

DYNAMIC MODELLING AND ADAPTIVE PID CONTROL OF PALM OIL BIODIESEL ENGINE

by

AZUWIR MOHD NOR (0640510080)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Manufacturing Engineering UNIVERSITI MALAYSIA PERLIS

2013

		DECLARATION OF THESIS
Author's full name Date of birth	:	AZUWIR BIN MOHD NOR 7 FEB 1969
Title	:	DYNAMIC MODELLING AND ADAPTIVE PID CONTROL OF PALM OIL BIODIESEL ENGINE
Academic Session	:	2012/2013
		is becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed
at the library of UniMA	AP. This	thesis is classified as :
	AL	(Contains confidential information under the Official Secret Act 1972)*
	D	(Contains restricted information as specified by the organization where research was done)"
OPEN ACCESS		I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
		to the UniMAP to reproduce this thesis in whole or in part for the purpose of ge only (except during a period of years, if so requested above).
Siter		Certified by:
SIGN	ATURE	SIGNATURE OF SUPERVISOR
69020	7-10-51	35 PROF. DR. MOHD ZAKI AB. MUIN
(NEW IC NO.	/PASS	PORT NO.) NAME OF SUPERVISOR
Date :		Date :

UNIVERSITI MALAYSIA PERLIS

NOTES : " If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGMENT

Alhamdulillah. Thanks to Almighty ALLAH for nothing good happens but by His consent.

Many people contributed to this thesis in innumerable ways, and I am grateful to all of them (including those not mentioned). First and foremost, I would like to thank my supervisors Prof. Dr. Mohd Zaki Ab. Muin and Prof. Dr. Abdul Hamid Adom for sharing their knowledge and experience. I am very appreciative of their generosity with their time, advice, and references, to name a few of their contributions. Without their support, this project would not have been possible. "Jazakallah Khairan Kathira".

I would like to thank the Dean, all my friends and colleagues at Pusat Pengajian Kejuruteraan Pembuatan, particularly Nor Zaiazmin Yahaya, Mohd Sabri Hussin, Mohd Sazli Saad and Roszi Anuar Hamid for all the valuable discussions and support.

I would also like to thank my wife and children for all their love and encouragement, my mother and all the people around me for their prayers. Thank you.

Once again, Thanks to Almighty ALLAH. AR-RAHMAN AR-RAHIM.

TABLE OF CONTENTS

THESIS DECLARATION	i
ACKNOWLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS ABSTRAK ABSTRAK ABSTRACT	ix
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xiv
ABSTRAK	xvi
ABSTRACT	xvii
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	2
1.2 Biodiesel in Malaysia	3
1.3 Advanced Control Engineering	8
1.4 Implementation of Advanced Control Engineering	
For Modelling and Control of Palm Biodiesel engine	15
1.5 Problem Statement and Motivation	17
1.6 Research Objectives	18
1.7 Research Scopes	19
1.8 Outline of Thesis	20

СНА	PTER 2	LITERATURE REVIEW	22
2.1	Introd	uction	22
2.2	Bio-fu	el	24
	2.2.1	Bio-fuel in Transportation	24
	2.2.2	Biodiesel In Malaysia	27
2.3	Previo	ous Related Work in Internal Combustion Engine	
	Model	lling and Control	28
2.4	Model	lling and Identification	35
	2.4.1	lling and Control Linear Dynamic System Model Nonlinear Dynamic System Model	35
	2.4.2	Nonlinear Dynamic System Model	38
2.5	Adapt	ive Control Introduction	40
	2.5.1	Introduction	40
	2.5.2	Self-Tuning Identification	43
	2.5.3	Adaptive Controller	47
	2.5.4	Application of Adaptive Controller	50
2.6	Summ	ary	53
СНА	PTER 3	EXPERIMENTAL SET-UP AND INSTRUMENTATION	55
3.1	Introd	uction	55
3.2	Metho	od of Study	58
3.3	Plant l	Description	60
	3.3.1	Compression Ignition (Diesel) engine	61
	3.3.2	The Electric Dynamometer	63
	3.3.3	The Dynamometer Control Unit	64
3.4	Plant I	Modifications	66

