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KAJIA
 ME
GE
AI PE
GHASILA
 E
ZIM GLUKOSA OKSIDASE 

DARIPADA Aspergillus terreus UniMAP AA-1  

 

ABSTRAK 

 

Enzim glukosa oksidase telah diaplikasi dengan meluas dalam industri kimia, makanan, 

minuman, bioteknologi dan lain-lain. Umumnya enzim ini terhasil dari Aspergillus 

niger dan Penicllium sp. Kini wujud keperluan untuk mencari sumber-sumber alternatif 

enzim ini kerana beberapa kelemahan yang berkaitan dengan sumber yang sedia ada. 

Dalam kajian ini, pencilan mikroorganisma yang menghasilkan glukosa oksidase yang 

dicamkan sebagai Aspergillus UniMAP AA-1 telah dipencilkan dari sample tanah di 

Unit Penyelidikan Agrotek, Sg. Chucuh, Perlis. Ujian penyaringan mikroorganisma 

yang menghasilkan glukosa oksidase telah  dilakukan berdasarkan perubahan warna 

pada plat agar yang mengandungi o-anisidin dan  lobak peroksidase. Mikroorganisma 

yang telah disaring telah dikenalpasti morfologinya dengan menggunakan mikroskop 

cahaya dan mikroskop pengimejan elektron (SEM) dan selanjutnya disahkan oleh 

pengecaman ke tahap molekul. Mikrooganisma ini telah dikenalpasti sebagai pengeluar 

utama glukosa oksidase yang bersifat ekstraselular dan morfologi yang bersifat pelet 

dalam kultur fermentasi. Penemuan ini menawarkan alternatif yang baru bagi masalah 

dan kelemahan yang sedia ada pada sumber-sumber glukosa oksidase terkini. 

Selanjutnya, pengoptimuman yang berturutan berdasarkan pendekatan statistik dan satu-

faktor-pada-satu-masa (OFAT)  telah dijalankan bagi mengoptimumkan penghasilan 

glukosa oksidase ekstraselular dari mikroorganisma yang telah dikenalpasti. Kaedah reka 

bentuk Plackett-Burman menunjukkan glukosa adalah pembolehubah yang paling 

berpengaruh diikuti oleh NaNO3, CaCO3, dan pepton kepada penghasilan enzim 

tersebut, sedangkan KH2PO4, MgSO4.7H2O, FeSO4.7H2O, menunjukkan kesan negatif 

terhadap penghasilan enzim tersebut. Berdasarkan hasil dari reka bentuk tersebut, 

glukosa, NaNO3 dan CaCO3 dipilih untuk kajian pengoptimuman dan seterusnya 

pengaruh dari tiga komponen medium ini diselidiki dengan OFAT dan pembolehubah 

ini selanjutnya dioptimasi menggunakan pendekatan reka bentuk komposit berpusat 

(FCCCD). Penghasilan medium optimum  ditunjukkan pada glucosa 10.64% (w/v), 

NaNO3 1.21% (w/v) dan CaCO3 5.22% (w/v) dan enzim yang terhasil adalah sebanyak 

6.72 U/ ml, iaitu sekitar tujuh kali ganda lebih tinggi daripada yang diperolehi daripada 

media sebelum pengoptimuman. Ciri-ciri seperti penggunaan oksigen dan glukosa serta 

penghasilan hidrogen peroksida dan asid glukonat daripada enzim kasar ini adalah selari 

dengan ciri-ciri khusus enzim glukosa oksidase. Nilai kinetik malar,Km, enzim kasar ini, 

ditentukan oleh persepadanan langsung persamaan Michaelis-Menten melalui regresi 

bukan linear (dengan nilai korelasi atau R
2
 = 0.98) menggunakan fungsi solver dalam 

perisian Microsoft Excel, memberikan nilai dalam julat 7.5-15 mM. Keputusan kajian 

menunjukkan spesifikasi substrat dari enzim kasar ini terhadap glukosa β-D (substrat) 

dan menunjukkan kekuatan pengikatan enzim kasar ini dengan substratnya. 
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STUDIES O
 THE PRODUCTIO
 OF GLUCOSE OXIDASE BY Aspergillus 

terreus UniMAP AA-1  

 

ABSTRACT 

 

Glucose oxidase (GOx) has found a wide range of applications in chemical, food, 

beverage, biotechnology and other industries. It is commonly extracted from 

Aspergillus niger and selected strains of Penicllium sp. Currently there is a growing 

need to find alternative sources of this enzyme due to some drawbacks associated with 

