 300x magnification	100
8.8 ©	Scanning electron micrograph of tensile fracture surface of SBR/CRr/CB blends (a) 85/15 and (c) 50/50; and SBR/CRr/CaCO ₃ blends, (b) 85/15 and (d) 50/50 at 2000x magnification	101

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
ATR	Attenuated total reflection
BR	Polybutadiene rubber
CaCO ₃	Calcium carbonate
CAFE	Corporate average fuel economy
CAGR	Compound Annual Growth Rate
СВ	Corporate average fuel economy Compound Annual Growth Rate Carbon black
CBS	N-Cyclohexyl-2-benzothiazole sulfenamide
CR	Chloroprene rubber
CRr	Recycled chloroprene rubber
CRv	Virgin chloroprene rubber
CV	Conventional system
DCSBR	Dichlorocarbene modified styrene butadiene rubber
DPNR	Deproteinised Natural Rubber
ENR	Epoxidized Natural Rubber
ENR EPDM	Epoxidized Natural Rubber Ethylene Propylene Diene Monomer
\bigcirc	-
EPDM	Ethylene Propylene Diene Monomer
EPDM ESBR	Ethylene Propylene Diene Monomer Emulsion styrene butadiene rubber
EPDM ESBR EV	Ethylene Propylene Diene Monomer Emulsion styrene butadiene rubber Efficient system
EPDM ESBR EV FTIR	Ethylene Propylene Diene Monomer Emulsion styrene butadiene rubber Efficient system Fourier transform infrared spectroscopy
EPDM ESBR EV FTIR HAF	Ethylene Propylene Diene Monomer Emulsion styrene butadiene rubber Efficient system Fourier transform infrared spectroscopy High abrasion furnace
EPDM ESBR EV FTIR HAF IIR	Ethylene Propylene Diene Monomer Emulsion styrene butadiene rubber Efficient system Fourier transform infrared spectroscopy High abrasion furnace Isobutylene isoprene rubber

MDR	Monsanto moving die rheometer
MPa	Megapascal
MRB	Malaysian Rubber Board
MWD	Molecular weight distribution
NBR	Nitrile Butadiene Rubber
NR	Natural rubber
phr	Part per hundred of rubber Ringgit Malaysia Styrene butadiene rubber
RM	Ringgit Malaysia
SBR	Styrene butadiene rubber
SEM	Scanning electron microscopy
SMR	Standard Malayisan Rubber
SSBR	Solutionstyrene butadiene rubber
TARRC	Tun Abdul Razak Research Centre
TMTD	Tetramethylthiuram disulfide
TOR	Trans-polyoctylene rubber
TPE	Thermoplastic elastomer
TPENR	Thermoplastic Epoxidized Natural Rubber
USD	United State Dollar
UTM	Universal Testing Machine
ZnO	Zinc oxide

LIST OF SYMBOLS

cm	Centimeter
E _b	Elongation at break
kg/m ³	Relative density
m ² /g	Unit for BET surface area
M_{H}	Maximum torque
M_L	Minimum torque
M _{L(1+4)}	Maximum torque Minimum torque Mooney viscometer Millimeter Nanometer Total swelling weight
mm	Millimeter
nm	Nanometer
Q _m	Total swelling weight
t_2	Scorch time
t ₉₀	Cure time
Tg	Glass transition temperature
V _r	Volume fraction of the swollen rubber
Vs	Molar volume of the solvent
θ_1	The initial angle (45°)
θ_2	The maximum rebound angle
μm	Mikrometer
ρ	Density of the rubbers
χ	Interaction parameter of the rubber

CHAPTER 1

INTRODUCTION

1.1 Recycling

The concept of recycling has been around for a long time and people have reused the materials and refashioned them into needed items. Recently, more efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Nowadays, curbside recycling programs and recycling centers are common. In 2009, approximately 9,000 curbside recycling programs and 3,000 composting communities existed in the United States (Environmental Protection Agency's 2010).