Plant Modifications 3.4

3.5 Instrumentation

	3.5.1	Agilent U2351A USB Modular Multifunction	
		Data Acquisition (DAQ)	68
	3.5.2	Auto throttle servo actuator	71
	3.5.3	Speed sensor	72
3.6	Instru	ment Calibration	73
3.7	Palm	Oil Biodiesel (Palm Methyl Esters)	76
3.8	Exper	imental Procedures	78
3.9	Summ	imental Procedures	79
		ill al	
CHAI	PTER 4	LINEAR DYNAMIC ENGINE MODELLING	81
4.1	Introd	uction 201	81
4.2	The S	ystem Identification Procedure	83
	4.2.1	Experiment for Data Collection	83
	4.2.2	Selection of Model Structure	86
	4.2.3	Parameter Estimation	88
	4.2.4	Model Validation	90
4.3 🤇	Exper	iment Design for Linear Dynamic Models of	
	Palm	Oil Biodiesel	90
	4.3.1	Open-Loop Response of Palm Oil Biodiesel Engine	91
	4.3.2	Design of the Input Signal	94
	4.3.3	Parameter Estimation Algorithm	95
	4.3.4	Identification Experiment	101
4.4	Result	s and Discussion	103
	4.4.1	Determination of Model Order and Parameter Estimation	103

67

	4.4.2 Parameter Estimation Using differential Evolution	116
	4.4.3 Stochastic Model Structure	118
4.5	Summary	122
СНА	PTER 5 NONLINEAR DYNAMIC ENGINE MODELLING	123
5.1	Introduction	123
5.2	Discrete Time Linear-In-Parameters Model	126
	5.2.1 NARMAX Model Structure	127
	 5.2.1 NARMAX Model Structure 5.2.2 Parameter Estimation 5.2.3 Orthogonal Estimation Algorithm 	129
	5.2.3 Orthogonal Estimation Algorithm	132
5.3	Model Validation	133
5.4	Identification of NARX Model of Palm Biodiesel Engine	133
5.5	Results and Discussions	135
5.6	Comparison Between Linear and Nonlinear Dynamic Models	148
5.7	Summary	150
СНА	PTER 6 DEVELOPMENT AND IMPLEMENTATION OF	
(ADAPTIVE CONTROLLER	151
6.1	Introduction	152
6.2	The Adaptive Structure	152
6.3	Controller Design with Classical Method and PID Control	153
6.4	Pole Assignment Method	155
6.5	Simulation Studies	158
	6.5.1 Controller Stability Test With Respect to Step Input	
	Reference	162

	6.5.2	Covariance Management Determination of	
		Forgetting Factor (λ)	166
	6.5.3	Simulation of Engine Speed Tracking and Regulating	169
6.6	Real-7	Time Implementation of Palm Oil Biodiesel Engine	
	Self-T	uning Controller	174
	6.6.1	Experimental Set-up	174
	6.6.2	Engine Speed Tracking and Regulating	175
	6.6.3	Disturbance Rejection	186
6.7	Adapt	ive Controller Performance: Comparison Between	
	Palm (Dil Biodiesel and Petroleum Diesel.	189
6.8	Summ	ary	196
		10%	
CHAF	PTER 7	CONCLUSIONS AND RECOMMENDATIONS	197
7.1	Summ	ary of Present Work	197
7.2	Sugge	stion for Future Work	200
		. Kell	
REFE	RENC	ES	203
APPE	NDIX .	Α	213
APPE	NDIX I	В	215
LIST	OF PU	BLICATIONS	229

