

Removal of Dyes from Industrial Effluents Using Combination of Advanced Oxidation Processes (AOPs) and Biological Treatment

by

A straight the strength of the Che Zulzikrami Azner bin Abidin (841210324)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Environmental Engineering UNIVERSITI MALAYSIA PERLIS

2014

ACKNOWLEDGEMENTS

First and foremost, utmost praise is to Allah, the Almighty for blessings me with the desire and emotional strength to fulfil and materialize my dream to complete this thesis.

I would like to express my deepest gratitude to my supervisor, Dr. Fahmi Muhammad Ridwan, for his academic guidance, suggestions and support. His constructive criticisms, valuable suggestions, insights and patients have truly encouraged me. His help and encouragement are sincerely appreciated, and thus making this research possible. I would also like to thank my co-supervisor, Assoc. Prof. Dr. Ong Soon-An for his valuable time, insightful comments and encouragement during the period of this research.

Special and sincere thanks are extended to my fellow graduate student and lab mates, Ms. Fatin Nadhirah for her invaluable contributions and suggestions. I would also like to thank Ms. Janna, Ms. Hazirah, Ms. Sakinah, Ms. Lai Li Lze and Ms. Ling Ching Swan and many others for their valuable assistance. Their friendly and helpful contributions have always encouraged me.

I am thankful to numerous persons who, in many ways, supported, encouraged and assisted me in the completion of my study. Mr. Nazerry, Mrs. Zuraini, Mr. Razi, Mr. Roshasmawi, Mr. Affandi, Mr. Munif, Mr. Mokhzani, Mr. Shukri, Mr. Zahir, Mr. Andi, Mr. Ahmad Saiful and other colleges that have been close to me during these four years with their help and supports. Similarly, my gratitude goes to anybody who has directly or indirectly contributed to the successful completion of this research.

Last but not least, my deepest gratitude to my beloved family members, particularly my parent, Hj. Abidin Ahmad and Hjh. Asiah Mohamood for their encouragement, blessings and motivation at each and every step throughout my life.

I would also like to say thank you, still it is not the perfect word to describe my appreciation, to my beloved wife, Mrs. Saparina Mohd Alip for her unconditional patient, understanding and encouragement during this journey. And to my children, Ahmad Zulzikry and Syadza Nur Aimy for understanding and appreciating me. They shared all my reh. It happiness and painfulness, in the whole process of my research. It would not been possible

THESIS DECLARATION FORM

UNIVERSITI MALAYSIA PERLIS

		DECLARATION OF THESIS		
Author's full name	:	Che Zulzikrami Azner bin Abidin		
Date of birth	:	18 December 1978		
Title	:	Removal of Dyes from Industrial Effluents Using		
		Combination of Advanced Oxidation Processes (AOPs) and		
		Biological Treatment		
Academic Session	:	2013 / 2014		
		cox i		
		nesis becomes the property of Universiti Malaysia Perlis (UniMAP) ary of UniMAP. This <u>thesis</u> is classified as:		
CONFIDENTAL	-	(Contains confidential information under the Official Secret Act 1972)		
RESTRICTED		(Contains restricted information as specified by the organization where research was done)		
	✓ OPEN ACCESS I agree that my <u>thesis</u> is to be made immediately available as hard copy or on-line open access (full text)			
	h or	ion to the UniMAP to reproduce this <u>thesis</u> in whole or in part for academic exchange only (except during a period of years,		
10,		Certified by:		
\odot				
SIGNATURE SIGNATURE OF SUPERVISOR				
	781218-09-5001Dr. Fahmi Muhammad Ridwan(NEW IC NO. / PASSPORT NO.)NAME OF SUPERVISOR			
Date:		Date:		

NOTES: *If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

Removal of Dyes from Industrial Effluents Using Combination of Advanced Oxidation Processes (AOPs) and Biological Treatment

ABSTRACT

Nowadays, the removal of dyes from industrial effluents is still far away to a satisfactory solution. Even though the AOPs are known strong technologies for wastewater treatment, it still requires further advancement and extent. Hence, a new promising treatment is their combination with biological treatment, by taking the advantages of the individual potentials. Therefore, this research evaluated four treatment techniques, namely ozonation, ozone/hydrogen peroxide (O₃/H₂O₂), ultraviolet/hydrogen peroxide (UV/H₂O₂), and a combination of ozonation-biological for synthetic dyes, consist of monoazo Methyl Orange (MO), disazo Reactive Red 120 (RR120) and anthraquinone Reactive Blue 19 (RB19). Finally, the treatments are evaluated with batik wastewater as a real wastewater sample from industries. The finding revealed that ozonation, O_3/H_2O_2 , UV/H_2O_2 , and ozonation-biological become an effective treatment for monoazo, disazo, anthraquinone, and real wastewater. The treatments accomplish, under appropriate conditions, a full decolourization and a substantial mineralization. However, Q_3/H_2O_2 and ozonation works well with the dyes, in contrast to UV/H_2O_2 . It reveals that complete decolourization by ozonation and O_3/H_2O_2 , with less than 20 min contact. Two decolourization curves of ozonation and O_3/H_2O_2 almost overlapped suggesting that H_2O_2 hardly affects decolourization rate. Contrariwise, it takes more than 60 min for complete decolourization with UV/H₂O₂ for RR120, but requires more than 120 min for MO and RB19. Nevertheless, there was a significant difference for COD and TOC removals. It is apparent that O_3/H_2O_2 showed higher removal, suggesting that the presence of H_2O_2 promote the oxidation reaction. The final COD removal of O_3/H_2O_2 reached 100% within less than 10 min for RR120 and RB19, while 15 min for MO. Likewise, the higher TOC removal was observed for O_3/H_2O_2 in comparison to ozonation and UV/H₂O₂. On the whole, the COD removal was similar to TOC removal for each treatment. It is obvious that high decolourization from the start of biological was contributed from ozonation pre-treatment. In addition, the results indicate that 59.6 and 69.4% COD removal from ozonation and ozonationbiological, respectively for MO. While, resulted about 40.7 and 72.9% removal for RR120, and 51.4 and 59.8% for RB19, respectively. Thus, it represents small organic molecules that contribute considerably to the COD that cannot be completely removed by ozonation-biological treatment. Similar to COD, the results indicate that 49.1 and 73.7% TOC removal from ozonation and ozonation-biological, respectively for MO. While it leads to 39.3 and 64.3% removal for RR120 and 37.5 and 70.8% removal for RB19, respectively. It is clear that the biological further degrades the dyes from ozonation. In addition, each dye shows different decolourization pattern and degradation behaviour according to its chemical structure. The change in UV-vis and FT-IR spectra indicated the evidence of dye structure cleavage and intermediates formation. While, the NO_3^- , SO_4^{2-} and Cl⁻ anions formed indicate dye mineralization. The decolourization conform first-order kinetics, with R^2 values greater than 0.92. The O_3/H_2O_2 performs better with the batik wastewater, as compared to ozonation and UV/H₂O₂. Therefore, the results for synthetic wastewater support its application for real wastewater, even though the batik wastewater was more difficult to be decolourized and degraded because of its complex composition.