Recycling is the process of recovering and reusing waste products from household use, manufacturing, agriculture, and business, therefore reducing their burden on the environment. Back to the World War I and World War II, shortages of essential materials led to collection drives for silk, rubber, and other commodities. In recent years the environmental benefits of recycling have become a major component of waste management programs (Palliser, 2011).

For many years direct recycled by producers of surplus and defective materials constituted the main form of recycling. However, indirect recycling, the collection of materials after used by consumers, became the focus of activity in the 1990s. For some time, most solid waste has been deposited in landfills or dumps and this led to environmental problems.

Industry has found that when it undertakes serious recycling programs, the savings can sometimes be considerable. In addition to reduce manufacturing and materials costs, such programs can insulate the companies from liability for environmental violations. For example in agriculture, which caused of much environmental degradation, used organic recycling, or the reuse of manure and crop residues (sometimes called "green manure").

A large part in recycling used by the individual consumer. Originally, household containers such as beverage cans and bottles were recycled as a matter of course, with a glass beer container or milk bottle being refilled as many as 30 times. In 1935, brewers began putting their products in nonrefillable, "one-way" cans for the convenience of customers, and soon glass containers were declared disposable as well. With the rise of environmentalism in the early 1970s, recycling regained favor. Several states instituted deposit laws for beverage containers; a 5- or 10-cent deposit was charged the consumer at the time of purchase for each can or bottle, then refunded when the container was returned to a store or recycling center. The newspapers also take up much volume in landfills, and some recycling programs seek to collect them (along with other sorted categories of waste, such as organic matter, bones, and plastic) (Roosevelt, 2011).

1.2 Uses of Recycled Materials

In 1996, the United States was recycled almost 27% of solid waste in large quantities including paper and paperboard, ferrous metals, aluminum and other nonferrous metals, glass, plastics, and yard wastes. Although many local communities have instituted comprehensive recycling programs, these remain expensive. The quality of recycled items is often inferior (often due to the mixture or age of the materials in the items being recycled) and not suitable for their original purpose, the price for many recycled materials remains low and makes recycling economically nonviable in some instances (Roosevelt, 2011).

In other ways to solve this problem, an alternative use have been created to recover waste material. Crushed glass, or called 'glassphalt', can be substituted for gravel or sand in road surfacing and other construction applications. Scientists and entrepreneurs are also working on ways to turn the world's growing piles of discarded automobile tires into new products or to use them to generate safe energy (http:// www.questia.com/library/science-and-technology/environmental-and-earthsciences/ nalcopyright recycling).

Waste Rubber Recycling 1.3

Most of waste rubber (non-degradable material) have created major environmental problems. The usual method of disposing of waste rubber, such as discarding in a landfill or burning, are not suitable since it caused severe environmental pollution and are uneconomical (Ismail et al., 2004 and 2005, Yehia, 2004 and Jana, 2007). Generally, the blending of two or more types of rubbers is a useful technique for the preparation and development of materials with properties superior to those of individual constituents. Waste rubber can also be blend with virgin materials to produce rubber blends with desired properties. The purpose of blending the recycled rubbers is to improve the physical and mechanical properties as well as modify processing characteristics and reduce the cost of the final product (Egodage et al., 2009 and Noriman et al., 2010).

Rubber recycling nowadays includes all processes where rubber scrap is transformed into a reusable form to produce new articles or services. Rubber recycling processes keep developing, aiming at the re-utilization of rubber as close as possible to its virgin form. This type of recycling method where rubber is reused like in its virgin form is called devulcanization (or reclaiming) (Adhikari et al., 2000 and Zulkepli et al., 2009). Rubber recovery can be a difficult process. However the rubber should be reclaimed or recovered;

- a) Recovered rubber can cost half that of natural or synthetic rubber.
- b) Recovered rubber has some properties that are better than those of virgin rubber.
- c) Producing rubber from reclaim requires less energy in the total production process than does virgin material.

