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FABRIKASI DAN PENCIRIAN KEJURUTERAAN TEROWONG PERINTANG 

UNTUK APLIKASI  INGATAN TAK MERUAP  

 

ABSTRAK 

 

Non-volatile memory (Memori tak meruap) adalah peranti ingatan di dalam keadaan 

pepejal yang boleh mengekalkan maklumat yang tersimpan walaupun kuasa tidak lagi 

dibekalkan, contohnya pelbagai jenis ROM dan Flash Memory. Berdasarkan mekanisme 

penyimpanan cas, ia boleh dibahagikan kepada dua kelas utama; peranti get terapung dan 

memerangkap cas. Struktur peranti yang paling banyak digunakan dalam teknologi ingatan 

kontemporari adalah jenis pintu terapung. Dalam ingatan jenis ini, elektron dipindahkan 

daripada substrat kepada get terapung, dan sebaliknya. Operasi memori ini dikenali sebagai 

menulis dan memadam. Untuk seni bina ingatan kilat jenis NAND pemindahan elektron 

telah dijalankan menggunakan mekanisme terowong yang dikenali sebagai Fowler-

Nordheim tunneling (terowong Fowler-Nordheim), dan kecekapannya akan menentukan 

prestasi peranti ingatan. Mekanisme terowong ini berlaku melalui dielektrik lapisan nipis 

ultra, yang dikenali sebagai dielektrik terowong, yang secara fizikal dan elektrik 

memisahkan pintu terapung daripada substrat. Tradisinya, ketebalan SiO2 di antara 5 nm 

hingga 10 nm digunakan sebagai dielektrik terowong. Ketebalan 5 nm dianggap had oksida 

terowong intrinsik, yang mana di bawah ketebalan ini kebocoran seperti kebocoran tekanan 

arus teraruh (SiLC) dan pemindahan elektron secara langsung menjadi faktor yang 

menonjol. Beberapa usaha telah dibuat untuk meningkatkan prestasi sel ingatan kilat 

dengan menggantikan SiO2 dengan pelbagai dielektrik seperti Oxynitride, gabungan 

bahan-k tinggi dan sebagainya. Fokus kajian tertumpu kepada pendekatan kepada Keteblan 

Oksida Bolehubah (VARIOT) terowong kejuruteraan di mana struktur VARIOT tidak 

simetri dengan ketebalan oksida yang berkesan (EOT) di antara 5 nm kepada 14 nm dikaji 

di dalam bentuk struktur MOS kapasitor. Ketumpatan terowong semasa dalam struktur 

VARIOT menghasilkan 10
8
 A/cm

2
 dengan 15V voltan pengaturcaraan, berbanding 10

5
 

A/cm
2
 untuk halangan terowong konvensional dengan voltan pengaturcaraan sama. 

Hasilnya menunjukkan bahawa VARIOT terowong kejuruteraan akan meningkatkan 

prestasi sel memori pintu terapung. 
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FABRICATION AND CHARACTERIZATION OF ENGINEERED TUNNEL 

BARRIER FOR NONVOLATILE MEMORY APPLICATION 

 

 

ABSTRACT 

 

Non-volatile memory is a solid state memory device that can retain the stored information 

even when the power is turned-off; examples of a variety of ROMs and Flash Memory. 

Based on the charge storing mechanism, it can be divided into two main classes; floating 

gate and charge trapping devices. The most widely used device structure in contemporary 

memory technology is of a floating gate type.  In this type of memory, electrons were 

transferred from the substrate to the floating gate, and vice versa in memory operations 

known as write and erase. For NAND Flash Memory architecture, these electrons transfer 

were carried out using tunneling mechanism known as Fowler-Nordheim tunneling, and its 

efficiency would determine the performance of a memory device. This mechanism takes 

place via ultra-thin dielectric layer, known as tunnel dielectric, which physically and 

electrically separates the floating gate from the substrate. Traditionally, thermally grown 

SiO2 thickness ranging from 5 nm to 10 nm is used as the tunnel dielectric. The 5 nm 

thicknesses is considered the intrinsic tunnel oxide limit, below which various leakages 

such as stress induced leakage current (SILC) and direct tunneling start to became a 

prominent limiting factors. Several efforts have been made to improve the flash memory 

cell performance by replacing the traditional SiO2 with various dielectric such as 