LIST OF TABLES

NO.		PAGE
1.1	Chronology of Biodiesel Development in Malaysia.	5
2.1	Some recent studies on application of bio-fuel in diesel engine	26
3.1	Engine test-bed general specifications	60
3.2	Technical specifications of the diesel engine	62
3.3	Technical specifications of the dynamometer	64
3.4	General specifications of the dynamometer controller	66
3.5	General specifications of Agilent U2351A DAQ card	71
3.6	CaroDiese® Contractual Specification (EN 14214:1003)	77
4.1	Approximate values of palm oil biodiesel time constant, settling time	
	and time delay	94
4.2	ARX model parameter value using RLS technique	109
4.3	Summary of parameter convergence time (ARX models)	109
4.4	ARX model validation (RLS)	115
4.5	ARX model parameter value using the DE technique	116
4.6	ARX model validation (DE)	117
4.7	ARMAX model parameter value using RELS	118
4.8	Summary of error analysis	121
5.1	NARX model structure considered in this work	135
5.2	Varying the model degree of nonlinearity	137
5.3	Varying the model output lag	138
5.4 🤇	Varying the model input lag	139
5.5	Best ten parsimonious NARX models for palm oil biodiesel engine	142
5.6	MSE and RMSE for all ten NARX models	143
5.7	Summary of Modelling Error Between Non-recursive NARX and	
	Recursive NARX Models	147
5.8	Comparison of Parameters Value for Non-recursive and	
	Recursive Estimation Technique	148
5.9	Comparison of linear and nonlinear model error analysis	149

LIST OF FIGURES

NO.		PAGE
1.1	Schematic diagram of palm biodiesel processing by MPOB.	7
1.2	Indirect self-tuning control structure	13
1.3	Direct self-tuning control structure	13
1.4	Basic structure of the adaptive controller implemented to	
	model and control palm biodiesel engine.	15
1.5	Summary of research activities for modelling and control of	
	palm oil biodiesel	16
2.1	World GDP growth and world oil production growth from	
	1986 to 2006 Basic structure of adaptive controller	23
2.2	Basic structure of adaptive controller	42
2.3	Closed-loop deterministic system	48
3.1	Schematic diagram of the automotive diesel engine test unit	57
3.2	Process flow chart for modelling and control of palm oil biodiesel	59
3.3	Diesel engine mounted on the test-bed unit	62
3.4	Electric dynamometer attached to engine test unit	63
3.5	Electric dynamometer controller DYCON 201A	65
3.6	Agilent U2351A USB multifonctions data acquisition device	69
3.7	Setup diagram of Agilent U2351A DAQ device	70
3.8	Automatic throttle servo actuator	72
3.9	Speed sensor FGL 3/1 attached to the engine test unit	73
3.10	Relationship between voltage send by computer with percentage of	
	throttle opening	74
3.11	Relationship between engine speed in voltage with speed in RPM	75
3.12	Carodiesel (Palm Oil Biodiesel by Carotech Bhd.)	76
3.13	Simplified Block diagram of the diesel engine, computer and	
	Interfaces	79
4.1	System identification process flow	83
4.2	Block diagram of the experimental set-up	91
4.3	Open-loop step response of palm oil biodiesel engine	92
4.4	Step input signal applied to palm oil biodiesel engine	93
4.5	Iterative process of recursive parameter estimation	96

NO.		PAGE
4.6	Main procedures in differential evolution algorithm	99
4.7	Input and output signals for black-box identification of	
	palm biodiesel engine	102
4.8	Identification process for system order $m=1, m=4$	104-105
4.9	Parameters convergence rate for system order m=1, m=4	106-108
4.10	ARX models validation process	110-112
4.11	ARX models modelling Error	113-114
4.12	Parameters convergence time for second-order ARX model using DE	117
4.13	Parameter estimation for second-order ARMAX model ARMAX model validation process Model error for second-order ARMAX model	119
4.14	ARMAX model validation process	120
4.15	Model error for second-order ARMAX model	121
5.2	NARX model with $n_y=1$, $n_u=1$ and $l=2$	136
5.2	NARX model with $n_y=5$, $n_u=1$ and $l=2$	138
5.3	NARX model with $n_y=1$, $n_u=5$ and $l=2$	140
5.4	Comparison of measured value and non-recursive NARX model	
	predicted outputs	144
5.5	Modelling error between measured value and non-recursive	
	NARX model predicted value	144
5.6	Comparison of measured value and recursive NARX model	
	predicted outputs	146
5.7	Modelling error between the measured value and the recursive	
G	NARX model predicted value	146
6.1	A typical adaptive control structure	153
6.2	Feedback control system	154
6.3	Iterative process of recursive parameter estimation	159
6.4	Adaptive controller structure	161
6.5	Step response of the adaptive controller	163
6.6	Speed error with respect to reference point	164
6.7	Estimated model parameters	165
6.8	Estimated controller parameters	165
6.9	Identification and control effort using λ =0.90	167
6.10	Identification and control effort using λ =0.95	167
6.11	Identification and control effort using λ =0.96	168