Penyingkiran Pewarna daripada Efluen Perindustrian Menggunakan Gabungan Proses Pengoksidaan Lanjutan (PPL) dan Rawatan Biologi

ABSTRAK

Pada masa kini, penyingkiran pewarna dari pelepasan efluen industri masih jauh lagi untuk mencapai penyelesaian yang memuaskan. Walaupun PPL dikenali sebagai teknologi yang baik untuk rawatan air sisa, ia masih lagi memerlukan penambahbaikan. Oleh itu, rawatan baru yang adalah gabungan PPL dengan rawatan biologi, dengan mengambil kira kelebihan potensi individu. Oleh itu, kajian ini dinilai empat teknik rawatan, iaitu pengozonan, ozon/hidrogen peroksida (O_3/H_2O_2) , ultraungu/hidrogen peroksida (UV/H_2O_2) , dan gabungan pengozonan-biologi pewarna sintetik, yang terdiri daripada monoazo Methyl Orange (MO), disazo Reactive Red 120 (RR120) dan anthraquinone Reactive Blue 19 (RB19). Akhir sekali, rawatan dinilai dengan air sisa batik sebagai sampel air sisa sebenar dari industri. Hasil kajian mendapati pengozonan, O₃/H₂O₂, UV/H₂O₂, dan pengozonan-biologi menjadi satu rawatan berkesan untuk pewarna monoazo, disazo, anthraquinone, dan air sisa sebenar. Rawatan telah mencapai (dalam keadaan yang sesuai), penyingkiran penuh warna dan degradasi yang besar. Walau bagaimanapun, O₃/H₂O₂ dan pengozonan berfungsi dengan lebih baik dengan pewarna, berbanding UV/H₂O₂. Ia menunjukkan bahawa penyingkiran sepenuhnya warna dengan pengozonan dan O_3/H_2O_2 dalam masa kurang daripada 20 min. Dua lengkung penyingkiran warna daripada pengozonan dan O_3/H_2O_2 hampir bertindih mencadangkan bahawa H₂O₂ tidak memberi kesan kepada kadar penyingkiran warna. Sebaliknya, ia mengambil masa lebih daripada 60 minit untuk penyingkiran sepenuhnya dengan UV/H_2O_2 untuk RR120, tetapi lebih daripada 120 min untuk MO dan RB19. Walau bagaimanapun, terdapat perbezaan yang signifikan untuk peyingkiran COD dan TOC. Ia adalah jelas bahawa O_3/H_2O_2 menunjukkan penyingkiran yang lebih tinggi, dan kehadiran H_2O_2 menggalakkan pengoksidaan. Penyingkiran COD akhir O_3/H_2O_2 mencapai 100% dalam masa kurang daripada 10 minit untuk RR120 dan RB19, manakala 15 min untuk MO. Begitu juga, penyingkiran TOC yang lebih tinggi untuk O_3/H_2O_2 berbanding pengozonan dan UV/H₂O₂. Pada keseluruhannya, penyingkiran COD adalah sama dengan TOC untuk setiap rawatan. Ia adalah jelas bahawa penyingkiran warna yang tinggi dari permulaan rawatan biologi disumbangkan dari pra-rawatan pengozonan. Di samping itu, keputusan menunjukkan bahawa 59.6 dan 69.4% penyingkiran COD dari pengozonan dan pengozonan-biologi, masing-masing untuk MO. Manakala, kira-kira 40.7 dan 72.9% untuk RR120, dan 51.4 dan 59.8% untuk RB19. Oleh itu, ia menunjukkan molekul organik kecil telah menyumbang dengan ketara kepada COD yang tidak boleh disingkirkan sepenuhnya oleh rawatan pengozonan-biologi. Sama seperti COD, keputusan menunjukkan bahawa 49.1 dan 73.7% penyingkiran TOC dari pengozonan dan pengozonan-biologi, masing-masing untuk MO. Walaupun, ia membawa kepada 39.3 dan 64.3% bagi RR120, dan 37.5 dan 70.8% bagi RB19. Ia adalah jelas bahawa rawatan biologi mendegradasikan lagi pewarna dari pengozonan. Selain itu, setiap pewarna menunjukkan corak yang berbeza mengikut struktur kimianya. Perubahan dalam spektrum UV-vis dan FT-IR menunjukkan bukti pemecahan struktur dan pembentukan produk perantaraan. Manakala, anion NO₃, SO₄²⁻ dan Cl⁻ yang terbentuk menunjukkan degradasi pewarna. Penyingkiran warna menepati kinetik tertibpertama, dengan nilai R^2 yang lebih besar daripada 0.92. O₃/H₂O₂ merawat air sisa batik dengan lebih baik, berbanding pengozonan dan UV/H₂O₂. Oleh itu, keputusan untuk air sisa sintetik menyokong penggunaan untuk air sisa sebenar, walaupun air sisa batik lebih sukar untuk penyingkiran warna dan degradasi disebabkan komposisinya yang lebih kompleks.

