

FABRICATION AND CHARACTERIZATION OF ENGINEERED TUNNEL BARRIER FOR NONVOLATILE MEMORY APPLICATION

ZARIMAWATY BINTI ZAILAN 0830110298

rected by

A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Microelectronic)

> School of Microelectronic Engineering UNIVERSITI MALAYSIA PERLIS

> > 2012

UNIVERSITI MALAYSIA PERLIS

	D	ECLARATION OF THESIS
Authors' full name	:	Zarimawaty Binti Zailan
Date of Birth	:	2 September 1983
Title	:	Fabrication and Characterization of Engineered Tunnel Barrier for
		Nonvolatile Memory Application
Academic Session	:	2009 - 2012
I hereby declare that the	ne thesis l	becomes the property of Universiti Malaysia Perlis (UniMAP) and
to be placed at the libra	ry of Uni	MAP. This thesis is classified as:
CONFIDENTIA	L	(Contains confidential information under the Official Secret
		Act 1972)*
		(Contains restricted information as specified by the organization where research was done)*
		X.C.
OPEN ACCESS		I agree that my thesis is to be made immediately available as hard
	6	copy of on-fine open access (fun text)
I, the author, give peri	nission to	the UniMAP to reproduce the thesis in whole or in part for the
purpose of research of	or acaden	nic exchange only (except during a period of years, if so
requested above).		
< MIS		
\bigcirc		Certified by:
\bigcirc		
SIGNATURE		SIGNATURE OF SUPERVISOR
(NEW IC NO. /PASSI	PORT N	U.) NAME OF SUPERVISOR
Date:	-	Date:

ACKNOWLEDGEMENTS

I am grateful for this opportunity to acknowledge the people who have made this thesis possible who had given me the confidence, and encouragement throughout those countless hard-working days and nights.

First and foremost, I would like to express my since appreciation to my supervisor, Professor Dr. Uda b. Hashim for his wide knowledge and taught me what a true scientific researcher should be. I am also deeply grateful to my Head Leader NVM Flash group, Mr. Ramzan b. Mat Ayub with his serious research attitude, unending enthusiasm and scientific knowledge continues to be gate inspiration to me. I addition, my sincere appreciations also extend to laboratory technical staff at School of microelectronic and Institute of Nano Electronic Engineering (INEE) lab who gave full co-operation as I need their help.

My friends in School of microelectronic and Institute of Nano Electronic Engineering (INEE) not just helped me with my research work, but also let me enjoy a friendly work environment. Among them, I would like to specifically thank Mohd Rosydi b. Zakaria, Siti Fatimah bt. Abd Rahman, Nur Syuhada bt. Md. Desa and Nur Hafiza bt. Ramli from whom I learned a great deal when I was starting my research work.

Last but not least, my sincere appreciations to my husband Mohammad Nuzaihan b. Md Nor, my little wonderful baby Aisy Darwisy b. Mohammad Nuzaihan, and not forgetting my mother Azizah bt. Yahya, my father Zailan b. Hj. Duriat and brother Ahmad Zaiful b. Zailan for their support throughout these years. Only with their love and encouragement was this dissertation made possible.

Finally, I would like to acknowledge the support given by The Ministry of Science, Technology and Innovation (MOSTI) through its financial support provided under ScienceFund (Grant no: 9005-0035), titled: Advanced Flash Memory Development for 32nm Technology Node and Beyond"

TABLE OF CONTENTS

PAGES

DECLARATION OF THESIS	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xiv
LIST OF APPENDIX	XV
ABSTRAK	xvi
ABSTRACT	xvii
×e	

CHAPTER 1: BACKGROUND

1.1	Introduction	1
1.2	Overview of flash memory technology	2
1.3	Problem statement	3
9 .4	Research objective	4
1.5	Research scope	5
1.6	Thesis organization	6

CHAPTER 2: LITERATURE REVIEW

2.1	Introduction	8
2.2	Overview of memory device product and technology	8
2.3	Flash memory device design and manufacturing process	12