Oxynitride, and combinations of High-k materials. This study focuses on the Variable 

Oxide Thickness (VARIOT) approach of engineered tunnel barrier where the asymmetrical 

VARIOT structure with the effective oxide thickness (EOT) ranging from 6 nm to 14 nm 

were studied in the form of MOS capacitor structure. The tunneling current density in the 

VARIOT structure yield 10
8
 A/cm

2
 at 15V programming voltage, compared to 10

5
 A/cm

2 

for the conventional tunnel barrier with the same programming voltage. The results show 

that asymmetrical VARIOT tunnel barrier would significantly improves the floating gate 

memory-cell performance.  
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CHAPTER 1 

 

BACKGROUND 

 

1.1 Introduction 

Flash memory technologies have two main parameters governing the device 

performance. Firstly the programming speeds, which indicates how fast the 

memory contents can be programmed. For this parameter, it‟s desirable to achieve 

the programming time as short as possible i.e. < ns range. The second parameter is 

data retention which indicates how long it will take before the memory, lost its 

contents.  The minimum technology requirement is 10 years retention. Current 

flash memory technology scaling (common technique practiced in the industry to 

enhance the device performance) required the shrinking of the tunnel oxide 

thickness (below 5 nm). This practice posed inevitable lost of data retention 

capability even though the programming speed is greatly enhanced. In this 

investigation flash memory performance of conventional and engineered tunnel 

barrier is presented and analyzed. This chapter focuses on the research workflow 

and it is simplified to overview of flash memory technology, problem statement, 

research objective, research scope and thesis organization. 
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 2 

1.2 Overview of Flash Memory Technology 

Semiconductor industry has been growing rapidly in the past few decades especially 

in main memory market segment, driven by the semiconductor memory revolution. The 

revolution of semiconductor memory has to be fast due to its wellbalanced functionality 

and cost of semiconductor technology. Newer semiconductor technologies with new 

materials and manufacturing process emerge for realizing new products. 

Semiconductor memory is a device, which stored information in the electronic 

form. The semiconductor memories can be classified into two main types of data 

mechanism;   namely data storage and data access. Both,  correspond to two main groups; 

volatile and nonvolatile memory (Kang, 2003). Volatile memory loses data as soon as the 

system is turned off and requires constant power to remain viable, while the nonvolatile 

memory does not lose its data (Makwana, 2004). A common nonvolatile memory device is 

a MOS transistor which consists of source, drain, an access or control gate and floating gate 

(Brown, 1997). 

Flash memory is one of the non-volatile memory devices that have been 

continuously growing and it is mass solid-state storage application that relies on the 

success of flash technology in the electronic industry era. Over the past few years, flash 

memory has been used in portable electronic products such as cellular phones, laptops, 

digital cameras, modems, memory sticks, video game cards and personal digital assistance 

(PDAs) (Misra, 2011). During the evolution of flash memory technology, tunnel barrier 

materials and their thicknesses are the key important factors in improving its performance. 

Tunnel barrier is a vital counterpart in flash memory devices because in the floating gate 

type, an electron was transferred from substrate to the floating gate and vice versa. This 
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 3 

phenomenon requires several scaling approaches in improving tunnel barrier materials 

while taking into accounts their thickness. 

The tunnel barrier in a flash memory technology is also known as a dielectric. 

When a dielectric is placed in an electric field, electric changes shift slightly from their 

average equilibrium positions causing dielectric polarization (Misra, 2011). Conventional 

tunnel barrier with SiO2 (silicon dioxide) was used as a medium for electron tunneling 

from substrate to floating gate layer and vice versa. An electron tunneling efficiency is 

crucial since it will determine the device speed during programming and deleting process.  

 

1.4 Problem Statement 

The most impressive phenomenon of this decade is manufacturing challenges of 

dielectric tunnel barrier in flash memory manufacturing, while to enhance the performance 

for flash memory technology.  Current flash memory technology employed the 

conventional SiO2 as the tunnel barrier material 5 nm of SiO2 thickness presently posed as 

a minimum tunnel barrier thickness by the nonvolatile memory device technology. Less 

than 5 nm thickness of SiO2, would results in many undesired effects such as Stress 

Induced Leakage Current (SILC) and direct tunneling, which further deteriorate the data 

retention performance (Park, 1998).  