LIST OF PUBLICATIONS

No. Journal

- 1. <u>Che Zulzikrami Azner Abidin</u>, Fahmi, Ong Soon An, Siti Nurfatin Nadhirah Mohd Makhtar, Nazzery Rosmady Rahmat (2014). Decolorization and COD Reduction of Textile Wastewater by Ozonation in Combination with Biological Treatment. Science of the Total Environment. (*Impact Factor 3.789*) – *draft*
- <u>Che Zulzikrami Azner Abidin</u>, Fahmi, Ong Soon An, Siti Nurfatin Nadhirah Mohd Makhtar, Nazzery Rosmady Rahmat (2014). Partial Oxidation of Mono and Disazo Reactive Dyes by the O₃ and O₃/H₂O₂ Processes. Desalination and Water Treatment. (*Impact Factor 0.852*) – *under review*
- 3. <u>Che Zulzikrami Azner Abidin</u>, Fahmi, Ong Soon-An, Siti Nurfatin Nadhirah Mohd Makhtar, Nazerry Rosmady Rahmat (2014). Ozonation of Azo Dye Reactive Red 120: Performance and Decolourization Kinetics. ScienceAsia. (*Impact Factor 0.398*) – *under review*
- 4. Fahmi Muhammad Ridwan, <u>Che Zulzikrami Azner Abidin</u>, Nazerry Rosmady Rahmat (2010). Multi-stage Ozonation and Biological Treatment for Removal of Azo Dye Industrial Effluent. International Journal of Environmental Science and Development (IJESD), 1(2), 13-18.

No. Proceeding

- 1. Che Zulzikrami Azner Abidin, Fahmi, Ong Soon-An, Siti Nurfatin Nadhirah Mohd Makhtar, Nazzery Rosmady Rahmat, Razi Ahmad. Effect of pH and H₂O₂ Dosage on the Photooxidative Degradation of Reactive Red 120 (RR120) by UV/H₂O₂, *The 4th International Malaysia-Ireland Joint Symposium on Engineering, Science and Business (IMiEJS 2014), June 25-26, 2014, Penang. – SCOPUS cited*
- 2. <u>Che Zulzikrami Azner Abidin</u>, Muhammad Ridwan Fahmi, M.A. Umi Fazara, Siti Nurfatin Nadhirah. Degradation Characteristic of Monoazo, Diazo and Anthraquinone Dye by UV/H₂O₂ Process, *The 3rd International Conference on Fundamental and Applied Sciences (ICFAS 2014), June 3-5, 2014, Kuala Lumpur. -* **SCOPUS cited**
- 3. <u>Che Zulzikrami Azner Abidin</u>, Fahmi, Ong Soon-An, Siti Nurfatin Nadhirah Mohd Makhtar, Nazzery Rosmady Rahmat, Razi Ahmad. Decolorization and COD Reduction of Textile Wastewater by Ozonation in Combination with Biological Treatment, *Proceedings of Malaysian Technical Universities Conference on Engineering & Technology (MUCET 2013), December 3-4, 2013, Universiti Malaysia Pahang (UMP), Kuantan, Pahang.*
- 4. Siti Nurfatin Nadhirah Mohd Makhtar, Fahmi Muhammad Ridwan, Nasrul Hamidin, <u>Che Zulzikrami Azner Abidin</u>, Wan Nurhazirah Kamaruzaman. Methyl Orange Removal by Photocatalysis Process (UV/Hydrogen Peroxide), UTAR National Postgraduate Fundamental and Applied Sciences Seminar (UTAR NPFASS 2013), May 13-14, 2013, Universiti Tunku Abdul Rahman, Kampar, Perak.
- 5. Muhammad Ridwan Fahmi, <u>Che Zulzikrami Azner Abidin</u>, Nazerry Rosmady Rahmat, Ong Soon An. Trend in biodegradability improvement of azo dyes by ozonation, The 4thAsia-Pacific Young Water Professionals Conference, December 7-10, 2012, Tokyo, Japan.
- 6. <u>Che Zulzikrami Azner Abidin</u>, Fahmi Muhammad Ridwan, Ong Soon An, Nazerry Rosmady Rahmat. Comparative study on the degradation of reactive dyes by O_3 and O_3/H_2O_2 processes, 2^{nd} International Malaysia-Ireland Joint Symposium on
- C O₃/H₂O₂ processes, 2th International Malaysia-Ireland Joint Symposium on Engineering, Science and Business (IMiEJS 2012), June 18-20, 2012, Kuala Lumpur.
- 7. <u>Che Zulzikrami Azner Abidin</u>, Fahmi Muhammad Ridwan, Ong Soon An, Nazerry Rosmady Rahmat. Degradation of Reactive Red 120 by O₃ and O₃/H₂O₂ Process, *International Postgraduate Conference (IPCE 2011), October 22-23, 2011, Universiti Malaysia Perlis (UniMAP), Perlis.*
- 8. Nazerry Rosmady Rahmat, Fahmi Muhammad Ridwan, <u>Che Zulzikrami Azner</u> <u>Abidin</u>, Apipah Ariffin, Suhaida Mohamed Arshad. Ozonation and Biological Treatment for the Removal of Azo Dye Industrial Effluent, *International Postgraduate Conference (IPCE 2011), October 22-23, 2011, Universiti Malaysia Perlis (UniMAP), Perlis.*