2.4	Dielectric materials	15
	2.4.1 High-k material	15
	2.4.2 Dielectric scaling challenges	19
2.5	Tunnel barrier structure and function	20
	2.5.1 Conventional tunnel barrier	22
	2.5.2 Engineered tunnel barrier	23
2.6	Tunneling mechanism in semiconductor	24
	2.6.1 Fowler Nordheim tunneling	25
2.9	Chapter Summary	26
	0,07	

CHAPTER 3: NAND FLASH UTILIZING ASYMMETRICAL-VARIOT ENGINEERED TUNNEL BARRIER: PROCESS MODULE DEVELOPMENT

3.1	Introd	uction	27
3.2	Overv	iew flash memory cell process module development	27
3.3	Dielec	etric materials	29
3.4	Dielec	etric materials optimization	30
	3.4.1	SiO_2 development	30
	3.4.2	$Si_3N_4O_2$ development	38
3.5	NANI	D flash memory cell integration: process module	40
	develo	opment	
	3.5.1	Flash memory mask fabrication description	42
	3.5.2	Litography process	48
	3.5.3	Floating gate/ Control gate deposition	56
3.6	Chapt	er Summary	63

CHAPTER 4: ASYMMETRICAL VARIOT ENGINEERED TUNNEL BARRIER

4.1	Introdu	ction	64
4.2	Conver	tional tunnel dielectric issues	64
4.3	Engine	ered tunnel barrier concept	66
	4.3.1	Crested barrier engineering	66
	4.3.2	Variot stack	68
4.4	Devic	e preparation	70
	4.4.1	Conventional tunnel oxide deposition	70
	4.4.2	Asymmetrical variot tunnel barrier deposition	71
4.5	Electr	ical testing and characterization	73
	4.5.1	Effect of conventional tunnel oxide thickness on the	
		flatband and threshold voltage	78
	4.5.2	Effect of conventional tunnel oxide thickness on the	
		programming current	80
	4.5.3	Effect of conventional tunnel oxide thickness on the	
		programming voltage	83
	4.5.4	Effect of asymmetrical variot tunnel barrier thickness on	
	 C 	the flatband and threshold voltage	84
	4.5.5	Asymmetrical variot tunnel barrier in current perspective	85
4.6	Comp	arison between asymmetrical variot tunnel barrier and	
\sim	conve	ntional tunnel oxide	86
	4.6.1	Capacitance voltage in different thickness	87
	4.6.2	Tunneling current perspective	88
	4.6.3	Programming voltage perspective	92
	4.6.4	Comparison of performance between asymmetrical	
		variot tunnel barrier and conventional tunnel oxide	93
4.7	Chapt	er Summary	94

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1	Introduction	95
5.2	Conclusion	95
5.3	Recommendation for future research	97

CHAPTER 6: REFERENCES

98

o this item is protected by original coopright **APPENDICES**

LIST OF TABLES

TABLES	TITLE	PAGES
Table 2.1	The various dielectric materials properties	18
Table 2.2	The various dielectric materials and parameter	19
Table 3.1	SiO ₂ thickness measurement by Ellipsometer	32
Table 3.2	SiO ₂ thickness measurement improvement by Ellipsometer	32
Table 3.3	Calculation result of SiO ₂ thickness by SPA graph	37
Table 3.4	Si ₃ N ₄ thickness measurement by Ellipsometer	39
Table 3.5	Lithography process split-wise	51
Table 3.6	Photoresist strip optimization recipe	51
Table 3.7	Tunnel window recipes optimization	55
Table 3.8	Stepwise annealing process recipe	58
Table 3.9	Measurement result of polysilicon by spectrophotometer	62
	(Filmetric F-20)	
Table 3.10	Measurement result of polysilicon improvement by	62
	spectrophotometer (Filmetric F-20)	
Table 4.1	Dielectric stacks in terms of bandgap and dielectric	68
	contants	
Table 4.2	EOT of Asymmetrical variot tunnel barrier	72
Table 4.3	Comparison analysis between conventional tunnel oxide	94
	and asymmetrical variot tunnel barrier	

