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Penganodan Elektrokimia Aluminum Pada Suhu Bilik Oleh Litar Arus Terus 

Dikawal Secara Elektronik 

 

ABSTRAK 

 

Filem anodik aluminum oksida (AAO) telah dikaji dan digunakan dalam pelbagai bentuk 

produk lebih daripada 50 tahun. Morfologi filem AAO boleh dikelaskan kepada jenis 

halangan dan jenis berporos. Jenis halangan terdiri daripada alumina amorfus yang padat, 

manakala jenis poros terdiri daripada lapisan nipis jenis halangan di antara logam dan satu 

lapisan luar alumina berliang. Terdapat kekangan di dalam fabrikasi alumina nanoporos. 

Kekangan ini adalah pembekuan elektrolit dengan suhu rendaman terkawal, bezaupaya 

yang sangat tinggi dan masa penganodan yang lama telah digunakan semasa fabrikasi 

AAO. Isu terpenting adalah penggunaan dua langkah proses penganodan untuk 

menghasilkan filem AAO. Untuk mengatasi kekurangan yang dikaitkan dengan fabrikasi  

filem alumina berliang  pada suhu bilik. Tujuan kajian ini adalah untuk mewujudkan satu 

proses fabrikasi filem alumina nanoporous yang novel dengan diameter liang yang dikawal 

secara luaran oleh litar arus terus. Langkah-langkah mengikut ‘set-up” rekabentuk litar 

elektronik melibatkan spesifikasi, rekabentuk/ kos, pengesahan dan pengujian litar. 

Spesifikasi reka bentuk adalah untuk menangani isu suhu, keupayaan penganodan yang 

rendah dan nilai parameter proses yang paling kritikal (arus), dan parameter yang kurang 

kritikal (suhu dan kepekatan elektrolit). Langkah rekabentuk seterusnya ialah 

pengenalpastian komponen penting iaitu pemuat dan perintang yang kritikal semasa 

peringkat rekabentuk awal. Komponen-kompoenen ini adalah murah dan menyediakan satu 

bentuk litar yang stabil dan terkawal. Pengesahan dan ujian telah dilakukan oleh simulasi 

komputer (kit perisian PhET) dan ujian rekabentuk litar yang praktikal. Simulasi komputer 

telah menyediakan maklumat tentang rekabentuk litar yang paling sesuai di bawah keadaan 

simulasi yang berbeza.. Simulasi yang dikenalpasti adalah satu siri sambungan kapasitor 

nilai 60 V tunggal  dan perintang 500 ohm untuk menjadi rekabentuk litar yang sesuai 

untuk menghadkan pengaruh parameter proses.  Ujian praktikal menggunakan kepekatan 

elektrolit yang berbeza (0.7 M , 1.5 M, dan 2.2 M) , keupayaan rendah yang berbeza (10 

hingga 50 V ) yang beroperasi pada suhu bilik telah mengenalpasti nilai arus kritikal untuk 

menjadi kurang atau sama dengan 150 mA. Sebarang nilai arus di atas 150 mA ini gagal 

menyediakan satu struktur nanoporous alumina. Suatu ujian yang sama dijalankan pada 

suhu tinggi (50
o
C) untuk memastikan kesesuaian litar untuk beroperasi pada suhu tinggi. 

Fungsi rekabentuk litar juga berasaskan persamaan yang dikawal oleh persamaan piawai di 

mana ia boleh dikendalikan melalui bekalan arus terus  atau bekalan arus ulang-alik dan ini 

menjadikan keseluruhan proses adalah fleksibel , jitu dan tepat. Penganodan aluminium 

pada suhu bilik dan berkeupayaan rendah di dalam elektrolit yang berbeza selama 1 jam, 3 

jam, dan 5 jam masing-masing. Keputusan mikroskop imbasan elektron (SEM) 

menunjukkan bahawa liang terbentuk pada keupayaan dan kepekatan elektrolit yang 

berbeza adalah dalam julat 10 - 200 nm. Liang tertabur secara rawak di seluruh permukaan 

aluminium. Keupayaan digunakan bertambah dengan masa menyebabkan diameter liang 

juga meningkatkan. Keputusan menunjukkan bahawa nanoporous alumina telah berjaya 

direka pada suhu bilik dan suhu yang tinggi dengan keupayaan rendah menggunakan teknik 

penganodan tunggal berbantukan sel elektrokimia yang diubahsuai dikawal oleh litar arus 

terus secara luaran. 
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Electrochemical Anodization of Aluminum at Room Temperature by Electronically 