NO.		PAGE
6.12	Identification and control effort using λ =0.98	168
6.13	Engine speed tracking applied to adaptive controller	170
6.14	Control effort for adaptive controller	171
6.15	Engine speed error for adaptive controller	172
6.16	Dynamic model parameters estimation by RLS	172
6.17	Dynamic controller coefficients by adaptive scheme	173
6.18	Palm oil biodiesel engine output (real-time)	176
6.19	Control effort (real-time)	177
6.20	Engine output Error (real-time)	178
6.21	Control effort (real-time) Engine output Error (real-time) Palm oil biodiesel engine output (real-time) Control effort (real-time) Engine output error (real-time)	180
6.22	Control effort (real-time)	180
6.23	Engine output error (real-time)	181
6.24	Engine speed tracking and regulating with covariance resetting	
	(real-time)	182
6.25	Control effort with covariance resetting (real-time)	183
6.26	Engine output error with covariance resetting (real-time)	184
6.27	Time-varying palm oil biodiesel parameters with covariance resetting	
	(real-time)	185
6.28	Time-varying controller coefficients with covariance resetting	
	(real-time)	185
6.29	Apply disturbance (real-time)	187
6.30	Control effort to reject disturbance (real-time)	187
6.31	Engine output error for disturbance rejection (real-time)	188
6.32	Engine speed: Palm oil biodiesel vs. Petroleum diesel	190
6.33	Control effort: Palm oil biodiesel vs. Petroleum diesel	191
6.34	Engine speed error: Palm oil biodiesel vs. Petroleum diesel	192
6.35	Disturbance rejection: Palm oil biodiesel vs. Petroleum diesel	193
6.36	Control effort to reject disturbance: Palm oil biodiesel vs.	
	Petroleum diesel	194
6.37	Engine speed error during disturbance rejection: Palm oil biodiesel vs	
	Petroleum diesel	195

LIST OF ABBREVIATIONS

AFC	Active Force Control
AMM	Agilent Measurement Manager
ANN	Artificial Neural Network
ARX	AutoRegresive model with eXternal input
ARMAX	Autoregressive Moving Average with eXogenous
B2	two percent biofuel
B5	five percent biofuel
B10	ten percent biofuel
B100	five percent biofuel ten percent biofuel One-hundred percent biofuel BDC Bleach Palm Oil Crude Palm Oil Engine Control Unit Exhaust Gas Recirculation
BDC	BDC
BPO	Bleach Palm Oil
СРО	Crude Palm Oil
ECU	Engine Control Unit
EGR	Exhaust Gas Recirculation
ERR	Error Reduction Ratio
DAQ	Data Acquisition
DE	Differential Evolution
DOHC	Double Overhead Camshaft
DSQRT	Discrete Square Root
GA	Genetic Algorithms
GDP	Gross Domestic Product
GPC	General Predictive Controller
HCCI	Homogeneous Charge Compression Ignition
ICE	Internal Combustion Engine
IFT	Iterative Feedback Tuning
LQG	Linear-Quadratic-Gaussian
MIMO	Multi-Input-Multi-Output
MLS	Maximum Length Sequences
MPC	Model Predictive Controller
MPOB	Malaysian Palm Oil Board
MSE	Mean-Square-Error
NARX	Nonlinear Autoregressive eXogenous