LIST OF FIGURES

FIGURES

TITLE

PAGES

Figure 2.1	Semiconductor memory market as a percentage of the total IC	9
	market	
Figure 2.2	Non volatile memory	10
Figure 2.3	Flash memory physical layout of cell	12
Figure 2.4	Flash memory partial matrix	13
Figure 2.5	Floating gate flash memory cell	14
Figure 2.6	Schematic of direct tunneling through a SiO_2 layer and the more	16
	difficult tunneling through a thicker layer of High-κ oxide	
Figure 2.7	Leakage current vs voltage for various thickness of SiO ₂ layer	16
Figure 2.8	Schematic of comparison High-k and conventional materials in	17
	physical structure benefits	
Figure 2.9	Energy band diagram of ONO, NON, SiO2 tunnel barrier.	18
Figure 2.10	Conduction band edge diagrams of various tunnel barriers	22
Figure 2.11	Band diagram of conventional tunnel barrier	23
Figure 2.12	Band diagram of engineered tunnel barrier	24
Figure 2.13	Direct tunneling process in MOS structure	25
Figure 2.14	Fowler-Nordheim tunneling process in MOS structure	26
Figure 3.1	Asymmetrical-variot engineered tunnel barrier process module	28
	development	
Figure 3.2	Energy band structure	29
Figure 3.3	Measurement point	31
Figure 3.4	3D nanoprofiler image of SiO ₂ thickness	33-34
Figure 3.5	Graph of CV for SiO_2 thickness calculation in $200\mu m^2$ gate area	36
Figure 3.6	Graph of CV for SiO_2 thickness calculation in $500\mu m^2$ gate area	37

Figure 3.7	3D nanoprofiler image of Si ₃ N ₄ thickness	39
Figure 3.8	3D nanoprofiler image of Si ₃ N ₄ thickness	40
Figure 3.9	NAND flash memory cross section	42
Figure 3.10	NAND Flash memory cell layout design	43
Figure 3.11	Design of layered engineered tunnel barrier	45
Figure 3.12	Integrated NAND Flash memory	46
Figure 3.13	The details specification of drawing design mask step	46
Figure 3.14	Integrated alignment mark	47
Figure 3.15	Dimension of three different tunnel window of NAND flash	48
	memory	
Figure 3.16	LOCOS isolation formation	50
Figure 3.17	Active area layout design	50
Figure 3.18	Active area pattern under high power microscope	52
Figure 3.19	Photoresist strip optimization under high power microscope	53
Figure 3.20	LOCOS	53
Figure 3.21	Tunnel window layout design	55
Figure 3.22	The tunnel window design under high power microscope	56
Figure 3.23	The XRD patterns of the polysilicon film for a certain short loop	59
Figure 3.24	The images from High Power Microscope	60
Figure 3.25	SEM of the samples	60
Figure 3.26	FESEM of the samples	61
Figure 4.1	The thickness of tunnel oxide for both NAND and NOR memory	65
\bigcirc	technologies	
Figure 4.2	Conduction band edge diagrams of three different tunnel barriers	67
	for low and high fields respectively corresponding to cases of	
	programming and retention.	
Figure 4.3	The variot asymmetric tunnel barrier with MOS capacitor model.	69
Figure 4.4	Dielectric tunneling characteristic showing the theoretical	69
	improvement in low field leakage with the higher dielectric	
	constant nitride film	
Figure 4.5	A capacitor with conventional tunnel barrier of SiO_2	71