Controlled Direct Current Circuit 

 

ABSTRACT 

 

Anodic aluminum oxide (AAO) films have been investigated and used in numerous 

products for more than 50 years. The morphologies of the AAO films can be classified into 

barrier-type and porous-type. Barrier-type films consist of compact amorphous alumina, 

while porous-type films comprise of a thin barrier layer next to the metal and an outer layer 

of porous alumina. There are limitations in the way nanoporous alumina has been 

fabricated. The limitations are the freezing of the electrolyte with a temperature controlled 

bath, very high potential and prolong anodizing time have also been used during AAO 

fabrication. In order to overcome these shortcomings associated with the fabrication of this 

porous alumina film at room temperature, this study aim to create a novel process to 

fabricate nanoporous alumina film with controlled pore diameters that is externally 

controlled by direct current circuit. The steps followed during the electronic circuit design 

set-up involved specification, design/cost, verification and testing of the circuit. The 

specification of the design is to address the issue of temperature, low potential anodization 

and the value of the most critical process parameter which is current, and the less critical 

parameters which are temperature and concentration of electrolyte. The next step of the 

design was the identification of important components i.e. capacitors and resistors that are 

crucial during the preliminary design stage. The components are cheap and provide a form 

of stability and control of the circuit. The verification and testing was done by computer 

simulation (PhET software kit) and practical testing of the circuit design. The computer 

simulations provided the information about the most suitable circuit design under different 

simulated conditions. The simulation identified a series connection of a single 60 V rated 

capacitor and a 500 ohms resistor to be the most suitable circuit design to limit the 

influence of the process parameters. The practical testing using different electrolyte 

concentration (i.e. 0.7 M, 1.5 M, and 2.2 M), different low potentials (i.e. 10 to 50 V) 

operating at room temperature identified the most critical current value to be less or equal 

to 150 mA. Any current value above this failed to produce a nanoporous alumina structure. 

A similar testing was also performed at higher temperature (50
o
C) to confirm the suitability 

of the circuit to operate at higher temperatures. The functionality of the circuit design is 

also equation based controlled by standard equations which can be operated via a direct 

circuit supply or alternating current supply, making the entire process flexible, accurate and 

precise. The room temperature and low potential anodization of aluminum were anodized 

under different electrolyte conditions for 1 hour, 3 hours, and 5 hours respectively. The 

scanning electron microscope (SEM) results show that the pores formed at different 

potentials and concentrations of electrolytes is within the range of 10 – 200 nm. The pores 

are randomly distributed all over the surface of the aluminum. As the applied voltage is 

increased with time subsequently the pores also increase in diameter. This results show that 

with the aid of the upgraded electrochemical cell controlled by the external dc circuit, 

nanoporous alumina were successfully fabricated at room temperature and high temperature 

with low potentials using a single step anodization technique which was suitable for AAO 

fabrication. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

Metals and alloys still constitute the most important group among engineering 

materials, and the demand for metallic materials with higher strength and special properties 

is on the increase with the advancement of technology. With annual consumption of 35 

million metric tons, aluminum is the worlds most commonly used metals (Christian, 2004). 

Aluminum is the third most abundant element in the earth's crust and constitutes 7.3% by 

mass. In nature however it only exists in very stable combinations with other materials 

(particularly as silicates and oxides) (Christian, 2004). The use of aluminum and its alloys 

in industry has increased due to its exceptional properties (low-specific mass, good thermal 

and electrical conductivities, good corrosion resistance, etc.) (Choo and Devereux, 1976; Li 

et al., 2005).  

Over the last decade, there has been an ever increasing interest and research effort 

in the synthesis, characterization, functionalization, molecular modeling and design of 

nanoporous materials. Porous materials are of scientific and technological importance 

because of the presence of voids of controllable dimensions at the atomic, molecular, and 

nanometer scales (Lu and Zhao, 2004). Generally, porous materials have porosity (volume 

ratio of pore space to the total volume of the material) between 0.2 - 0.95 (Lu and Zhao, 

2004). Pores are classified into two types: open pores which connect to the surface of the 

material, and closed pores which are isolated from the outside. In functional applications 

such as adsorption, catalysis and sensing, closed pores are not of any use. In separation, 
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catalysis, filtration or membranes, often penetrating open pores are required. Materials with 

closed pores are useful in sonic and thermal insulation, or lightweight structural 

applications. Pores have various shapes and morphology such as cylindrical, spherical and 

slit types. There are also pores taking more complex shapes such as hexagonal shapes can 

be straight or curved or with many turns and twists. International Union of Pure and 

Applied Chemistry (IUPAC) classifies porous materials into three categories; micropores 

less than 2 nm in diameter, mesopores between 2 and 50 nm, and macropores greater than 

50 nm (Lu and Zhao, 2004). 

