TRANSFORMERLESS PHOTOVOLTAIC INVERTER FOR PHOTOVOLTAIC POWER GENERATION IN PERLIS TO RUN HIGH AC LOAD

MUHAMMAD IRWANTO BIN MISRUN

UNIVERSITI MALAYSIA PERLIS 2012

TRANSFORMERLESS PHOTOVOLTAIC INVERTER FOR PHOTOVOLTAIC POWER GENERATION IN PERLIS TO RUN HIGH AC LOAD

MUHAMMAD IRWANTO BIN MISRUN (0840910317)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Electrical System Engineering UNIVERSITI MALAYSIA PERLIS 2012

ACKNOWLEDGMENT

Alhamdulillah, thankful to Allah for giving me the strength and patience to complete my research. This research project would not have possible without the support of many people. First, I wish to express my gratitude to my supervisor and cosupervisor, Prof. Dr. Ismail Daut and Assessor Prof. Dr. Merdang Sembiring who were abundantly helpful and offered invaluable assistance, support and guidance. Deepest gratitude also to the members of the supervisory committee, Mr. Gomesh Nair, Mr Mohd Irwan Yusoff, Mr. Muhammad Fitra Zambak without whose knowledge and assistance this study would not have been successful.

Special thanks to all my graduate friends, especially members of Centre of Excellence for renewable Energy (CERE) and technician team for sharing the literature and invaluable assistance.

I am very grateful to Universiti Malaysia Perlis for its support and the award of the grant towards accomplishment of this study.

Last but not least, I wish to express my love and gratitude to my beloved families, for their understanding and endless love, through the duration of my studies.

TABLE OF CONTENTS

DECLARATION OF THESIS	i
ACKNOWLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLE	ix
LIST OF FIGURE	xii
LIST OF SYMBOLS, ABBREVIATION OR NOMENCLATURE	xviii
ABSTRAK	xxiii
ABSTRACT ABSTRACT	XXV
CHAPTER 1 INTRODUCTION	
1.1 Background	1
1.2 Problem Statement	3
1.3 Objective of Study	4
1.4 Thesis Organization	5

CHAPTER 2 LITERATURE REVIEW

2.1 So	lar Radi	ation P	otential	for Phot	ovoltaic	Powe	er Genera	ation .	•••••	 	9
	2.1.1. \$	Solar Ir	radiance	on Tilt	Angle o	of PV I	Module .			 	. 13

2.1.2 Solar Radiation Estimation15
2.1.3 Photovoltaic Module performance
2.2 Single Phase Inverter
2.2.1 Square Wave Inverter
2.2.2 Three-level Inverter
2.2.3 Three-level Single Phase Transformerless Photovoltaic Inverter
2.3 Summary
OVER
CHAPTER 3 RESEARCH METHODOLOGY
3.1 Research Framework
3.2 Solar Radiation Potential for Photovoltaic Power Generation in Perlis
3.2.1 Data Collection of Solar Radiation and Temperature
3.2.3 Solar Radiation Estimation using Hargreaves Method, Linear
Regression and Proposed Method
3.3 Performance of Photovoltaic Module at Different Tilt Angle in Perlis50
3.3.1 Tilt Angle of PV Module Based on Clear Sky Global Solar Irradiance50
3.3.2 Effect of Solar Irradiance and Temperature on PV Module Performance
at Different Tilt Angle55
3.4 Design and Development of Three-Level Single Phase Transformerless
Photovoltaic Inverter

3.4.1 Operation Principle of The Proposed Topology64
3.4.2 Proposed Harmonic Reduction Technique of Three-level
Single Phase Transformerless Photovoltaic Inverter67
3.4.3 Printed Circuit Board Design of Three-Level Single Phase
Transformerless Photovoltaic Inverter
3.4.4 Assemble Three-Level Single Phase Transformerless PV Inverter
 3.4.5 Procedure to Produce an AC Three-level Single Phase Voltage Waveform
Photovltaic Inverter
3.4.7 Experimental Setup
3.5 Validation of Measured and Simulated CTHD on Three-level Single Phase
Inverter