NARMAX	Nonlinear Autoregressive Moving Average with eXogenous
--------	--

- NOE Nonlinear Output Error
- OLS Orthogonal Least Squares
- PID Proportional-Integral-Derivative
- PME Palm Methyl Esters
- PRBS Pseudo Random Binary Sequence
- RLS Recursive Least Squares
- RELS **Recursive Extended Least Squares**
- RMS **Root-Mean Square**
- RMSE Root Mean Square Error
- RPM **Revolution Per Minute**
- SISO Single-Input-Single-Output
- SOHC Single Over Head Cam
- SSE Sum of Square Error
- TDC Top-Dead-Centre
- orieinal copyright .nk-a. sprotecte Within-Cycle, Crank-angle-based Model WCCM

xiii

LIST OF SYMBOLS

A	system denominator polynomial
В	system numerator polynomial
С	noise numerator polynomial
d	dead time
e(t)	discrete white noise.
$\hat{e}(t)$	modelling or fitting error
f(.)	polynomial function
$f^{l}(\cdot)$	nonlinear function
F	mutation factor with real number between 0 to 2
G(s)	Laplace transfer function
G_p	nonlinear function mutation factor with real number between 0 to 2 Laplace transfer function process s-domain transfer function
g_m	the corresponding estimated parameter
k	time delay (discrete)
$J(\theta)$	cost function for estimation
K_p	proportional gain (PID)
K_i	integral gain (PID)
K_d	derivative gain (PID)
M_{p}	Maximum percent overshoot
l	degree of nonlinearity
М . с	maximum number of terms in the polynomial model
N	numbers of consecutive data vectors
n_y (C)	maximum lag of output
n_u	maximum lag of input
P (t)	covariance matrix
Δt	clock period
P_i	polynomial expansion
T_s	sampling time
T_c ,	time constant
T_m	desired closed loop time constant
$T(z^{-1})$	Tayloring polynomial
u(t)	discrete input signal

W _m	the auxiliary orthogonal regressor
y(t)	discrete output signal
$\widehat{y}(t)$	model predicted output
Δt	discrete time interval
$\boldsymbol{\epsilon}(t)$	output prediction error
θ	true parameter vector
Ô	vector of adjustable model parameters
λ	forgetting factor
$\eta(t)$	stationary random signal source
$\varphi(t)$	regression vector consist of measured input-output variables
α_{rm}	constant coefficient in the orthogonal polynomials
$x_{i,j,G}$	target parameter vector
	$i = 1, 2, \dots, NP$ (number of members in a population)
	$j = 1, 2, \dots, D$ (dimensional parameter vector) G (generation)
$v_{i,G+1}$	mutant vector
$u_{i,G+1}$	trial vector
C_d ,	threshold value criterion to stop the regression
ζ	damping factor
ω_n	natural frequency
g_i	controller coefficients
	×er
• . C	
XV/	
© `	controller coefficients