Nanoporous materials have specifically a high surface to volume ratio, with a high 

surface area, large porosity, and very ordered, uniform pore structure. It has very versatile 

and rich surface composition, surface properties, which can be used for functional 

applications such as catalysis, chromatography, separation, and sensing. A lot of inorganic 

nanoporous materials are made of oxides often non-toxic, inert, and chemically and 

thermally stable, although in certain applications the thermal stability requirement is very 

stringent (Lu and Zhao, 2004). An example of these nanoporous materials is porous 

alumina. The fabrication of porous alumina film by electrochemical process consists of 

converting aluminum into its oxide by appropriate selection of the electrolyte and the 

anodizing conditions, such as current density, voltage, temperature, and concentration. The 

porous alumina structure has good mechanical properties and is chemically and thermally 

stable. The application of this porous structure currently being tested include defined pore 

sizes, catalysts, high density storage media, functional nanomaterials exhibiting quantum 

size effects, highly sensitive chemical sensors, nanoelectronic devices and functional 

biochemical membranes (Shingubara, 2003). 
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1.2 Electrochemical Anodization 

 Electrochemical anodization is an electrochemical process that converts the metal 

surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is 

ideally suited to anodization, although other nonferrous metals, such as magnesium and 

titanium, also can be anodized. For the anodization process to be accomplished the 

conducting piece (i.e. aluminum) undergoing this process is connected to the positive 

terminal of a direct current power supply and placed in a suitable electrolytic bath where it 

serves as the anode. The cathode is commonly a plate or rod of platinum, although 

materials such as carbon are sometimes used. When power is applied electrons are forced 

from the electrolyte to the positive anode, this process expose the surface metal to oxygen 

ions within the electrolyte that leads to the formation of the oxide layer. The electrons 

travel through the power source and return to the cathode where, if an appropriate 

electrolyte pH is present, it reacts with the hydrogen ions and the combination bubbles off 

as hydrogen gas. Since the metal oxide partially dissolves in any electrolyte, it is necessary 

to use only those electrolytes for which the oxide forms more rapidly than it dissolves. The 

electrolyte composition is also the primary determinant of whether the oxide film is porous 

or if it forms a barrier layer. Oxide barrier layers grow in those neutral or slightly alkaline 

solutions, while porous oxide layers grow in acidic electrolytes (Grimes and Mor, 2009). 

 

1.3 Electronics 

 The computers, televisions, telephones and all other electronic systems rely on 

circuits, which are the paths that electricity takes through various electrical components in 

order to perform some kind of useful tasks. Electronics by modern definition is that part of 

electrical science which deals with semiconductors. As such the history of electronics is 
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really a continuation of the history of electrical knowledge. From its first development in 

the late 19
th

 century to the coming of age of digital computers, the field of electronics and 

electronic design was well defined and occupied many thousands of engineers, technicians 

and others in closely related specialties (David and Joseph, 2007). For every new problem, 

the design engineers would dive into search for a solution and usually would come up with 

a hard wired design. The electronic circuits and systems tended to be inflexible, 

accommodating only the range of application that was design into the circuits. This 

electronic circuit design can be considered an art based on the fundamental concept of 

electrical and electronic engineering. Passive components such as resistors, capacitors, 

inductors, transformers need to be mixed effectively and optimally with semiconductor 

components in building a particular circuit (Nihal, 2008). A simple circuit, for example 

might consist of a battery with its positive terminal connected by a wire to one end of a 

light bulb filament, then a wire leading from the filaments other end back to the battery 

(David and Joseph, 2007). 

 

 

1.4 Problem Statement 

1.4.1 The Anodization Process 

The electrochemical process of anodizing aluminum has been limited to three main 

acidic electrolytes sulphuric acid, phosphoric acid and oxalic acid. These acidic electrolytes 

have been in use since the early 19
th

 century to fabricate nanoporous alumina.   

