CLASSIFICATION OF STAINLESS STEEL AND MILD STEEL USING VIBRATION TECHNIQUE

INTAN MAISARAH BINTI ABD RAHIM

UNIVERSITI MALAYSIA PERLIS 2011

Classification of Stainless Steel and Mild Steel Using Vibration Technique

Intan Maisarah binti Abd Rahim (0831410259)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Mechanical Engineering)

School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

2011

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Author's full name	:	Intan Maisarah binti Abd Rahim	
Date of birth	:	24 July 1985	
Title	:	Classification of Stainless Steel and Mild Steel Using Vibration	
	-	Technique	
		2010 / 2011	
Academic Session	:	2010/2011	
I hereby declare that t	the thesis	becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed	
at the library of UniMA	AP. This th	nesis is classified as :	
CONFIDENTI	AL	(Contains confidential information under the Official Secret Act 1972)	
		101	
RESTICTED		(Contains restricted information as specified by the organization where	
		research was done)	
OPEN ACCES	SS	I agree that my thesis is to be made immediately available as hard	
	copy or on-line open access (full text)		
I, the author, give per	rmission t	the UniMAP to reproduce this thesis in whole or in part for the purpose of	
research or academic	exchange	e only (except during a period of years, if so requested above).	
× × ×	12		
\odot		Certified by:	
\smile			
SIGN	ATURE	SIGNATURE OF SUPERVISOR	
85072	24-02-55	98 Mrs. Fauziah binti Mat	
(NEW IC NO.	/ PASSP	ORT NO.) NAME OF SUPERVISOR	
Date : 06/04/2	2012	Date : 06/04/2012	

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

Dengan nama Allah yang Maha Pemurah agi Maha Penyayang. To my beloved and supportive family, my younger sisters, and Nor Muzakar Nor Ayob.

ACKNOWLEDGEMENT

Praise to Allah, the Cherisher and Sustainer of the worlds. With His blessings I have completed this thesis.

My deep appreciation and gratitude goes to my supervisor, Mrs. Fauziah bt Mat, for her kindness, constant endeavour, guidance and the numerous moments of attention she devoted throughout this work. My heartfelt gratitude goes to my co-supervisor, Prof. Dr. Sazali b. Yaacob, Dr. Rakhmad Arief Siregar and Dr. Khairul Azwan Ismail (Research and Development) for the helpful suggestions, endless supports and encouragement that have greatly helped me in finishing this research.

I extend my gratitude to my Intelligent Signal Processing Research Cluster's members who have spent a lot of their precious time for their guidance, advices, supports and all the experiences and joyful moments that we have shared together. Special thanks go to Nor Muzakkir Nor Ayob for being there by my side and lending hands during the experiments and data collections. I would like to express my deepest gratitude to my dearest family for their love and their endless support in any possible way. This research would have never reached to this point if not because of their support and patience. My success will always be their success too.

Last but not least, thanks to those who have helped me in one way or another throughout the whole duration of my research period.

TABLE OF CONTENTS

	PAGE
APPROVAL AND DECLARATION SHEET	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xvii
ABSTRAK	xviii
ABSTRACT CHAPTER 1:INTRODUCTION	xix
1.1 Project Background	1
1.2 Scope of Research	2
1.3 Problem Statement	3
1.4 Objectives	4
1.5 Expected Output	4
1.6 Thesis Outline	6

CHAPTER 2:RESEARCH BACKGROUND REVIEW

2.1	Introduction	7
2.2	Type of Material Classification	8

2.3	Vibration Test	ing	9
	2.3.1	Impact Hammer Testing	10
	2.3.2	Shaker Testing	14
2.4	Components of	f FRF Signal	14
	2.4.1	Natural Frequency	16
	2.4.2	Mode Shape	16
	2.4.3	Damping Ratio	18
2.5	Mechanical Provident	opertiesof Material	19
	2.5.1	Mild Steel (Carbon Steel)	24
	2.5.2	Stainless Steel	25
2.6	Experimental N	Modal Analysis	25
	2.6.1	Modal Parameter Extraction	26
	2.6.2	Generating FRF Signal	30
2.7	Classifier Algo	orithm	32
	2.7.1	k-Nearest Neighbor (k-NN)	32
	2.7.2	Artificial Neural Network (ANN)	34
2.8	Prior Research	in Classifying Material	36
2.9	Summary		45