PERMODELAN DINAMIK DAN KAWALAN SUAI PID ENJIN BIODIESEL MINYAK SAWIT

ABSTRAK

Penggunaan biodiesel sebagai bahan api alternatif bagi pengangkutan menjadi semakin popular bagi menggantikan bahan api petroleum yang tinggi harganya. Kejayaan pelaksanaan penggunaan biodiesel dalam pengangkutan memerlukan pemahaman yang baik terhadap dinamik enjin dan pengawal yang boleh diharap untuk menguruskan enjin. Justeru itu, kajian ini bertujuan untuk membangunkan model matematik dan pengawal suai bagi enjin automotif yang menggunakan bahan api minyak sawit "methyl ester" (minyak sawit biodiesel). Penyelidikan pemodelan proses bermula dengan model matematik dinamik lelurus satu-masukan-satu-keluaran mewakili hubung kait antara kelajuan enjin dengan pendikit enjin bagi satu unit uji enjin diesel. Kedua-dua jenis model berketentuan dan stokastik telah diterbitkan dan disahkan. Tiga teknik anggaran parameter iaitu kaedah Jadi Semula Kuasa Dua Terkecil, Jadi Semula Di Panjangkan Kuasa Dua Terkecil dan Evolusi Kebezaan digunakan untuk menganggar parameter enjin Kemudian, model dinamik jenis tak lelurus pula telah dibangunkan dan disahkan. Teknik anggaran Ortogon Jadi Semula Kuasa Dua Terkecil bersama dengan tatacara Nisbah Pengurangan Ralat digunakan untuk memilih struktur model kikir dan menganggarkan parameter model tak lelurus tersebut. Ketepatan model dinamik lelurus dan tak lelurus telah dibanding dan dianalisa. Keputusan kajian menunjukkan semua model yang telah diterbitkan adalah stabil dan bagus dalam menganggarkan keluaran enjin. Seterusnya, pengawal suai kelajuan PID yang berpandu kepada kaedah tugasan kutub telah direkabentuk, dibangunkan, diuji dan disimulasi sebelum dilaksanakan dalam masa nyata pada unit uji enjin. Pengawal suai ini telah direkabentuk bagi tujuan menjejaki dan melaras kelajuan titik set disamping menolak gangguan yang diperkenalkan kepada sistem tersebut. Sepanjang penyelidikan ini, algoritma kawalan yang dibangunkan telah diuji pada kelajuan titik set yang pelbagai dan gangguan beban. Keputusan kajian menunjukkan algoritma yang digunakan menghasilkan sambutan keluaran dinamik yang amat baik oleh enjin minyak sawit biodiesel. Algoritma yang dibangunkan telah berjaya mencapai objektif kawalan bagi mengesan dan melaras kelajuan enjin. Tambahan pula, keputusan ujikaji telah membuktikan pengawal ini mempunyai kemampuan menolak gangguan. Prestasi pengawal suai ini dalam mengesan, melaras dan menolak ganguan dibandingkan dengan enjin yang menggunakan bahan api diesel petroluem. Dalam kedua-dua kes, pengawal yang dibina telah menunjukkan prestasi yang amat baik dan terbukti boleh diharap untuk penggunaan kedua-dua jenis bahan api. Kajian ini telah membuktikan dengan nyata bahawa pengawal suai kelajuan berkadaran-kamiran-terbitan yang dibangunkan berjaya menunjukkan prestasi yang berkesan dalam mengawal kelajuan enjin automotif tanpa pengubahsuaian yang menggunakan minyak sawit biodiesel dan petroleum diesel.

DYNAMIC MODELLING AND ADAPTIVE PID CONTROL OF PALM OIL BIODIESEL ENGINE

ABSTRACT

The use of biodiesel seems set to become a popular alternative fuel for transportation to replace the high price petroleum fuel. To successfully implement the usage of biodiesel in transportation requires good understanding of the engine dynamics and reliable controller to manage the engine. Hence, this study is aimed at the development of mathematical models and adaptive controller of automotive engine fuelled with palm oil methyl esters (palm oil biodiesel). The process modelling investigation started with linear discrete-time single-input-single-output (SISO) dynamic mathematical models representing the relationship between engine speed and engine throttle of a diesel engine test-unit. Both deterministic and stochastic model types are derived and validated. Three parameter estimation techniques of Recursive Least Squares (RLS), Recursive Extended Least Squares (RELS) and Differential Evolution (DE) are used to estimate the engine parameters. Then, the nonlinear dynamic model of the engine type is derived and validated. Orthogonal Least Squares (OLS) estimation technique together with Error Reduction Ratio (ERR) procedures are used in the selection of the parsimonious model structure and parameter estimation for nonlinear ARX (NARX) model. The accuracy of linear and nonlinear dynamic models are compared and analyzed. The results show that all models derived are stable and good in predicting the engine output. Next, adaptive PID speed controller based on pole assignment method was designed, developed, tested and simulated before implemented in real-time on the engine test-unit. The adaptive controller is designed to track and regulate set-point speed as well as reject the disturbance introduced to the system. Throughout the investigation the control algorithm developed is tested at various engine set-point speeds and load disturbances. The results show that the algorithms produce very good dynamic output responses of the palm oil biodiesel engine. The algorithms have successfully achieved the control objective of tracking and regulating the engine speed. Furthermore, the experimental results also proved the disturbance rejection capability of the controller. The performance of the adaptive controller is compared with tracking, regulating and rejecting disturbance of automotive engine fuelled with petroleum diesel. In both cases, the controllers performed very well and proved to be reliable for both types of fuel. This study has significantly proved that adaptive PID speed controller developed performed effectively in controlling automotive engine speed fuelled with palm oil biodiesel and petroleum diesel without engine modification.