Figure 4.6	MOS capacitor with asymmetrical variot tunnel barrier	72
Figure 4.7	MOS capacitor characterization	74
Figure 4.8	Capacitance vs. Gate Voltage (CV) diagram of a MOS Capacitor	74
Figure 4.9	Electric field versus current characteristic of a tunnel dielectric	77
	showing the dielectric equipment	
Figure 4.10	Capacitance voltage (CV) graph for conventional tunnel oxide in	79
	different of thickness	
Figure 4.11	Current voltage (IV) graph for conventional tunnel oxide in	81
	different of thickness	
Figure 4.12	Programming Fowler-Nordheim tunneling current in tunnel oxide	82
	field for conventional tunnel oxide in difference of thickness	
Figure 4.13	The programming voltages required to produce a current density	83
	for various tunnel oxide thicknesses in conventional tunnel barrier	
Figure 4.14	Capacitance voltage (CV) graph for asymmetrical variot tunnel	85
	barrier in different of EOT	
Figure 4.15	Current voltage (IV) graph for asymmetrical variot tunnel barrier	86
	in different of EOT	
Figure 4.16	Capacitance voltage (CV) graph for comparison of conventional	88
	tunnel oxide and asymmetrical variot tunnel barrier in different of	
	thickness	
Figure 4.17	Programming F-N tunneling current in tunnel oxide field for	89
	asymmetrical variot tunnel barrier in difference of thickness	
Figure 4.18	Programming F-N tunneling current in 8 nm conventional tunnel	90
	oxide field and 8 nm of EOT	
Figure 4.19	Programming F-N tunneling current in 8 nm conventional tunnel	91
	oxide field and 10 nm of EOT	
Figure 4.20	Programming F-N tunneling current in 8 nm conventional tunnel	92
	oxide field and 14 nm of EOT	
Figure 4.21	The programming voltages required to produce a current density	93
	for various tunnel oxide thicknesses in conventional tunnel oxide	
	vs. asymmetrical variot tunnel barrier	

LIST OF ABBREVIATIONS

Al	=	Aluminum
BOE	=	Buffered Oxide Etch
CHE	=	Channel Hot Electron Injection
CMOS	=	Complementary Metal Oxide Semiconductor
DRAM	=	Dynamic Random Access Memory
EEPROM	=	Electrically Erasable Programmable Read Only Memory
EPROM	=	Erasable Programmable Read Only Memory
FESEM	=	Field Emission Scanning Electron Microscope
HPM	=	High Power Microscope
IC	=	Integrated Circuit
ICP-RIE	=	Inductive Coupled Plasma-Reactive Ion Etching
IPD	=	Interpoly Dielectric
LOCOS	=	Local Oxidation of Silicon
LPCVD	=	Low Pressure Chemical Vapor Deposition
MOS	=	Metal Oxide Semiconductor
NAND	=~	Not AND
NOR .	<u>e</u> `	Not OR
NVM	=	Non-volatile Memory
ONO	=	Oxide-Nitride-Oxide
PECVD	=	Plasma Enhancement Chemical Vapour Deposition
PR	=	Photoresist
PROM	=	Programmable Read Only Memory
PVD	=	Physical Vapour Deposition
RAM	=	Random Access Memory
SEM	=	Scanning Electron Microscope
Si	=	Silicon
SiH4	=	Silance
SiO ₂	=	Silicon dioxide

Si_3N_4	=	Silicon nitride	
SPA	=	Semiconductor Parametric Analyzer	
SRAM	=	Static Random Access Memory	
VARIOT	=	Variable Oxide Thickness	
XRD	=	X-ray Diffraction	

OTHIS HERNIS Protected by original copyright

LIST OF SYMBOLS

	QUANTITY	SYMBOL	UNIT
	Applied voltage	V_{app}	V
	Capacitance oxide	Cox	Pf
	Current density	J	A/cm ²
	Gate current	Ig	Ampere (A)
	Drain voltage	V _{DS}	Volts (V)
	Electric field	E _{inj}	MV/cm
	Equavalent oxide	EOT	nm
	thickness		
	Gate area	A	cm ²
	Gate voltage	V _G O	Volts (V)
	Load resistance	R _L	$Ohm(\Omega)$
	Load resistance voltage	$V_{\rm L}$	Volts (V)
	Permittivity of	\mathcal{E}_{O}	F/cm
	vacuums		
	Permittivity of silicon	\mathcal{E}_r	F/cm
	dioxide		
	Sheet resistance	R _s	ohms per square
(h)	,		(Ω/\Box)
\bigcirc	Thickness of oxide	t _{ox}	nm
	Flatband voltage	V _{FB}	V
	Threshold voltage	V _{TH}	V