CHAPTER 4 EXPERIMENTAL RESULTS

 4.1 Solar Radiation in Perlis, Northern Malaysia
 4.1.1 Daily Solar Radiation
 4.1.2 Monthly Solar Radiation

4.1.3 Solar Radiation Estimation using Hargreaves Method, Linear Regression
and Proposed Method110
4.2 Performance of Photovoltaic Module at Different Tilt Angles in Perlis116
4.2.1 Tilt Angle of PV Module117
4.2.2 Solar Irradiance on Tilt Angle of PV Module
4.2.3 Effect of Solar Irradiance on PV Module Performance at Difference
Tilt Angle
4.3 Single Phase Transformerless Photovoltaic Inverter
4.3.1 Comparison of Square and Three-Level Single Phase Transformerless PV
Inverter Performance
4.3.1.1 Solar Irradiance, Temperature and PV Output Voltage
4.3.1.2 AC Voltage and Current Waveform of Square and Three-Level
Single Phase Transformerless PV Inverter
4.3.1.3 Current Total Harmonic Distortion (CTHD)131
4.3.2 Effect of Maximum Voltage Angle on Three-Level Single Phase
Transformerless PV Inverter Performance
4.3.2.1 Solar Irradiance, Temperature and Output Voltage of PV Array134
4.3.2.2 AC Voltage and Current Waveform of Three Level Single Phase
Transformerless PV Inverter

4.3.2.3 Current Total harmonic Distortion (CTHD)142

4.4 Testing of High Power Three-level Single Phase Trnsformerless Pho	otovoltaic
---	------------

4.5 Comparative Study Between Proposed Three-level Single Phase

CHAPTER 5 DISCUSSION OF RESULTS

Transformerless PV Inverter and Market Three-level Inverter
copyright
CHAPTER 5 DISCUSSION OF RESULTS
5.1 Potential of Photovoltaic Power Generation in Perlis
5.1.1 Solar Radiation Potential Based on Measured Data at CERE Station 150
5.1.2 Statistical Analysis (Standard Estimated Salar addition) 152
5.1.2 Statistical Analysis of Measured and Estimated Solar radiation
$\langle \mathcal{Q} \rangle$
5.1.3 Optimum Tilt Angle of PV Module in Perlis
5.1.4 Performance of PV Module in 3-Dimensional Diagram as Function of
Both Solar Irradiance and Temperature
5.1.5 Performance of PV Module in 3-Dimensional Diagram as Function of
Both Tilt Angle and Temperature161
5.2 Reduction Technique of Current Total harmonic Distortion on Three-Level
1
Single Phase Transformerless PV Inverter 163
5.3 Measurement and Simulation Validation of Current Total harmonic Distortion 169

5.4 Economy Aspect and Its Assessment Factor of PV Power generation174

CHAPTER 6 CONCLUSION AND RECOMMENDATION

6.1 Conclusion	
6.2 Recommendation and Future Work	187
REFERENCES	
APPENDIX A PUBLICATIONS	196
APPENDIX B AWARDS	201
APPENDIX C PATENT/ PATENT SEARCH (NOVELTY SEARCH)205

LIST OF TABLES

Tabl	le No.	Page
3.1	Electrical parameter of Kaneka G-SA060 amorphous silicon (a-Si)	
	PV module	55
3.2	Zero and maximum voltage angle, β and α	69
3.3	Zero and maximum voltage angle, β , α and β_1	98
4.1	Day number and its percentage of the solar radiation are lower than	
	1 kWh/m ² , between 1 and 3 kWh/m ² and higher than 3 kWh/m ² for	
	the year of 2009 to 2011	105
4.2	The lowest minimum and highest maximum monthly solar radiation	
	for year 2009, 2010 and 2011	108
4.3	The lowest, highest and average temperature difference throughout	
	year 2009 to 2011 in Perlis	112
4.4	Relationship between positions of the PV module and date of a year	118
4.5	Solar irradiance on tilt angle of positive, zero and negative for a year	119
4.6	Performance of PV module at different solar irradiance and tilt angle	122
4.7	Minimum, maximum and average of the solar irradiance and temperature	125
4.8	Minimum, maximum and average of the PV array output voltages	126

4.9	Minimum, maximum and average of the AC load rms voltage and current	
	of the square and three-level single phase transformerless PV inverter	
	recorded every minute	130
4.10	CTHD of the square and three level single phase transformerless PV inverte	r
	recorded every minute	133
4.11	Minimum, maximum and average of the solar irradiance and temperature	135
4.12	Performance of the three-level single phase transformerless PV inverter	
	For running varies AC loads	147
4.13	CTHD of the inverter and reduction percentage of CTHD of the proposed	
	three-level transformerless PV inverter compared the other	149
5.1	Daily average and total annual measured and estimated solar radiation	
	throughout the three years (2009 to 2011)	153
5.2	Statistical analysis	153
5.3	Average monthly estimated solar radiation and peak sun hour throughout	
C	the year of 2009 to 2011 using Hargreaves, linear regression and proposed	
	method	155
5.4	The minimum, maximum and average solar irradiance for the PV module til	lt
	angle of -17.16° , -5° , 0° , 6.84° and 29.74°	157
5.5	Input data of simulation modelling varying maximum voltage angle, α	170