CHAPTER 1

INTRODUCTION

"The use of vegetable oils for engine fuels may seem insignificant today. But such oils may become in the course of time as important as the petroleum and coal tar products of the present time" Rudolf Diesel, 1912

The importance of energy in our lives is very crucial that without energy life will be badly affected. The economic activities will cripple if the energy demand is not met. Development will stop without fuel supply. The industrial revolution came together with the dependency on energy. With the demand for energy to increase skyrocketing in this new century, searching for alternative energy is no longer an option but rather a must for the world to survive. In addition, awareness of environmental issues is becoming another factor that forces people to look for 'greener' alternatives to energy sources. One of the promising alternative energy available is biodiesel.

This chapter introduces the scenario of biodiesel in Malaysia, with a description of its history and its chronology of development. The implementation of advanced control engineering conducted for this research is presented. The thesis objectives and outline of this research are also discussed.

1.1 Introduction

Currently, there is extensive interest in using biofuel, especially biodiesel, in transportation (Kalam & Masjuki, 2008b; Demirbas, 2007a, b; Pichalai, 2005). In Malaysia, the effort to use renewable energy in transportation is highly supported by the government. However, to successfully implement the usage of biodiesel in transportation requires a thorough study in all related areas such as availability and reliability of the fuel and also the performance of the engine. Most of the studies carried out in Malaysia focuses on the engine performance and tribology (Adnan, Azre & Zulkifli, 2008; Masjuki, Abdulmuin & Sii, 1997; Masjuki et al., 2006; Fazal, Haseb & Masjuki, 2010) but very few focus on modelling and control. Among the studies involving in the modelling of biodiesel fuelled engine is a thermodynamic model developed by Ramadhas, Jayara, and Muraleedharan, (2006) for analyzing the performance characteristics of the compression ignition engine fuelled by biodiesel and its blends. Using the model, the effect of relative air-fuel ratio and compression ratio on the engine performance of different fuels is analyzed. However, the model is based on a steady-state single zone thermodynamic model.

Thus far, no study on dynamic modelling of biodiesel engine, particularly using palm oil biodiesel, has been reported. Hence, there is a need to carry out such studies for engine controller design and development especially with the usage of palm oil biodiesel in public transportation. The findings from this study will provide researchers as well as engine control designers with a better understanding of the dynamic response of the existing automotive diesel engine fuelled with palm oil biodiesel.

The present study is to design and implement adaptive controllers in managing biodiesel engine. This research will focus on modelling and control for a palm oil biodiesel engine. In this work, dynamic mathematical models of palm oil biodiesel engine will be derived, validated and an adaptive control system for the engine will be developed. This study was motivated due to the unstable oil price situation in the world market, the fast depletion of fossil fuel and the environmental issues of public transportation. Research by Choo, Ma, Chan and Basiron, (2005) indicated that tests on palm oil biodiesel as diesel substitute from 1983 to 1994 have shown that palm oil biodiesel is suitable for diesel engine. In the studies they found that in general, palm oil biodiesel exhibits fuel properties comparable to those of petroleum diesel and can be used directly in unmodified diesel engines. Thus, this study will develop the first ever linear and nonlinear dynamic mathematical models for unmodified automotive diesel engine running on Malaysian palm oil biodiesel. In addition, an adaptive PID controller will be designed, developed and implemented in real-time for speed tracking and regulating as well as the disturbance rejection capability based on the model derived. The performance of the adaptive controller will be compared to engine fuelled with petroleum diesel.

1.2 Biodiesel in Malaysia

When Rudolf Diesel, the inventor of the diesel engine, first demonstrated his invention in the 1900s he used peanut oils as fuel to run the engine. For several years vegetable oils continue to fuel diesel engines before petroleum diesel derive from fossil fuel emerged and replaced its usage. Petroleum diesel was cheaper and easier to get at that time. Because of its low cost and easy availability, petroleum became the dominant energy source and petroleum diesel was then developed as the primary fuel for diesel engine (Pousa, Santos & Suarez, 2007).