LIST OF APPENDIXS

APPENDIX TITLE А Publications В Awards С Posters copyright The Various Result Of The Iv D Graph During Layered Tunnel Barrier Optimization The Various Result Of The Е Polysilicon Surface With Film .ng Pratice cter is protected Peeling Problem

FABRIKASI DAN PENCIRIAN KEJURUTERAAN TEROWONG PERINTANG UNTUK APLIKASI INGATAN TAK MERUAP

ABSTRAK

Non-volatile memory (Memori tak meruap) adalah peranti ingatan di dalam keadaan pepejal yang boleh mengekalkan maklumat yang tersimpan walaupun kuasa tidak lagi dibekalkan, contohnya pelbagai jenis ROM dan Flash Memory. Berdasarkan mekanisme penyimpanan cas, ia boleh dibahagikan kepada dua kelas utama; peranti get terapung dan memerangkap cas. Struktur peranti yang paling banyak digunakan dalam teknologi ingatan kontemporari adalah jenis pintu terapung. Dalam ingatan jenis ini, elektron dipindahkan daripada substrat kepada get terapung, dan sebaliknya. Operasi memori ini dikenali sebagai menulis dan memadam. Untuk seni bina ingatan kilat jenis NAND pemindahan elektron telah dijalankan menggunakan mekanisme terowong yang dikenali sebagai Fowler-Nordheim tunneling (terowong Fowler-Nordheim), dan kecekapannya akan menentukan prestasi peranti ingatan. Mekanisme terowong ini berlaku melalui dielektrik lapisan nipis ultra, yang dikenali sebagai dielektrik terowong, yang secara fizikal dan elektrik memisahkan pintu terapung daripada substrat. Tradisinya, ketebalan SiO₂ di antara 5 nm hingga 10 nm digunakan sebagai dielektrik terowong. Ketebalan 5 nm dianggap had oksida terowong intrinsik, yang mana di bawah ketebalan ini kebocoran seperti kebocoran tekanan arus teraruh (SiLC) dan pemindahan elektron secara langsung menjadi faktor yang menonjol. Beberapa usaha telah dibuat untuk meningkatkan prestasi sel ingatan kilat dengan menggantikan SiO₂ dengan pelbagai dielektrik seperti Oxynitride, gabungan bahan-k tinggi dan sebagainya. Fokus kajian tertumpu kepada pendekatan kepada Keteblan Oksida Bolehubah (VARIOT) terowong kejuruteraan di mana struktur VARIOT tidak simetri dengan ketebalan oksida yang berkesan (EOT) di antara 5 nm kepada 14 nm dikaji di dalam bentuk struktur MOS kapasitor. Ketumpatan terowong semasa dalam struktur VARIOT menghasilkan 10^8 A/cm² dengan 15V voltan pengaturcaraan, berbanding 10^5 A/cm² untuk halangan terowong konvensional dengan voltan pengaturcaraan sama. Hasilnya menunjukkan bahawa VARIOT terowong kejuruteraan akan meningkatkan prestasi sel memori pintu terapung.