These issues can be summarized in the following way. First, the traditional tunnel 

barrier is fabricated with conventional method using SiO2 of about 5 nm thickness as 

dielectric material. This typical uniform deposited barrier can maintain the electron tunnel 

through the barrier but with extended charge retention times. The extended times requires 

resulted in higher voltage or longer time needed during programming process. In another 

 

 

 

 

 

 

 

 

 

 

 

©
 Th
is 
ite
m 
is 
pr
ot
ec
te
d b
y o
rig
ina
l c
op
yri
gh
t 



 4 

word, if the tunnel barrier  is relatively thick, higher voltage will be used in the 

programming process (Brown, 1997). As the barrier gets thinner due to demands of smaller 

devices, problem such as charge leakage will occur (Brown, 1997). 

As a result, the net performance gain cannot be achieved by scaling down the 

conventional SiO2 tunnel barrier less than 5 nm thickness. A new tunnel barrier system 

which overcomes this seesaw effect has to be developed.  

 

1.3 Research Objective 

 The followings are the objectives of the investigation. 

i. To focus on finding and developing the alternative tunnel oxide structure 

for NAND flash memory device. 

ii. To relate the critical parameters during fabrication of the dielectric tunnel 

barriers and their effects on the performance of the NAND flash memory 

device. 

iii. To analyze the characterization of the layered tunnel barrier which 

minimize the programming speed and data retention trade-off. 
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1.5 Research Scope 

 The research is carried out according to the following scopes: 

i. Various tunnel barrier and their applications are studied. Literature reviews 

and the theoretical knowledge of tunnel barrier and its parameters were 

conducted to achieve basic understanding. 

ii. Mask design using AutoCAD software is based on Fowler-Nordheim 

tunneling concept for NAND flash memory structure. The layout is required 

for mapping the fabrication of the tunnel barrier due to growing flash 

memory technology. 

iii. The various critical modules in NAND flash memory structure were 

fabricated such as mask fabrication description, pattern transfer process and 

floating gate/ control gate deposition. 

iv. Fabrication of various tunnel barriers is performed to investigate the effects 

of using the MOS capacitor model. The tunnel barrier with tunnel oxide and 

high-κ material was fabricated and performed under various parameters. 

These parameters needed for fabricate layered tunnel barrier. Optimal 

parameters are then finalized, and the device is re-fabricated using the MOS 

capacitor model. These processes were performed to simulate an effect of 

engineered tunnel barrier compared to the conventional ones.  
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v. Physical and electrical characterizations of tunnel barrier are performed. 

The results of the performance are then compared between the conventional 

and engineered tunnel barrier. 

 

1.6 Thesis Organization 

 This thesis consists of five (5) chapters and this subchapter necessary a quick 

overview of what the thesis presents. Chapter 1 describes the historical background, 

problem statement, objectives and scopes of the research work carried out. 

Chapter 2 presents the relevant literature review of this research work which is 

divided to subtopics. They are the overview of memory device technology, design and 

manufacturing processes, tunnel barrier structure, materials and functionality. This chapter, 

will be discuss the concept was applied to the layered tunnel barrier and the factors to 

change the gate material and thickness. 

Chapter 3 introduces the process module development of NAND flash memory 

cell. The developments of NAND flash memory cell require the fabrication of the tunnel 

barrier with EOT less than 10nm.This chapter also describes the NAND flash memory cell 

and mask design, dielectric materials optimization and physical characterization of the 

device. A viable solution for development a new tunnel barrier system according to the 

dielectric materials thickness measurement will be discussed. 

Chapter 4 focuses on the development and characterization of conventional and 

engineered layered tunnel barrier using thermal furnace and dielectric analyzer. The 

conventional and engineered tunnel barrier is then compared from result programming 

current and programming voltage. 
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Lastly, chapter 5 concludes the research findings and suggests ideas for new flash 

memory technology integration as future work.     
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