However, the situation for energy supply and demand has changed drastically lately. Since the late 1970s the world has been facing critical fossil fuel supply. As a result, the fuel prices have been rocketing since then and supply is unstable. While the world fuel demand increases by each year unfortunately the world oil reserves are getting lesser and lesser. Fossil fuel has been used for years for all kinds of human activities. Economic activities especially are strongly related to the high usage of energy in infrastructure development and transportations of a country. The continuously high demand for energy has reached the point where looking for alternative energy to fulfil the demand is a must rather than an option for the world to survive. Fortunately, there are a lot of natural resources available to be explored and benefited as alternative energy. Renewable energy from natural resources like wind, sunlight, rain, tides, and geothermal heat are commonly used to replace fossil fuel. Until recently biodiesel, vegetable oil or animal fat based diesel fuel, has regained peoples' attention to be used as engines fuel.

The history of biodiesel sector in Malaysia could be dated back in 1980s. Being the world's largest producer and exporter of palm oil, Malaysian government had realized the importance of developing biodiesel as an alternative energy in the long term. Research and development of biodiesel in a laboratory scale started at the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board, MPOB). Since then, palm oil biodiesel development systematically evolved to become an important alternative fuel for transportation. Table 1.1 summarized the chronology of biodiesel development in Malaysia.

Year	Milestone
1982	Laboratory research on palm methyl esters (PME) biodiesel began
1983	Palm Diesel Steering Committee formed by the Minister of Primary Industries
1984	Construction of a PME biodiesel pilot plant (3000 tonnes a year capacity) began
1984-1985	Preliminary field trials in taxis conducted
1985	PME biodiesel pilot plant launched
1986-1989	Field trials phase I began—31 commercial vehicles and stationary engines
1990	Field trial phase II began bench test by Mercedes Benz in Germany
1990-1994	Field trials phase III began—commercial buses
1995	Transfer of PME production technology to industry to produce oleochemicals, carotenes (pro-Vitamin A) and Vitamin E
2001	Use of a CPO and fuel oil blend for power generation initiated Research on low-pour-point palm oil biodiesel initiated
© 2002	Field trials using processed liquid palm oil and petroleum diesel blends (B2, B5, B10) in MPOB vehicles began (i.e. a straight vegetable oil [SVO] biofuel blend)
2004	Trials of refined, bleached and deodorized (RBD) palm oil and petroleum diesel blends (B5) using MPOB vehicles (i.e. an SVO biofuel blend) began
2005	Transfer of technology from the MPOB to Lipochem (M) Sdn Bhd and Carotino Sdn Bhd to build PME biodiesel plants. Design of commercial low-pour-point PME biodiesel plant. National Biofuel Policy drafted.
2006	National Biofuel Policy launched. First commercial-scale biodiesel plant began operations. Envo Diesel launched. 92 biodiesel licences approved.

Table 1.1: Chronology of Biodiesel Development in Malaysia

2007	Increase in CPO price caused many biodiesel projects to be either suspended or cancelled
2008	Malaysian Biofuel Industry Act 2007 came into force Usage of Envo Diesel was scrapped and replaced with B5
2009	Government vehicles from selected agencies began use of B5 blend
2010	Government announcement that the B5 mandate for commercial use will be deferred to June 2011
2011	The palm oil-based B5 biodiesel program began on June 1 at Putrajaya
2012	B5 biodiesel program has been extended from June 2011 to Malacca, Negeri Sembilan, Kuala Lumpur and Selangor. Malaysia is ready to have nationwide implementation of the B5 biodiesel by year-end said Tan Sri Bernard Dompok-Plantation, Industries and Commodities Minister.

Sources: (Chin, 2011; Shen & Yeap, 2012)

Biodiesel is made through a chemical process called transesterification. In this process, the glycerin is separated from the fat or vegetable oil and leaves behind methyl esters and glycerin. In case of converting the feedstock crude palm oil (CPO) into fuel grade biodiesel, the CPO first undergoes pre-treatment processes to convert it into Bleach Palm Oil (BPO). Then, the BPO will undergo refining and separating processes to convert it into biodiesel. Figure 1.1 shows the block flow diagram of biodiesel production (Lim & Teong, 2010).