FABRICATION AND CHARACTERIZATION OF ENGINEERED TUNNEL BARRIER FOR NONVOLATILE MEMORY APPLICATION

ABSTRACT

Non-volatile memory is a solid state memory device that can retain the stored information even when the power is turned-off; examples of a variety of ROMs and Flash Memory. Based on the charge storing mechanism, it can be divided into two main classes; floating gate and charge trapping devices. The most widely used device structure in contemporary memory technology is of a floating gate type. In this type of memory, electrons were transferred from the substrate to the floating gate, and vice versa in memory operations known as write and erase. For NAND Flash Memory architecture, these electrons transfer were carried out using tunneling mechanism known as Fowler-Nordheim tunneling, and its efficiency would determine the performance of a memory device. This mechanism takes place via ultra-thin dielectric layer, known as tunnel dielectric, which physically and electrically separates the floating gate from the substrate. Traditionally, thermally grown SiO₂ thickness ranging from 5 nm to 10 nm is used as the tunnel dielectric. The 5 nm thicknesses is considered the intrinsic tunnel oxide limit, below which various leakages such as stress induced leakage current (SILC) and direct tunneling start to became a prominent limiting factors. Several efforts have been made to improve the flash memory cell performance by replacing the traditional SiO_2 with various dielectric such as Oxynitride, and combinations of High-k materials. This study focuses on the Variable Oxide Thickness (VARIOT) approach of engineered tunnel barrier where the asymmetrical VARIOT structure with the effective oxide thickness (EOT) ranging from 6 nm to 14 nm were studied in the form of MOS capacitor structure. The tunneling current density in the VARIOT structure yield 10^8 A/cm² at 15V programming voltage, compared to 10^5 A/cm² for the conventional tunnel barrier with the same programming voltage. The results show that asymmetrical VARIOT tunnel barrier would significantly improves the floating gate memory-cell performance.

CHAPTER 1

BACKGROUND

1.1 Introduction

Flash memory technologies have two main parameters governing the device performance. Firstly the programming speeds, which indicates how fast the memory contents can be programmed. For this parameter, it's desirable to achieve the programming time as short as possible i.e. In srange. The second parameter is data retention which indicates how long it will take before the memory, lost its contents. The minimum technology requirement is 10 years retention. Current flash memory technology scaling (common technique practiced in the industry to enhance the device performance) required the shrinking of the tunnel oxide thickness (below 5 nm). This practice posed inevitable lost of data retention capability even though the programming speed is greatly enhanced. In this investigation flash memory performance of conventional and engineered tunnel barrier is presented and analyzed. This chapter focuses on the research workflow and it is simplified to overview of flash memory technology, problem statement, research objective, research scope and thesis organization.

1.2 Overview of Flash Memory Technology

Semiconductor industry has been growing rapidly in the past few decades especially in main memory market segment, driven by the semiconductor memory revolution. The revolution of semiconductor memory has to be fast due to its wellbalanced functionality and cost of semiconductor technology. Newer semiconductor technologies with new materials and manufacturing process emerge for realizing new products.

Semiconductor memory is a device, which stored information in the electronic form. The semiconductor memories can be classified into two main types of data mechanism; namely data storage and data access. Both, correspond to two main groups; volatile and nonvolatile memory (Kang, 2003). Volatile memory loses data as soon as the system is turned off and requires constant power to remain viable, while the nonvolatile memory does not lose its data (Makwana, 2004). A common nonvolatile memory device is a MOS transistor which consists of source, drain, an access or control gate and floating gate (Brown, 1997).

Flash memory is one of the non-volatile memory devices that have been continuously growing and it is mass solid-state storage application that relies on the success of flash technology in the electronic industry era. Over the past few years, flash memory has been used in portable electronic products such as cellular phones, laptops, digital cameras, modems, memory sticks, video game cards and personal digital assistance (PDAs) (Misra, 2011). During the evolution of flash memory technology, tunnel barrier materials and their thicknesses are the key important factors in improving its performance. Tunnel barrier is a vital counterpart in flash memory devices because in the floating gate type, an electron was transferred from substrate to the floating gate and vice versa. This phenomenon requires several scaling approaches in improving tunnel barrier materials while taking into accounts their thickness.

The tunnel barrier in a flash memory technology is also known as a dielectric. When a dielectric is placed in an electric field, electric changes shift slightly from their average equilibrium positions causing dielectric polarization (Misra, 2011). Conventional tunnel barrier with SiO_2 (silicon dioxide) was used as a medium for electron tunneling from substrate to floating gate layer and vice versa. An electron tunneling efficiency is crucial since it will determine the device speed during programming and deleting process.