The waste rubber is generated from objects that are not practical and discharged. The post-industrial waste was generated during the processing and molding elastomers in the production line and in some situations the amount of waste can be equivalent with the production. Improving recycled methods is the most appropriate way to reduce the volume of polymeric waste and minimized the environmental impact. Currently, due to difficult on reprocessing techniques, the vulcanized rubbers are a big problem in the recycle field. One of the main forms of discharge rubber is to apply as fuel to generate electricity and steam, this process is still in use but creates a new problem of air pollution and is also a low value to recovery process of the waste rubber (Scagliusi et al., 2009).

1.4 Background of studies

A lot of waste rubber is produced all over the world every year i.e., 10 million tyres are discarded every year. Meanwhile, adhesives are used in almost every industrial workplace with an industry value of 40 billion Euros. This invention turns waste rubber into multifunctional adhesive. One of the problems facing mankind as we enters into the 21st century is the problem of waste disposal. Since polymeric materials do not decompose easily, disposal of waste polymers is a serious environmental problem. Scrap rubbers are made up of rubber that do not meet processing and product specifications, leftover rubber from manufacturing activities and old and defective rubber products such as gloves, catheters, tubes, old tyres etc. Presently, the amount of discarded tyres reaches 10 million/year worldwide. In Malaysia, the output of waste rubber gloves in 2003 was 13.05 billion pairs, catheters 84.75 million units and inner tubes 13.05 million units. With the development of the rubber industry, a lot of waste rubber is produced not only in Malaysia but all over the world every year.

In fact, the majority of elastomers used today have been invented in the 1950s and 1960s, even for advanced applications such as in medical and space technologies. The focus now on the modification rather than on development of novel materials. If materials with required properties can produced by blending existing polymers with fillers, the costs as well as the development time can be reduced (prr.hec.gov. pk/Chapters/284S-1.pdf). Through rubber recycling technology (the blending of polymer, especially elastomers together with recycled waste) can meet the performance and processing requirements to manufacture a wide range of rubber based products such as road and playgorund surfaces, recycled rubber flooring, adhesive glues, sporting mats, floats, marine and automotive parts, and so muh more. Many elastomers that have dissimilar chemical structure are blended to improve processability, performance, durability, physical properties, and to achieve an economic advantage.

1.5 Problem statements

Generally, when chloroprene rubber is recycled to create new products, it is blended with other types of synthetic rubbers. The properties of this material, including its durability, insulation properties, and resistance to oil, make it an ideal substance for a number of uses. By blending recycled rubber products into new ones, waste is minimized and costs are lowered as well.

One of the medical application is external male catheters that has been use for the relief of male urinary incontinence. In medical application, a product with a bit of defect will consider rejected and has been thrown away without any consequence. At medical industry like Teleflex Medical Sdn. Bhd., has faced this situation and need a guide solution to overcome the waste. The amount rejected of chloroprene catheters from Teleflex medical Sdn. Bhd. from week 2 until week 25 is almost 1 million pieces. The quantities are very high and the reject was scrapped and wasted. In order to clean up the wasted the company has to bear more cost. This project will focus to solve this problem by optimization the process thru the studies of curing characteristics, properties of the blends, the effect of the particle size, the effect of compatibilizer and the effect of filler.

1.6 Objectives of study

The main objectives in this study is to gain a better understanding the possibility of producing a new elastomer materials from the blend of styrene butadiene rubber (SBR) and chloroprene rubber (CR). The activities of this work such as:

- a) To characterize recycled chloroprene rubber.
- b) To study the comparison of mechanical, physical and morphological properties of SBR/CRv blends and SBR/CRr blends.
- c) To investigate the effects of different size of CRr and it's blend ratios on mechanical, physical and morphological properties of SBR/CRr blends.
- d) To examine the effects of *trans*-polyoctylene rubber (TOR) as a compatibilizer on mechanical, physical and morphological properties of SBR/CRr blends.