- 9. Fahmi Muhammad Ridwan, <u>Che Zulzikrami Azner Abidin</u>, Nazerry Rosmady Rahmat. Characteristic of Colour and COD Removal of Azo Dye by Advanced Oxidation Process and Biological Treatment, *International Conference on Biotechnology and Environmental Management (ICBEM 2011), September 16-18,* 2011, Singapore.
- 10. Fahmi Muhammad Ridwan, <u>Che Zulzikrami Azner Abidin</u>, Nazerry Rosmady Rahmat, Ong Soon An. Study of Advanced Oxidation Process and Biological Treatment Mechanisms for Azo Dye Industrial Effluent, *International Congress on Green Process Engineering (GPE 2011), September 6-8, 2011, Kuala Lumpur.*
- 11. <u>Che Zulzikrami Azner Abidin</u>, Fahmi Muhammad Ridwan. Characteristic of COD and Colour Removal of Azo Dye in Ozonation and Biological Treatment, *National Postgraduate Conference (NPC 2011), September 19-20, 2011, Universiti Teknologi Petronas (UTP), Tronoh, Perak. - SCOPUS cited*
- 12. <u>Che Zulzikrami Azner Abidin</u>, Fahmi Muhammad Ridwan, Nazerry Rosmady Rahmat, Suhaida Mohamed Arshad. Decolorisation of Azo Dye by Ozonation, *International Postgraduate Conference on Engineering (IPCE 2010), Oktober 16-17,* 2010, Universiti Malaysia Perlis (UniMAP), Perlis.
- 13. Fahmi Muhammad Ridwan, Apipah Ariffin, Suhaida Mohamed Arshad, <u>Che</u> <u>Zulzikrami Azner Abidin</u>, Nazerry Rosmady Rahmat. Decolourization and COD removal of Azo Dye Solution by Repeated Ozonation and Biodegradation, *International Conference on Environmental Science and Technology (ICEST 2010), April 23-25 2010, Bangkok, Thailand.*
- 14. <u>Che Zulzikrami Azner Abidin</u>, Fahmi Muhammad Ridwan, Haidar S. Al- Maroof, Nazerry Rosmady Rahmat. Application of Multi-Stage Ozonation / Advance Oxidation Process (AOP) and Biological Treatment for Colour, Bod and COD Removal of Azo Dye Industrial Effluent, *Proceeding of Engineering Postgraduate Conference (EPC 2009), July 26-27, 2009, Universiti Malaysia Perlis (UniMAP), Perlis.*

%	Percentage
⁰ C	Degree Celsius
a	Weight concentration of H ₂ O ₂
A	Weight of dried filter plus dried residue
Abs	Absorbance
В	Weight of filter
С	Concentration
C_0	Concentration at time = 0
C_t	Concentration at time = t
cm ⁻¹	Wavenumber
d	Dilution factor
D	Chromogen
g/mol	Weight of filter Concentration Concentration at time = 0 Concentration at time = t Wavenumber Dilution factor Chromogen Grams per mole Correction factor (ratio of the COD value of the H-O: concentration)
f	Correction factor (ratio of the COD value of the H_2O_2 concentration)
h	Hour C
но.	Hydroxyl radicals
hv	Photons
k	Reaction rate constant
λ	Wavelength
λmax	Maximum absorption wavelength
L	Litre
lb	Pound (mass)
min	Minute
mg/L	Milligram per litre
mL/min	Millilitres per minute
mM	Milimolar
N_{MnO4}	Normality of KMnO ₄ titrate
nm	Nanometre
Q	Linker or bridge
RG	Reactive groups
Pt-Co	Platinum-Cobalt Scale (colour scale)

LIST OF SYMBOLS

t	Time	
T_{MnO4}	Volume of KMnO ₄ titrate	
μl	Microliter	
USD/m ³	United States dollar per cubic meter	
V	Volume	
V	Volts	
W	Water-solubilising group	
W/m^2	Watts per square meter	
X	Leaving group	
V Volts W Water-solubilising group W/m ² Watts per square meter X Leaving group Contribution of the square meter Contribution of the squ		

LIST OF ABBREVIATIONS

ADMI	American Dye Manufacturers Institute
Ag_2SO_4	Silver sulphate
AOPs	Advanced oxidation processes
AOX	Absorbable organic halogens
ATR	Attenuated Total Reflection
ASP	Activated-sludge Process
BOD	Biochemical oxygen demand
BOD ₅	Biochemical oxygen demand for 5 days
CAS	Chemical Abstract Service
CMAS	Activated-sludge Process Biochemical oxygen demand Biochemical oxygen demand for 5 days Chemical Abstract Service Complete-mix activated sludge
CI	Colour Index
Cl	Chlorine
Cl_2	Chlorine gas
CiO ₂	Chlorine dioxide
Cl	Colour Index Chlorine Chlorine gas Chlorine dioxide Chloride anions Hypochlorite
ClO	Hypochlorite
CMC	Carboxymethyl cellulose
COD	Chemical oxygen demand
COD_c	Chemical oxygen demand (corrected)
COD _{pt}	Chemical oxygen demand (measured)
DO	Dissolved oxygen
DOE	Department of Environment
EOP	Electrochemical oxidation potential
EQA	Environmental Quality Act
F	Fluorine
FT-IR	Fourier Transforms-Infrared
GAC	Granular activated carbon
H_2SO_4	Sulphuric acid
HO	Hydroxyl radicals
H_2O_2	Hydrogen peroxide
H_2O_2/Fe^{2+}	Fenton