5.6	Price of PV module for 300 kW PV power generation under some solar	
	radiations in Perlis	175
5.7	Price of PV module for 300 kW PV power generation under some tilt	
	angles in Perlis	177
5.8	TNB domestic tariff rate	178
5.9	Fit rates for PV power generation installation	179
5.10	Characteristic of 300 kW PV power generation	181
	This item is protected by origin	

LIST OF FIGURES

Figure No.

2.1	First large scale 10 MW PV power plant at Bukit Tagar, Selangor	12
2.2	Full-bridge inverter	23
2.3	Square wave output voltage of the full-bridge inverter	23
2.4	Three-level waveform generated by the full-bridge inverter	24
2.5	Inverter efficiency versus maximum voltage angle	25
2.6	Full-bridge transformerless inverter	27
3.1	Research framework	34
3.2	CERE Station in Kangar, Perlis, Northern Malaysia	38
3.3	Installation of Vantage Weather Station Pro2	39
3.4	Methodology of solar radiation throughout year 2009 to 2011	43
3.5	Methodology of solar radiation estimation using Hargreaves,	
	linear regression and proposed method	49
3.6	Methodology of PV module performance at different tilt angle in	
	Perlis based on clear sky global solar irradiance	54
3.7	Methodology of solar irradiance, temperature and tilt angle effect	
	on PV module performance	58
3.8	Block diagram at proposed single phase transformerless PV inverter	59
3.9	Proposed pulse driver and full bridge inverter circuit	60
3.10	Proposed power factor correction circuit	62

3.11	(a): Mode 1 of proposed transformerless PV inverter operation	66
	(b): Mode 2 of proposed transformerless PV inverter operation	66
3.12	Pulse and three-level output waveform of the transformerless PV inverter	67
3.13	Block diagram of design of the three-level single phase transformerless	
	PV inverter	69
3.14	(a): Pulse driver schematic of the three-level single phase transformerless	
	inverter	70
	(b): Full bridge schematic of the three-level single phase transformerless	
	inverter	71
	(c): Power factor correction schematic of the three-level single phase	
	transformerless inverter	71
3.15	(a): Full bridge layout of three-level transformerless PV inverter	72
	(b) Power factor correction layout of three-level transformerless PV inver	ter 73
3.16	(a): Pulse driver component which has been soldered on the three-level	
	transformerless PV inverter	74
	(b): Full bridge component which has been soldered on the three-level	
	Ctransformerless PV inverter	74
	(c): Power factor correction component which has been soldered on the th	ree-
	level transformerless PV inverter	75
3.17	Assemble three-level single phase transformerless inverter in a box	76
3.18	Battery and PV terminal of the three-level single phase transformerless	
	inverter	76
3.19	AC waveform terminal of the three-level single phase transformerless	
	inverter	77

3.20	Listing program in C language using PIC C Compiler program	78
3.21	WinPic800 used to view hexadecimal number and program it in to PIC	
	microcontroller.	79
3.22	Uploading process of PIC microcontroller	80
3.23	Flow chart of procedure to produce the AC three-level voltage waveform	80
3.24	n paralleled inverter	82
3.25	Block diagram of the proposed high power three-level single phase	
	transformerless PV inverter	83
3.26	Five paralleled full bridge inverter (FBI)	84
3.27	Block diagram of experimental setup	86
3.28	Weather station and PV array	87
3.29	Experimental setup of the low power three-level single phase	
	transformerless PV inverter	88
3.30	Methodology of the low power three-level single phase	
	transformerless PV inverter	89
3.31	(a): Experimental setup of the high power three-level single phase	
	transformerless PV inverter for running 20 W water pump and	
	30 W resistive lamp	90
	(b): Experimental setup of the high power three-level single phase	
	transformerless PV inverter for running 66 W refrigerator	91
	(c): Experimental setup of the high power three-level single phase	
	transformerless PV inverter for running 50 W standing fan	
	and 80 W air cooler	91
	(d): Experimental setup of the high power three-level single phase	