CHAPTER 3: VIBRATION EXPERIMENT AND MEASUREMENT SETUP

3.1	Introduction		47
3.2	Experimental	Setup of Impact Hammer Testing	49
	3.2.1	Impact Hammer	51
	3.2.2	Accelerometer	53

3.3	Vibration Me	thod Verification	56
	3.3.1	Auto Power Hammer (Input Power Spectrum)	57
	3.3.2	Coherence in FRF Signal	58
	3.3.3	Leakage in FRF Signal	61
	3.3.4	Exponential Windowing	61
3.4	Conversion of	f Time Domain to Frequency Domain	64
3.5	Control Paran	neters for Vibration Testing	66
	3.5.1	Impact and Measurement Points	66
	3.5.2	Natural Frequency of FRF Signal	68
		3.5.2.1 Rigid Body Mode	70
	3.5.3	Amplitude of FRF Signal	72
	3.5.5	Boundary Condition	74
3.6	Summary		75
	· · · · ·		

54

CHAPTER 4:FEATURE EXTRACTION, VALIDATION AND CLASSIFICATION ON MATERIALS

4.1	Introduction		76
4.2	Data Validati	on	78
	4.2.1	Reciprocity of FRF Signal	78
	4.2.2	Modal Analysis of FRF Signal	81
4.3	Feature Extra	ction	90
	4.3.1	Mode 1 - Bending	93

	4.3.2	Mode 2 - Torsion	93
	4.3.3	Mode $3 - 2^{nd}$ Degree Bending	94
4.4	Feature Select	tion	95
4.5	Random Seed	l de la constante de	97
4.6	FRF Signal P	re-Processing	98
	4.6.1	Normalization of Data Sets	99
	4.6.1	Randomization of Data Sets	100
4.7	Classifying A	lgorithms	101
	4.7.1	k-Nearest Neighbor	102
	4.7.2	Artificial Neural Network	103
		4.7.2.1 Levenberg-Marquardt Backpropagation	104
4.8	User Interface	e Scheme	105
4.9	Summary	, o ^{ter}	108
		.591	
CHA	PTER 5:RESU	LT AND ANALYSIS	
5.1	Introduction		109
5.2	Classification	Performance	109
	5.2.1	k-Nearest Neighbor Classifier	110
	5.2.2	Artificial Neural Network Classifier	115
5.3	Comparison c	of Results	119
5.4	Summary		120

CHAPTER 6: CONCLUSION AND FUTURE WORKS

6.1 Conclusion	121
----------------	-----

6.2 Research Findings	123
6.3 Recommendation for Future Works	124
REFERENCES	126
APPENDIX A - Frequency Response Function (FRF) Signal for Material	
Structure	130
APPENDIX B - Coherence Signal for Material Structure	144
APPENDIX C - Accelerometer, model: 3035B1G from Dytran Instrument	
Datasheet	158
APPENDIX D - Impact Hammer, model: 5800B2 from Dytran Instrument	
Datasheet	160
APPENDIX E - LMS Scadas Mobile Analyzer Datasheet	162
APPENDIX F - List of Publications	163

LIST OF TABLES

Chapters		Page
Chapter 2:		
Table 2.1	Description of the marks in modal analysis process	27
Chapter 3: Table 3.1	Distance from impact and measured points	68
Chapter 4:	orienca	
Table 4.1	Average value of natural frequencies for each material	
	structure	92
Table 4.2	Natural frequencies and amplitude without normalization	99
Table 4.3	Natural frequencies and amplitude with normalization	100
Table 4.4	Callback function used in the development of GUI	107
Chapter 5:		
Table 5.1	Overall average for $k = 3$ until $k = 10$	114
Table 5.2	Accuracy rate comparison of each algorithm	119

LIST OF FIGURES

Chapters		Page
Chapter 2:		
Figure 2.1	Experiment setup for the impact hammer testing	11
Figure 2.2	Example of satisfactory combination of coherence,	
	FRF and input force spectrum	12
Figure 2.3	Example of unsatisfactory combination of coherence,	
	FRF and input force spectrum	12
Figure 2.4	Flowchart of the experiment in determining the FRF	
	signal	12
Figure 2.5	Transfer functions of the FRF signal	15
Figure 2.6	Movement of each mode shape	17
Figure 2.6	Example of the damping ratio gained from	
. er	experimental modal analysis	18
Figure 2.8	True Stress-Strain graph	20
Figure 2.9	Stabilization chart obtained with (a) time-domain	
Ŭ	least-squares estimator.	26
Figure 2.10	The correlation and LS error of modal synthesis	29
Figure 2.11	(a) (b) (c) Frequency Response Function Synthesis	31
Figure 2.12	Example of the material surface used in image	
	processing classifying method	37
Figure 2.13	EDXRF Spectrometer	39
Figure 2.14	Schematic of back-reflection technique	43