H_2SO_4	Sulphuric acid
HCl	Hydrochloric acid
HgSO ₄	Mercury(II) sulphate
IC	Ion-chromatography
ID	Internal diameter
$K_2Cr_2O_7$	Potassium dichromate
KI	Potassium iodide
MLSS	Mixed liquor suspended solids
MLVSS	Mixed liquor volatile suspended solids
Mn_2O_7	Manganese(VII)
Мо	Microorganism
МО	Methyl Orange
N_2	Potassium iodide Mixed liquor suspended solids Mixed liquor volatile suspended solids Manganese(VII) Microorganism Methyl Orange Nitrogen gas Sodium thiosulphate
$Na_2S_2O_3$	Sodium thiosulphate
NaOH	Sodium hydroxide
NBR	Nitrile butyl rubber
NHAr	Aromatic amines
NR	Natural rubber
NRE	Ministry of Natural Resources and Environment
NO ₃ -	Nitrate anions
NO_2^- S	Nitrite anions
O_2	Oxygen (molecular)
O_3	Ozone
O_3/H_2O_2	Ozone / Hydrogen peroxide, Perozone process
PVA	Polyvinyl alcohol
PVC	Polyvinyl chloride
PU	Polyurethane
RB19	Reactive Blue 19
rpm	Revolution per minute
RR120	Reactive Red 120
SBR	Sequencing batch reactor
SO4 ²⁻	Sulphate anions

- TDS **Total Dissolved Solids**
- TiO_2 Titanium dioxide
- Total organic carbon TOC
- Total suspended solids TSS
- Up-flow biological aerated filter UBAF
- UV Ultraviolet
- d202 p othis teemis protected by orieinal copyright Ultraviolet irradiation / Hydrogen Peroxide, H2O2 photolysis process

LIST OF FIGURES

NO.	J	PAGE
1.1	Compositions of water pollution sources by sector in Malaysia (2004)	3
1.2	Typical steps involved in textile processing in cotton mill	5
2.1	Molecular structure of Methyl Orange	19
2.2	Molecular structure of Reactive Red 120	20
2.3	Molecular structure of Reactive Blue 19	22
2.4	Hydroxyl radical attack on aromatic compound	36
2.5	O ₃ molecules 1-3 dipolar Cyclo addition of direct reaction	41
3.1	A2Z (model Z-3G) O_3 generator	64
3.2	Schematic diagram of ozonation reactor: 1) O_2 cylinder, 2) flow meter, 3) O_3 generator, 4) glass reactor, 5) diffuser, 6) KI trap	65
3.3	Ozonation and O_3/H_2O_2 reactor	66
3.4	Schematic diagram of O_3/H_2O_2 reactor: 1) O_2 cylinder, 2) flow meter, 3) O_3 generator, 4) glass reactor, 5) diffuser, 6) KI trap, 7) H_2O_2 addition	67
3.5	UV lamp model GPH 295T5L/4P	69
3.6	Schematic diagram of UV/H_2O_2 reactor: 1) light source, 2) UV lamp, 3) quartz sleeve, 4) water bath, 5) water jacket, 6) magnetic stirrer, 7) sampling port	70
3.7	UV/H_2O_2 reactor	71
3.8	Schematic diagram of aerobic CMAS reactor: 1) air blower, 2) diffuser, 3) glass reactor, 4) paddle stirrer	73
3.9	Complete-mix activated sludge (CMAS) reactor	73
3.10	CMAS reactor operation cycle	74
3.11	General flow chart of the experimental stages	89
4.1	UV-vis spectra of (a) MO, (b) RR120 and (c) RB19 after ozonation at different contact time	93
4.2	Colour removal after ozonation for MO, RR120 and RB19	95
4.3	COD removal after ozonation for MO, RR120 and RB19	97
4.4	TOC removal after ozonation for MO, RR120 and RB19	98
4.5	FT-IR spectra of (a) 0 min, (b) 10 min and (c) 20 min ozonation for MO	100
4.6	FT-IR spectra of (a) 0 min, (b) 10 min and (c) 20 min ozonation for RR120	101
4.7	FT-IR spectra of (a) 0 min, (b) 10 min and (c) 20 min ozonation for RB19	102