	transformerless PV inverter for running personal computer	92
	(e): Experimental setup of the high power three-level single phase	
	transformerless PV inverter for running 480 W jig saw	92
	(f): Experimental setup of the high power three-level single phase	
	transformerless PV inverter for running R7S 500 W halogen lamp	93
	(g): Experimental setup of the high power three-level single phase	
	transformerless PV inverter for running 0.5 hp induction motor	93
3.32	Methodology of the high power three-level single phase	
	transformerless PV inverter for running high AC loads	94
3.33	Three-level waveform on single phase inverter	96
3.34	Block of CTHD reduction technique on three-level single phase inverter	99
3.35	Analysis methodology of validation of measured and simulated CTHD on	
	three-level single phase inverter	101
4.1	(a): Daily solar radiation throughout year 2009	103
	(b): Daily solar radiation throughout year 2010	103
	(c): Daily solar radiation throughout year 2011	104
4.2	Distribution of the daily solar radiation for year 2009, 2010 and 2011	105
4.3	(a): Minimum and maximum monthly solar radiation in year 2009	106
	(b): Minimum and maximum monthly solar radiation in year 2010	107
	(c): Minimum and maximum monthly solar radiation in year 2011	107
4.4	Average monthly solar radiation for year 2009, 2010 and 2011	109
4.5	Peak sun hours (PSHs) in Perlis for year 2009, 2010 and 2011	109
4.6	(a): Temperature throughout year 2009	111
	(b): Temperature throughout year 2010	111

	(c): Temperature throughout year 2011	112
4.7	(a): Daily measured solar radiation throughout year 2009	113
	(b): Daily measured solar radiation throughout year 2010	114
	(c): Daily measured solar radiation throughout year 2011	114
4.8	(a): Daily estimated solar radiation throughout year 2009	115
	(b): Daily estimated solar radiation throughout year 2010	115
	(c): Daily estimated solar radiation throughout year 2011	116
4.9	The tilt angle of PV module in Perlis, Malaysia	117
4.10	Clear sky global solar irradiance on tilt angles of PV module	118
4.11	3-dimensional diagram of global solar irradiance as function of both day	
	of the year and tilt angle	120
4.12	(a): Current against open circuit voltage of PV module at different solar	
	irradiance and tilt angle	121
	(b): Power against open circuit voltage of PV module at different solar	
	irradiance and tilt angle	121
4.13	Solar irradiance on 5 th August 2011 and 6 th August 2011	124
4.14	Temperature on 5 th August 2011 and 6 th August 2011 125	
4.15	PV array output voltage	126
4.16	(a): Square AC load voltage waveform of the single phase transformerless	
	PV inverter	128
	(b): Three-level AC load voltage waveform of the single phase	
	transformerless PV inverter	128
4.17	(a): AC load rms voltage the square and three level single phase	
	transformerless PV inverter recorded every minute	129

	(b): AC load current of the square and three level single phase	
	transformerless PV inverter recorded every minute	130
4.18	(a): Current harmonic spectrum of the square wave single phase	
	transformerless PV inverter	131
	(b): Current harmonic spectrum of the three-level waveform single phase	
	transformerless PV inverter	132
4.19	Current total harmonic distortion (CTHD) of the square and three-level	
	single phase transformerless PV inverter recorded every minute	132
4.20	Solar irradiance and temperature on 17 th August 2011	135
4.21	Condition of solar irradiance, temperature and PV array voltage for varies	
	maximum voltage angle	136
4.22	AC voltage and current waveform of the transformerless PV inverter	139
4.23	Effect of maximum voltage angle on the rms AC voltage	140
4.24	Effect of maximum voltage angle on the rms AC current	141
4.25	Effect of maximum voltage angle on the AC power	141
4.26	Effect of maximum voltage angle on current harmonic spectrum	144
4.27	Effect of maximum voltage angle on current total harmonic	
	distortion (CTHD)	146
5.1	Monthly estimated solar radiation throughout the year of 2009 to 2011	154
5.2	Solar irradiance through the year on different tilt angle of PV module	156
5.3	Yearly total solar irradiance on different tilt angle of PV module	158
5.4	Yearly average solar irradiance at different tilt angle of PV module	158