Figure 2.15	Laser ultrasound with glass prism as detector	44
Figure 2.16	Schematic diagram of the ultrasonic laser	
	point-source-point-receiver method	45

Chapter	3	:
---------	---	---

	Figure 3.1	Flowchart of the research methodology	48
	Figure 3.2	Real image of experimental setup	50
	Figure 3.3	Connection of the vibration experimental setup	50
	Figure 3.4	Impact hammer - 5800B2 model from Dytran Instrument	51
	Figure 3.5	Types of the tips	52
	Figure 3.6	Coherence signal with suitable selection of tip	53
	Figure 3.7	Accelerometer used in measuring the output	
		signal – 3035BIG	54
	Figure 3.8	LMS Scadas Mobile 4 Channels analyzer	55
	Figure 3.9	Tri-Spectrum averaging loop	56
(Figure 3.10	Example of input power spectrum signal	57
6	Figure 3.11	Satisfactory coherence of the Mild Steel with thickness	
		of 5mm	60
	Figure 3.12	Satisfactory coherence of the Stainless Steel with	
		thickness of 3mm	60
	Figure 3.13	Unacceptable coherence signal	61
	Figure 3.14	Example of Exponential window	63
	Figure 3.15	Example of Force window	64

	Figure 3.16	Conversion from the time domain to the frequency	
		Domain	65
	Figure 3.17	Dimension and point of measurement of the plate	
		structure	67
	Figure 3.18	Relations of measurement and impact points	67
	Figure 3.19	FRF signal for mild steel with 5mm thickness	69
	Figure 3.20	Block diagram of FRF transfer functions	70
	Figure 3.21	Rigid body modes at mild steel with thickness of	
		5mm	71
	Figure 3.22	Rigid body modes at mild steel with thickness of	
		6mm	71
	Figure 3.23	Rigid body modes at stainless steel with thickness of	
		3mm	72
	Figure 3.24	Amplitude from the FRF signal	72
	Figure 3.25	Amplitude at Point 1	73
	Figure 3.26	Amplitude at Point 7	73
(Figure 3.27	Experiment setup for the free-free boundary condition	74

Chapter 4:

Figure 4.1	Flowchart of the research methodology	77
Figure 4.2	Matrix function of the reciprocity technique	79
Figure 4.3	FRF signal gained when excite at Point 1, measured at	
	Point 2	80

	Figure 4.4	FRF signal gained when excite at Point 2, measured at	
		Point 1	80
	Figure 4.5	Modal analysis of the FRF signal	82
	Figure 4.6	FRF signal for Point 1	83
	Figure 4.7	FRF signal for Point 2	83
	Figure 4.8	FRF signal for Point 3	84
	Figure 4.9	FRF signal for Point 4	84
	Figure 4.10	FRF signal for Point 5	85
	Figure 4.11	FRF signal for Point 6	85
	Figure 4.12	FRF signal for Point 7	86
	Figure 4.13	FRF signal for Point 8	86
	Figure 4.14	FRF signal for Point 9	87
	Figure 4.15	Real part of FRF signal	88
	Figure 4.16	Imaginary part of FRF signal	88
	Figure 4.17	Magnitude component of FRF signal	89
	Figure 4.18	Phase component of FRF signal	90
6	Figure 4.19	Natural frequencies of FRF signal	91
	Figure 4.20	Deformation pattern in Mode 1	93
	Figure 4.21	Deformation pattern in Mode 2	94
	Figure 4.22	Deformation pattern in Mode 3	94
	Figure 4.23	Neural network structure for feature selection purpose	96
	Figure 4.24	Percentage of the features efficiency tested using neural	
		network	96