4.8	Inorganic anions evolution during the ozonation of (a) MO, (b) RR120 and (c) RB19	105
4.9	UV-vis spectra of (a) MO, (b) RR120 and (c) RB19 after O_3/H_2O_2 at different contact time	107
4.10	Colour removal after O ₃ /H ₂ O ₂ for MO, RR120 and RB19	109
4.11	Percentage removal of measured and corrected COD after O_3/H_2O_2 for MO	110
4.12	Percentage removal of measured and corrected COD after O_3/H_2O_2 for RR120	111
4.13	Percentage removal of measured and corrected COD after O_3/H_2O_2 for RB19	112
4.14	Corrected COD removal after O ₃ /H ₂ O ₂ for MO, RR120 and RB19	112
4.15	TOC removal after O_3/H_2O_2 for MO, RR120 and RB19	113
4.16	FT-IR spectra of (a) 0 min, (b) 10 min and (c) 20 min O_3/H_2O_2 for MO	115
4.17	FT-IR spectra of (a) 0 min, (b) 10 min and (c) 20 min O_3/H_2O_2 for RR120	116
4.18	FT-IR spectra of (a) 0 min, (b) 10 min and (c) 20 min O_3/H_2O_2 for RB19	117
4.19	Inorganic anions evolution during the O_3/H_2O_2 of (a) MO, (b) RR120 and (c) RB19	119
4.20	UV-vis spectra of (a) MO, (b) RR120 and (c) RB19 after UV/H_2O_2 at different contact time	122
4.21	Colour removal after UV/H ₂ O ₂ for MO, RR120 and RB19	124
4.22	Percentage removal of measured and corrected COD after UV/H ₂ O ₂ for MO	126
4.23	Percentage removal of measured and corrected COD after UV/H_2O_2 for RR120	127
4.24	Percentage removal of measured and corrected COD after UV/H_2O_2 for RB19	128
4.25	Corrected COD removal after UV/H2O2 for MO, RR120 and RB19	128
4.26	TOC removal after UV/H ₂ O ₂ for MO, RR120 and RB19	129
4.27	FT-IR spectra of (a) 0 min, (b) 10 min and (c) 20 min UV/H_2O_2 for MO	131
4.28	FT-IR spectra of (a) 0 min, (b) 10 min and (c) 20 min UV/H_2O_2 for RR120	132
4.29	FT-IR spectra of (a) 0 min, (b) 10 min and (c) 20 min UV/ H_2O_2 for RB19	133
4.30	Inorganic anions evolution during the UV/ H_2O_2 of (a) MO, (b) RR120 and (c) RB19	136
4.31	MLSS concentration in CMAS for (a) MO, (b) RR120 and (c) RB19	138
4.32	UV-vis spectra of CMAS for (a) MO, (b) RR120 and (c) RB19 without pre- treatment (0 min ozonation)	140

4.33	UV-vis spectra of MO CMAS at different pre-treatment contact time of (a) 5 min, (b) 10 min, (c) 15 min and (d) 20 min	141
4.34	UV-vis spectra of RR120 CMAS at different pre-treatment contact time of (a) 5 min, (b) 10 min, (c) 15 min and (d) 20	142
4.35	UV-vis spectra of RB19 CMAS at different pre-treatment contact time of (a) 5 min, (b) 10 min, (c) 15 min and (d) 20 min	143
4.36	Colour removal after CMAS for (a) MO, (b) RR120 and (c) RB19 with different pre-treatment times	145
4.37	COD removal of CMAS for (a) MO, (b) RR120, and (c) RB19 with different ozonation pre-treatment times	147
4.38	COD removal of 30 days CMAS treatment with different pre-treatment times	148
4.39	TOC removal after CMAS with 10 min ozonation pre-treatment for MO, RR120 and RB19	149
4.40	FT-IR spectra of MO at 15 min ozonation pre-treatment in combination with CMAS	151
4.41	FT-IR spectra of RR120 at 10 min ozonation pre-treatment in combination with CMAS	152
4.42	FT-IR spectra of RB19 at 15 min ozonation pre-treatment in combination with CMAS	153
4.43	Inorganic anions evolution during the ozonation in combination with CMAS of (a) MO, (b) RR120 and (c) RB19	155
4.44	Proposed degradation pathway of MO	159
4.45	Proposed degradation pathway of RR120	160
4.46	Proposed degradation pathway of RB19	162
5 U	Comparison of UV-vis spectra for (a) MO, (b) RR120 and (c) RB19 under ozonation, O_3/H_2O_2 and UV/ H_2O_2	164
5.2	Comparison of decolourization profile for (a) MO, (b) RR120 and (c) RB19 under ozonation, O_3/H_2O_2 and UV/ H_2O_2	166
5.3	Comparison of COD removal for (a) MO, (b) RR120 and (c) RB19 under ozonation, O_3/H_2O_2 and UV/H_2O_2	167
5.4	Comparison of TOC removal for (a) MO, (b) RR120 and (c) RB19 under ozonation, O_3/H_2O_2 and UV/H_2O_2	168
5.5	Comparison of UV-vis spectra of dyes with ozonation and without ozonation of (a) MO, (b) RR120 and (c) RB19	171
5.6	Comparison of decolourization profiles of dyes with ozonation and without ozonation of (a) MO, (b) RR120 and (c) RB19	172

5.7	Comparison of COD removal of dyes with ozonation and without ozonation of (a) MO, (b) RR120 and (c) RB19	174
5.8	Comparison of COD removal between ozonation and ozonation-CMAS	175
5.9	Comparison of TOC removal between ozonation and ozonation-CMAS	176
6.1	Evolution of pH before and after treatment during 10 min ozonation	179
6.2	Effect of pH on the UV-vis spectra of: (a) MO, (b) RR120 and (c) RB19 after 10 min ozonation	180
6.3	Effect of pH on the dye decolourization during 10 min ozonation	181
6.4	Effect of pH on the COD concentration during 10 min ozonation	182
6.5	Effect of initial dye concentration on the UV-vis spectra of: (a) 100, (b) 300 and (c) 500 mg/L MO during ozonation	184
6.6	Effect of initial dye concentration on the UV-vis spectra of: (a) 100, (b) 300 and (c) 500 mg/L RR120 during ozonation	185
6.7	Effect of initial dye concentration on the UV-vis spectra of: (a) 100, (b) 300 and (c) 500 mg/L RB19 during ozonation	186
6.8	Effect of initial dye concentration on the colour removal of: (a) MO, (b) RR120 and (c) RB19 during ozonation	188
6.9	Effect of initial dye concentration on the COD removal of: (a) MO, (b) RR120, and (c) RB19 during ozonation	189
6.10	Evolution of pH before and after treatment during 10 min O_3/H_2O_2 with dosage of 0.67 mL H_2O_2/L dye	191
6.11	Effect of pH on the UV-vis spectra of: (a) MO, (b) RR120 and (c) RR19 with H_2O_2 0.67 mL/L dosage and 10 min O_3/H_2O_2	193
6.12	Effect of pH on the dye decolourization during 10 min O_3/H_2O_2 with dosage of 0.67 mL H_2O_2/L dye	194
6.13	Effect of pH on the COD removal during 10 min O_3/H_2O_2 with H_2O_2 0.67 mL/L dosage	195
6.14	Effect of H_2O_2 dosage on the UV-vis spectra of: (a) MO, (b) RR120 and (c) RR19 after 10 min O_3/H_2O_2	197
6.15	Effect of H_2O_2 dosage on the decolourization of: (a) MO, (b) RR120, and (c) RB19 after 10 min O_3/H_2O_2	199
6.16	Effect of H_2O_2 dosage on the COD removal after O_3/H_2O_2 of (a) MO, (b) RR120 and (c) RB19	201
6.17	Comparison of corrected COD removal with different H_2O_2 dosage after 10 min O_3/H_2O_2	202
6.18	Effect of initial dye concentration on the UV-vis spectra of: (a) 100, (b) 300 and (c) 500 mg/L MO during O_3/H_2O_2	204