5.5	(a): PV module maximum power as function of both solar irradiance and	
	temperature	160
	(b): PV module efficiency as function of both solar irradiance and	
	temperature	160
5.6	(a) : PV module maximum power as function of both tilt angle and	
	temperature	162
	(b) : PV module efficiency as function of both tilt angle and temperature	162
5.7	Changes of pulse wave to develop changes of maximum voltage angle,	
	α of AC three level voltage waveform	168
5.8	AC voltage and current waveform of three level single phase	
	transformerless PV inverter for varies maximum voltage angle, α	173
5.9	CTHD measurement and simulation of three level single phase	
	transformerless PV inverter	173
5.10	Cash flow of 300 kW PV power generation	181
	itern	
	THIS	
(\odot	

LIST OF SYMBOLS, ABBREVIATION OR NOMENCLATURE

AC	Alternating Current
CERE	Centre of Excellence for Renewable Energy
CRM	Coefficient of Residual Mass
CTHD	Current Total Harmonic Distortion
DC	Direct Current
NSE	Nash-Sutcliffe equation
PSHs	Peak Sun Hours
PV	Photovoltaic
RMSE	Root Mean Squared Error
STC	Standard Test Condition for PV module
TNB	Tenaga Nasional Berhad
A	An "apparent" extraterrestrial flux
A _i ©	Area of orientation surface, i
a	Empirical coefficient
a	The intercept point of the regression line and the y axis.
b	The slope of the regression line
b	The fit parameter of the PV model
С	Sky diffuse factor
D	The diffusion coefficient

DF	Eccentricity correction factor of the earth's orbit
е	Percentage error
E solar,i	Available solar radiation on different orientation surfaces
f	Utilization factor
FF	Fill factor of PV module
Н	Hour angle
I _b	Translation of direct-beam irradiance
I _{tt}	Total solar irradiance
I _{bt}	Total beam solar irradiance
I _{dt}	Total diffuse solar irradiance
I _{rt}	Total reflected solar irradiance
I _{sc}	Short circuit current of PV module
I max	Maximum current of PV module
	Current of PV module in the maximum power point STC
$I(\alpha,T,V)$	The circuit current as function of solar irradiance, temperature
J_s	The saturation current density
k	Optical depth
m	Air mass ratio
n	Day number
n _i	The intrinsic carrier density

Ν	Number of elements
P _{max}	Maximum power of PV module
P_T	Theoretical power of PV module
p_{n0} and n_{p0}	Electron and hole densities in n-type region and p-type region
	at thermal equilibrium
R _s	Solar radiation
R _a	Extraterrestrial radiation
R _{Sest}	Daily estimated solar radiation
R _{Smea,i}	The measured daily solar radiation at i day
$R_{Sest,i}$	The estimated daily solar radiation at i day
R _{Smea}	The average measured solar radiation
SC	Solar constant
T _{max}	Maximum air temperature
T _{min}	Minimum air temperature
T_d	Difference between maximum and minimum air temperature
T_N	Nominal temperature (25 0 C)
TC_i	Temperature coefficients of the short circuit current of PV
	module
TC_{v}	Temperature coefficients of the open circuit voltage of PV

module

TD_{sqr1}	Time delay of the first pulse
TD_{sqr2}	Time delay of the second pulse
V _{oc}	Open circuit voltage of PV module
$V_{ m min}$	Minimum voltage of PV module
V _{max}	Maximum voltage of PV module
V _{MPP}	Voltage of PV module in the maximum power point STC
$V_{oc}(\alpha,T)$	The open circuit voltage as function of solar irradiance and
	temperature
V_1	The amplitude of the fundamental voltage harmonic
V _{rms}	ms value of the voltage waveform generated
V _n	<i>n</i> th voltage harmonic
Ws	Mean sunrise hour angle
x	The first variable
у	The second variable
β	Zero voltage angle of three level AC waveform
$eta_{\scriptscriptstyle N}$	Angle between the sun and the local horizontal directly
	beneath the sun
L	Latitude of the site
δ	Solar declination

γ	Tilt angle of PV module
θ	Angle of incidence between a line drawn normal to the PV
	module face and the incoming beam irradiance
ϕ_P	Azimuth angle
ϕ_s	Solar azimuth angle
ρ	Reflectance
η_{pv}	Efficiency of PV modules
$\eta_{\scriptscriptstyle m}$	Maximum efficiency of PV module
η_i	The ratio between the power in the fundamental $(V_1^2/2)$ and
	the power in the AC waveform
α	Maximum voltage angle of three level AC waveform
α_{\min}	Minimum solar irradiance
amax ter	Maximum solar irradiance
τ (M ¹⁻²	The minority lifetime