1.4 Problem Statement

The most impressive phenomenon of this decade is manufacturing challenges of dielectric tunnel barrier in flash memory manufacturing, while to enhance the performance for flash memory technology. Current flash memory technology employed the conventional SiO₂ as the tunnel barrier material 5 nm of SiO₂ thickness presently posed as a minimum tunnel barrier thickness by the nonvolatile memory device technology. Less than 5 nm thickness of SiO₂, would results in many undesired effects such as Stress Induced Leakage Current (SILC) and direct tunneling, which further deteriorate the data retention performance (Park, 1998).

These issues can be summarized in the following way. First, the traditional tunnel barrier is fabricated with conventional method using SiO_2 of about 5 nm thickness as dielectric material. This typical uniform deposited barrier can maintain the electron tunnel through the barrier but with extended charge retention times. The extended times requires resulted in higher voltage or longer time needed during programming process. In another

word, if the tunnel barrier is relatively thick, higher voltage will be used in the programming process (Brown, 1997). As the barrier gets thinner due to demands of smaller devices, problem such as charge leakage will occur (Brown, 1997).

As a result, the net performance gain cannot be achieved by scaling down the conventional SiO_2 tunnel barrier less than 5 nm thickness. A new tunnel barrier system which overcomes this seesaw effect has to be developed.

1.3 Research Objective

The followings are the objectives of the investigation.

- i. To focus on finding and developing the alternative tunnel oxide structure for NAND flash memory device.
- ii. To relate the critical parameters during fabrication of the dielectric tunnel barriers and their effects on the performance of the NAND flash memory device.
- iii. To analyze the characterization of the layered tunnel barrier which minimize the programming speed and data retention trade-off.

1.5 Research Scope

The research is carried out according to the following scopes:

- Various tunnel barrier and their applications are studied. Literature reviews and the theoretical knowledge of tunnel barrier and its parameters were conducted to achieve basic understanding.
- ii. Mask design using AutoCAD software is based on Fowler-Nordheim tunneling concept for NAND flash memory structure. The layout is required for mapping the fabrication of the tunnel barrier due to growing flash memory technology.
- The various critical modules in NAND flash memory structure were fabricated such as mask fabrication description, pattern transfer process and floating gate/ control gate deposition.
- iv. Fabrication of various tunnel barriers is performed to investigate the effects of using the MOS capacitor model. The tunnel barrier with tunnel oxide and high-κ material was fabricated and performed under various parameters. These parameters needed for fabricate layered tunnel barrier. Optimal parameters are then finalized, and the device is re-fabricated using the MOS capacitor model. These processes were performed to simulate an effect of engineered tunnel barrier compared to the conventional ones.

Physical and electrical characterizations of tunnel barrier are performed.
 The results of the performance are then compared between the conventional and engineered tunnel barrier.

1.6 Thesis Organization

This thesis consists of five (5) chapters and this subchapter necessary a quick overview of what the thesis presents. **Chapter 1** describes the historical background, problem statement, objectives and scopes of the research work carried out.

Chapter 2 presents the relevant literature review of this research work which is divided to subtopics. They are the overview of memory device technology, design and manufacturing processes, tunnel barrier structure, materials and functionality. This chapter, will be discuss the concept was applied to the layered tunnel barrier and the factors to change the gate material and thickness.

Chapter 3 introduces the process module development of NAND flash memory cell. The developments of NAND flash memory cell require the fabrication of the tunnel barrier with EOT less than 10nm. This chapter also describes the NAND flash memory cell and mask design, dielectric materials optimization and physical characterization of the device. A viable solution for development a new tunnel barrier system according to the dielectric materials thickness measurement will be discussed.

Chapter 4 focuses on the development and characterization of conventional and engineered layered tunnel barrier using thermal furnace and dielectric analyzer. The conventional and engineered tunnel barrier is then compared from result programming current and programming voltage. Lastly, **chapter 5** concludes the research findings and suggests ideas for new flash memory technology integration as future work.

orthis item is protected by original copyright