6.19	Effect of initial dye concentration on the UV-vis spectra of: (a) 100, (b) 300 and (c) $500 \text{ mg/L} \text{ RR}120 \text{ during } O_3/H_2O_2$	205
6.20	Effect of initial dye concentration on the UV-vis spectra of: (a) 100, (b) 300 and (c) 500 mg/L RB19 during O_3/H_2O_2	206
6.21	Effect of initial dye concentration on the colour removal of: (a) MO, (b) RR120 and (c) RB19 during O_3/H_2O_2	208
6.22	Effect of initial dye concentration on the COD removal of: (a) MO, (b) RR120 and (c) RB19 during O_3/H_2O_2	210
6.23	Evolution of pH before and after treatment during 60 min UV/H_2O_2 treated with 0.67 ml/L H_2O_2 dosage	211
6.24	Effect of pH on the UV-vis spectra of: (a) MO, (b) RR120 and (c) RR19 with 0.67 mL/L H_2O_2 dosage and 60 min UV/ H_2O_2	213
6.25	Effect of pH on the dye decolourization during 60 min UV/ H_2O_2 treated with 0.67 mL/L H_2O_2 dosage	214
6.26	Effect of pH on the corrected COD removal during 60 min UV/ H_2O_2 treated with 0.67 mL/L H_2O_2 dosage	215
6.27	Effect of H_2O_2 dosage on the UV-vis spectra of: (a) MO, (b) RR120 and (c) RR19 after 60 min UV/ H_2O_2	218
6.28	Effect of H_2O_2 dosage on the decolourization of: (a) MO, (b) RR120, and (c) RB19 after 60 min UV/ H_2O_2	220
6.29	Effect of H_2O_2 dosage on the COD removal of: (a) MO, (b) RR120 and (c) RB19 after UV/ H_2O_2	222
6.30	Comparison of corrected COD removal with different H_2O_2 dosage after 60 min UV/ H_2O_2	223
6.31	Effect of initial dye concentration on the UV-vis spectra of: (a) 100, (b) 300 and (c) 500 mg/L MO during UV/H ₂ O ₂	225
6.32	Effect of initial dye concentration on the UV-vis spectra of: (a) 100, (b) 300 and (c) $500 \text{ mg/L} \text{ RR}120 \text{ during UV/H}_2\text{O}_2$	227
6.33	Effect of initial dye concentration on the UV-vis spectra of: (a) 100, (b) 300 and (c) 500 mg/L RB19 during UV/ H_2O_2	228
6.34	Effect of initial dye concentration on the colour removal of: (a) MO, (b) RR120, and (c) RB19 during UV/H_2O_2	230
6.35	Effect of initial dye concentration on the COD removal of: (a) MO, (b) RR120 and (c) RB19 during UV/H_2O_2	231
7.1	Comparison of dye decolourization kinetics with ozonation	234
7.2	Comparison of dye decolourization kinetics with O ₃ /H ₂ O ₂	234
7.3	Comparison of dye decolourization kinetics with UV/H ₂ O ₂	234

- 8.1 Comparison of UV-vis spectra for batik wastewater after ozonation, 239 O_3/H_2O_2 and UV/ H_2O_2
- 8.2 Comparison of discoloration profile for batik wastewater under ozonation, 240 O_3/H_2O_2 and UV/H₂O₂
- 8.3 Comparison of COD removal for batik wastewater under ozonation, 241 O_3/H_2O_2 and UV/H₂O₂
- 8.4 Comparison of TOC removal for batik wastewater under ozonation, 242 O_3/H_2O_2 and UV/ H_2O_2
- 8.5 MLSS concentration during ozonation-CMAS of batik wastewater 244
- 8.6 UV-vis spectra of CMAS treatment for batik wastewater without ozonation 245
- 8.7 UV-vis spectra of batik wastewater CMAS treatment at different ozonation 246 contact time of (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min
- 8.8 Comparison of UV-vis spectra of batik wastewater with ozonation and 247 without ozonation
- 8.9 Comparison of decolourization patterns of batik wastewater with ozonation 248 and without ozonation
- 8.10 Comparison of COD removal of batik wastewater with ozonation and 249 without ozonation
- 8.11 TOC concentration of (a) ozonation and (b) ozonation-CMAS treatment of 250 batik wastewater
- 8.12 Comparison of COD and TOC removal between ozonation-CMAS 251 treatment batik wastewater