Figure 4.25	Percentage of the features efficiency tested using k-NN	97
Figure 4.26	Percentage on combination of seed = 1, hidden neuron = 8	98
Figure 4.27	Selection of data with and without the randomization	101
Figure 4.28	Block Diagram of FRF Signal Processing and Analysis	102
Figure 4.32	Multi-layer perceptron neural network	103
Figure 4.33	The GUI developed as the interface of the user to the	
	system	106
Chapter 5:	, color	
Figure 5.1	The accuracy percentage for $k = 3$	110
Figure 5.2	The accuracy percentage for $k = 4$	111
Figure 5.3	The accuracy percentage for $k = 5$	111
Figure 5.4	The accuracy percentage for $k = 6$	112
Figure 5.5	The accuracy percentage for $k = 7$	113
Figure 5.6	The accuracy percentage for $k = 8$	113
Figure 5.7	The accuracy of testing for $k = 3$ until $k = 20$	114
Figure 5.8	The percentage of seed for random number generator $= 0$	116
Figure 5.9	The percentage of seed for random number generator = 1	116
Figure 5.10	The percentage of seed for random number generator $= 2$	117
Figure 5.11	The percentage of seed for random number generator $= 3$	117
Figure 5.12	The percentage of seed for random number generator = 4	118
Figure 5.13	The percentage of seed for random number generator $= 5$	119

LIST OF ABBREVIATIONS

- FRF Frequency Response Function
- NDT Non-Destructive Testing
- FFT Fast Fourier Transform
- NN
- ANN
- k-NN
- LM
- GUI
- UTM
- DTS
- ...arquardt .raphical User Interface Universal Testing Machine Dynamic Touch Sensor fulti Layer Pr MLPNN
- American Society for Testing and Materials ASTM o this item

LIST OF SYMBOL

- requency a Damping ratio Constant Damping constant a Constant Critical damping constant b Constant Critical damping constant Critical damping constant Critical damping cons

ABSTRAK

Pengeluaran bahan dalam industry mestilah memenuhi piawaian yang telah ditetapkan seperti piawaian oleh American Society for Testing and Materials (ASTM) International. Keperluan dan syarat untulk piawaian bahan ini amat penting terutama dalam sesetengah bidang yang kritikal seperti aero angkasa, kejuruteraan dan automotif. Kajian ini juga memperkenalkan pembangunan skim ujian tidak musnah keatas bahan dalam menentukan jenis sesuatu bahan. Pengkelasan sesuatu bahan amat berguna dalam pengesahan pasca produksi. Terdapat banyak kaedah telah dibangunkan untuk mencapai piawaian dalam produksi sesuatu bahan. Kaedah ujian terhadap sifat mekanikal sesuatu bahan menggunakan teknik getaran dan kaedah ini boleh menentukan frekuensi asli, nisbah redaman dan mod bentuk sesuatu struktur. Kaedah ujian terhadap bahan yang dilaksanakan untuk kajian ini adalah ujian paluan impak. Signal Fungsi Tindakbalas Frekuensi diperolehi dari ujian ini dan frekuensi asli untuk sesuatu bahan diekstrak dari Signal Fungsi Tindakbalas ini. Dalam kajian ini, ciri-ciri yang dipertimbangkan sebagai data masukan yang diperlukan untuk latihan algoritma adalah frekuensi asli untuk sesuatu bahan dan juga amplitudnya. Kemudian, data masukan yang diperolehi akan dikelaskan menggunakan algoritma Rangkaian Neural Buatan (ANN) dengan teknik Levenberg-Marquardt Backpropagation dan juga algoritma Jiran Terdekat k (k-NN). Setiap algoritma pengelasan akan menghasilkan kadar pengelasan yang berbeza bergantung kepada keupayaan data masukan yang dilatih. Keputusan dari skim pengelasan menunjukkan k-NN memberikan ketepatan sebanyak 99.69% dengan nilai k = 3. Sementara Levenberg-Marquardt Backpropagation memberi ketepatan kelas sebanyak 99.43%. Thisit

Classification of Stainless Steel and Mild Steel Using Vibration Technique

ABSTRACT

The production of material in industry must attain some standard such as the standard required by American Society for Testing and Materials (ASTM) International. The requirement of the material standard is important in some crucial field such as aerospace, engineering and automotive. This research presents a development of a material classification scheme with non-destructive testing on the material to classify the material type. The classification of the material can be useful in post-production verification. Many testing methods have been developed to reach the standard of the material production. The testing of the material mechanical properties using vibration technique could determine the natural frequencies, the damping ratio and mode shapes of the structure. The testing method chose to be implemented in this research is impact hammer testing. Frequency Response Function (FRF) signals obtained from the testing and natural frequencies of the materials are extracted from FRF signals. In this research, the features considered as the input data for the algorithm training are the natural frequencies of the material and its amplitude. Later, the input data obtained are classified using Artificial Neural Network (ANN) with Levenberg-Marquardt Backpropagation and k-Nearest Neighbor (k-NN). Each of the classifier produced a different classification rate depending on the performance of the training input data set. The result from the classification system shows that k-NN is giving the accuracy of 99.69% with the k value of 3. While, Levenberg-Marquardt Backpropagation is giving the best classification rate of 99.43%. Thisitem