The limitations associated with the previous methods of preparation of nanoporous alumina 

films include: 
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(a) The freezing of the electrolyte with the use of temperature controlled water bath is a 

limiting factor which is required to provide low temperatures (2 
o
C, 5 

o
C, 11 

o
C), and in 

some cases extremely low freezing temperatures (-8 
o
C, -3 

o
C, 0 

o
C) for the anodization 

process (Leszek et al., 2010; Jia et al., 2014; Marta et al., 2013; Song et al., 2013; Byeol 

and Jin, 2014; Belwalkar et al., 2008; Zhaojian and Kelong, 2007; Ghafar et al., 2010; Kun 

et al., 2002; Sulka et al., 2002; YuCheng and Jose, 2001; Daniel et al., 2009; Jung et al., 

2009; Nasirpouri et al., 2009; Dongdong et al., 2008; Jian et al., 2008; Fernandez et al., 

2008; Stojadinovic et al., 2008a; Bensalah et al., 2008; Hui et al., 2008; Ho et al., 2007; 

Zhou et al., 2007; Seonghyun et al., 2006; Abel et al., 2011; Liu et al., 2011).  

Most industries are in businesses to make more profits by lowering their investment 

cost as much as possible. Low freezing temperature controlled baths are expensive and 

could cost even more if the inclusion of the operating cost, servicing and maintenance cost 

is also considered. If there is a way with which all these expenses/costs can be reduced by 

producing the porous alumina structure at room temperature, it will definitely be accepted 

not only by the industries but also the research institutes and the academicians.   

    

(b) Increasing the size of alumina nanopores in some cases are attributed to high 

voltage and/or prolong anodization time which are two limiting factors, because it is energy 

and time consuming (Ghafar et al., 2010; Leszek et al., 2010; Yanchun et al., 2005; Yan et 

al., 2006; Proenca et al., 2008; Ya et al., 2008; Su et al., 2008; Sulka and Parkola, 2007; 

Wen et al., 2006; Younghyun et al., 2014; Beomgyun et al., 2013; Hendrik et al., 2013; 

Tatsuya et al., 2014). 

The anodization of aluminum at very high voltages (e.g. 195 V) is not safe, and 

would require a very good laboratory practice to avoid hazards or accidents. Anodizing the 
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aluminum for a long period of time (e.g. 24 hours) is both energy, and time consuming. 

Since the more time you spend during the anodization process the more current is being 

used and therefore the operating cost goes up. The possibility of producing alumina 

nanoporous structure with same pore size but at a lower voltage (e.g. 10 V, 30 V, and 50V) 

and shorter time of 1, 3 or 5 hours will be acceptable because the overall power 

consumption and operating cost will be reduced.     

 

 

1.4.2 The Circuit Set-up 

 

 The electronic circuit set-up takes into consideration the flaws associated with 

previously used electrochemical cell for aluminum anodization, in which the most critical 

parameter is current, followed by two other critical parameters namely temperature and 

concentration of electrolyte. The role or influence of these critical parameters current, 

temperature and concentration of electrolyte as severely restricted the improvement in the 

performance and further understanding of the electrochemical cell used in aluminum 

anodization. If these process parameters are not properly controlled, anodizing aluminum 

foil at room temperature leads to a rapid dissolution and etching of the alumina surface, and 

thereby preventing the propagation and growth of the nanoporous alumina structure. The 

fabrication of the electronic circuit is to provide a complete control of the current and at the 

same time limits the influence of the other critical parameters by identifying there critical 

values. The best parameters that can be used to control the new electrochemical cell are 

power and resistance; its values can be calculated from standard equations. 
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1.5 Research Objective 

 

(a) To fabricate a low cost electronic circuit set-up for the electrochemical cell 

to produce nanoporous alumina foils at room temperature. 

 

(b) To analyze the suitability of the electronically controlled cell to sustain a 

low potential fabrication and controlled pore formation of nanoporous alumina structure.  

 

 

 

1.6 Scope of Research 

 

(a) The electronic circuit design: 

For the electronic circuit design it is important to know how the process parameters 

influence the anodization process to aid in the circuit design by providing a form of control 

over the process parameters. The verification and testing of the circuit by both computer 

aided theoretical simulations and practical testing is to identify the most critical values and 

limits of the parameters that strongly influence how the aluminum foil will respond to the 

external circuit control. The electrochemical anodization process should be able to function 

at a convenient temperature (room temperature) making the process cost effective and does 

not require the use of expensive thermostatic bath. An increased overall efficiency since the 

operation of the electrochemical cell is equation based. 

 

 

(b)       The fabrication of the porous alumina foils: 
 

The AAO foils should have large pores to increase the surface area; the fabrication 

of the porous structure should be repeatable; the porous structure should not be prone to 

corrosion and should be able to withstand fairly high heat treatment process (<680 
o
C); The 
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