LIST OF TABLES

NO.		PAGE
2.1	Global market shares of different dye classification	15
2.2	Example classification of common dyes based on the chemical structure	17
2.3	Typical characteristics of textile wastewater	25
2.4	Conventional methods for removal of dye-containing wastewater	26
2.5	Comparison of oxidation potential of various oxidants	37
2.6	Non-photochemical and photochemical methods of AOPs	38
3.1	Properties and characteristics of the studied reactive dyes	59
3.2	Physical parameters of the studied batik wastewater	61
3.3	List of chemicals and reagents	62
7.1 ©	Comparison of reaction rate and half-life decolourization of the synthesized dye-containing wastewater	235

TABLE OF CONTENTS

PAGE

DEC	LARATI	ON		ii
DED	ICATION	J		iii
ACKNOWLEDGEMENT			iv	
TAB	TABLE OF CONTENTS			vi
LIST	Г ОГ ТАВ	LES		xii
LIST	r of fig	URES	1/16	xiii
LIST	Г OF ABR	EVIATIO	NN R	xix
LIST	Г OF SYM	BOLS		xxii
ABS	TRAK		in'o.	xxiv
ABS	TRACT		S DN DUCTION DUCTION DV OTIBINAL COPVITIBINAL COPVITIBINAL COPVITIBINAL	XXV
			to the	
CHA	PTER 1	INTRO	DUCTION	
1.1	Environ	mental Pol		1
1.2	Industria	l Wastewa	ater Pollutions	2
1.3	Dyes Treatment Methods			7
1.4	Problem Statements			8
1.5	Research Objectives			11
1.6	.6 Research Scope			12
1.7	Thesis C	Outline		13
\bigcirc				
CHA	APTER 2	LITER	ATURE REVIEW	
2.1	Introduc	tion		14
2.2	Dye Classification			16
	2.2.1	Azo Dye	es	18
		2.2.1.1	Acid Orange 52 / Methyl Orange (MO)	18
		2.2.1.2	Reactive Red 120 (RR120)	19
	2.2.2	Anthraq	uinone Dyes	20
		2.2.2.1	Reactive Blue 19 (RB19)	21
2.3 Dye Structure			22	
2.4	Dye, and the Environmental Concern23			

2.5	Dye Ren	Dye Removal Method				
	2.5.1	Biologica	al Treatment	28		
		2.5.1.1	Anaerobic Process	30		
		2.5.1.2	Aerobic Process	30		
	2.5.2	Physical	Treatment	32		
	2.5.3	Chemica	1 Treatment	33		
2.6	Advance	35				
	2.6.1	5.1 Ozonation				
		2.6.1.1	Fundamental	40		
		2.6.1.2	Advantages and Disadvantages	42		
		2.6.1.3	Application to Dye-containing Wastewater	43		
	2.6.2	O_3/H_2O_2		45		
		2.6.2.1	Fundamental	45		
		2.6.2.2	Advantages and Disadvantages	46		
		2.6.2.3	Application to Dye-containing Wastewater	47		
	2.6.3	UV/H ₂ O	2	48		
		2.6.3.1	Fundamental	48		
		2.6.3.2	Advantages and Disadvantages	49		
		2.6.3.3	Application to Dye-containing Wastewater	50		
2.7	Combina	52				
	2.7.1	Fundame	ental	53		
~	2.7.2	Advantag	ges and Disadvantages	54		
\bigcirc	2.7.3	Applicati	ion to Dye-containing Wastewater	54		
2.8	Treatmen	nt of Batik	Wastewater	56		
CHA	PTER 3	MATER	RIALS AND METHODOLOGY			
3.1	Introduct	ion		58		
3.2	Materials	5		58		
	3.2.1	Dyes		58		
	3.2.2	Batik Wa	60			
	3.2.3	Chemica	61			

3.3Synthetic Dye-containing Wastewater Preparation62

3.4	Reactor and Experimental Procedures			
	3.4.1	Ozonatio	on	64
		3.4.1.1	Reactor Set-up	64
		3.4.1.2	Experimental Procedure	65
	3.4.2	O_3/H_2O_2		67
		3.4.2.1	Reactor Set-up	67
		3.4.2.2	Experimental Procedure	68
	3.4.3	UV/H ₂ O ₂ 3.4.3.1 Reactor Set-up 3.4.3.2 Experimental Procedure		69
		3.4.3.1	Reactor Set-up	69
		3.4.3.2	Experimental Procedure	71
	3.4.4	Combina	ation of Ozonation and Biological Treatment	72
		3.4.4.1	Complete-mix Activated Sludge (CMAS) Reactor Set- up	72
		3.4.4.2	Experimental Procedure	74
3.5	Analytical Procedure			76
	3.5.1	UV-vis S	Spectrophotometer	76
©	3.5.2	Ozone (O ₃) Flow Rate		
	3.5.3	H ₂ O ₂ Re	sidual	78
	3.5.4	Chemica	l Oxygen Demand (COD)	80
	~e	3.5.4.1	Measured COD	80
	.5	3.5.4.2	Corrected COD	81
	3.5.5	Total Or	ganic Carbon (TOC)	83
	3.5.6	Fourier 7	Fransform-Infrared (FT-IR) Spectroscopy	84
	3.5.7	Ion Chromatography (IC)		
	3.5.8	Mixed L	iquor Suspended Solids (MLSS)	86
3.6	Decolour	ization Kinetics 8		87

CHAPTER 4 PERFORMANCE EVALUATION ON THE COLOUR, COD, TOC AND CONTAMINANTS CHARACTERIZATION

4.1	Introdu	90	
4.2	Ozonation		
	4.2.1	UV-vis Absorption Spectra	92
	4.2.2	Colour Removal	94