CHAPTER 1

INTRODUCTION

1.1 Project Background

The classification of the material can be useful in post-production verification process. In industry, there are some standards need to be achieved in order to release the production to the market place. One of the popular testing is the impact testing. The natural frequencies gained from the testing used to determine the durability and usefulness of the material. For example, mild steel always used as one of the construction materials such as concrete backbone. The toughness and durability of this material need to be verified as it stands a crucial part of the construction. Vibrations that happened in environment will contribute to the damage of the material. In order to overcome the vibration from external forces that happened in environment, the material need to have higher natural frequencies.

The advance in vision system has developed some researches in classifying the material using image processing. The classification of material using image processing technique developed by Caputo et al., (2010) focused on the materials that possess obvious apparent on the material's surface. It is challenging for some material as the surface appearance for some metal is almost similar even with different composition. However, the value of natural frequencies for the material is different depends on the parameter of the structure. In order to verify the suitable natural frequencies for the material tested, two specimens used for each material type. The data gained shows only

slight difference happened to the natural frequency and its amplitude values. Impact testing applied in this research to gain Frequency Response Function (FRF) signal for each of the material types. From FRF signal, three important modal parameters obtained which are natural frequencies and their amplitude, mode shape and also damping ratio. The natural frequencies and their amplitudes then used to differentiate the type of material using the classifying scheme developed.

With the improvement that could be made to the system, according to Neubauer (1991), the image processing could be used to detect damages happened to the structure. By using the natural frequencies and their amplitudes, the damages of the structure can also be detected. The difficult part in detecting the damages using the natural frequencies is in determining the location of the damages and how bad the damage is. However, the scope of this research is only to classifying the type of different material. protecte

1.2 Scope of Research

The scope of this research is to implement the classification algorithms in classifying the material structure. Each of the material holds the different mechanical properties and thus, the difference in the properties can distinguish the material structure. The materials used in the research had different composition and thickness but the length and wide dimension is the same which is 400mm x 300mm. In this research, the features that had been investigated limited to the changes in the natural frequencies as the mechanical properties for the material changed. The impact testing used as the method in capturing the FRF signals that contain the information on the natural frequencies of the structure.

1.3 Problem Statement

This purpose of the research is to implement the non-destructive vibration testing in classifying the type of different materials. The material properties of the material are very important considering the various usage of the material in critical area such as aerospace, buildings and vehicles. In current practice, material properties are mostly determined manually which requires human skills and expertise such as Scanning Electron Microscope (SEM) technique. Recently, non-destructive testing is getting more attention in classifying the material properties in post-production processes. With regards of its advantages in reducing cost and waste during testing, the vibration testing with implementation of smart classification algorithm is benefiting in material identification problem. It offers faster and easier solution for real problem application. Listed below are the solutions for this research:

- Selecting the accelerometer for vibration measurement is very critical. The important criteria include choosing the accelerometer with minimum weight as possible and with optimized bandwidth. The sensor with more weight eventually influences the acceleration and displacement of the structure.
- ii. The fixed boundary condition for experimental setup needed more complicated mathematical solution. For this experiment, the free-free condition is used as this method is easily verifiable than the more complex mathematical solution for the fixed boundary condition.

iii. The FRF signals obtained from the experiment provide information such as natural frequency, damping ratio and mode shape. For classification process, it is enough using the natural frequency as the features for the system. This will decrease the computation resources that will improve the response of the system.

1.4 Objectives

The objectives of the research are described as below:

- To determine the FRF Signal from the experiment using Non-Destructive Testing (NDT) of vibration method for different material. The useful information then extracted from the FRF signal and used as features in the classifier algorithms.
- To implement classification algorithms to determine the types of material, either mild steel or stainless steel.
- To develop a Graphical User Interface (GUI) that helps to interface the users to classify different type of materials.

1.5 Expected Output

The expectation from this research is to develop a system that has the capability of classifying different type of the material. This can be accomplished by development of classification system using classifier algorithms which are ANN and *k*-NN. The system interfaced to the users using the GUI developed afterward.