A.niger and Penicllium sp. In this work, a novel GOx-producing strain, Aspergillus 

terreus UniMAP AA-1, was isolated from soil of Agrotech Research Centre, Sg 

Chucuh, Perlis.The screening tests for the GOx-producing strain were carried out on the 

basis of color development test by using agar plate containing o-anisidine and 

horseradish peroxidase. The screened strain was identified morphologically using light 

microscope and Scanning Electron Microscope (SEM) and further verified by molecular 

level identification. The strain was identified as a predominant extracellular GOx 

producer and exhibits a pelleted morphology in fermentation culture. These findings 

offer a new alternative to the existing GOx-producing strains which are known to be 

associated with few drawbacks. Subsequently, a sequential optimization based on 

statistical design and one-factor-at-a-time (OFAT) method was employed to optimize 

the production of extracellular GOx from the potential strain. Plackett-Burman design 

indicated glucose as the most influential variable followed by NaNO3, CaCO3, and 

peptone on the GOx activity; while KH2PO4, MgSO4.7H2O and FeSO4.7H2O showed 

negative main effect on the enzyme activity. Based on the result, glucose, NaNO3 and 

CaCO3 were selected for further optimization studies. The influences of the three 

medium components were investigated with one-factor-at-a-time (OFAT) and these 

variables were subsequently optimized using a face centered central composite design 

(FCCCD). The optimum conditions were found to be 10.64% (w/v), 1.21% (w/v) and 

5.22% (w/v) for glucose, NaNO3 and CaCO3 respectively and the enzyme activity was 

found to be 6.72 U/ml, which was about seven fold higher than that obtained in media 

before optimization. The oxygen and glucose consumption as well as hydrogen 

peroxide and gluconic acid production profiles of the crude enzyme are all in-line with 

typical GOx properties. The kinetic constant, Km of the crude enzyme for its substrate, 

determined by direct fits of Michaelis–Menten equation through nonlinear regression 

(with correlation value or R
2
 =0.98) using solver function in Microsoft Excel software, 

gave the value of within the range of 7.5-15 mM. The result indicates substrate 

specificity of the crude enzyme towards β-D glucose (substrate) and demonstrated the 

tight binding of the crude enzyme with its substrate.  
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CHAPTER 1 

I�TRODUCTIO� 

 

1.1 BACKGROU�D 

Enzyme is a protein that catalyzes a large number of biochemical reactions. To 

date, enzyme is utilized for diverse applications ranging from the manufacture of 

various industrial products to diagnostics and therapeutic agents. Although the world 

demand of enzyme is increasing, production of enzyme is yet to flourish in developing 

countries like Malaysia due to the high production cost and high capital investment 

(Ibrahim, 2008). Most of the industrial enzymes used in the country are imported from 

Denmark, Netherlands, Belgium and other countries mounting to about USD 3.5 

millions annually with the quantum of more than 1 million kg of crude enzyme 

preparations (Ibrahim, 2008). 

Glucose oxidase (GOx)  is one of the enzyme which has gained an importance 

and popularity in industry. GOx catalyzes the oxidation of β-D-glucose to gluconic acid, 

utilizing oxygen as an electron acceptor and simultaneously producing hydrogen 

peroxide. This enzyme has found several commercial applications in food and beverage 

industry including glucose removal from dried egg; improvement of color, flavor, 

texture and shelf life of food materials; oxygen removal from fruit juices, canned 

beverages and mayonnaise to prevent bacterial growth (Wong, Wong & Chen, 2008 and 

Bankar, Bule, Rekha & Ananthanarayan, 2008). Besides, it has also been used in 

biofuel cells (Kim, Parkey, Rhodes & Gonzalez-Martin, 2009) and widely in glucose 

biosensors for clinical applications (Yoo & Lee, 2010). 
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The wide application of GOx has increased the demand of GOx in the world 

market.  According to the report by Global Industry Analysts, Inc., the global market for 

GOx based-biosensors and strips will reach USD 11.5 billion by 2012 (Yoo & Lee, 

2010). 

The most common microbial sources for GOx production are selected strains of 

Aspergillus and Penicillium genera.  Among these sources, Aspergillus niger is the most 

commonly utilized microorganism for commercial production of GOx (Bankar, Bule, 

Rekha & et al., 2009).  

However, these two fungal sources for producing GOx have been known to be 

associated with some drawbacks.  Aspergillus niger produces intracellular GOx (Hamid, 

Kalil-ur-Rehman, Zia & Asgher, 2003) which incurs comparatively more cost in the 

recovery steps as compared to extracellular enzyme. Extracellular enzyme is preferable 

in industry because the downstream process is simpler and cheaper as compared to 

intracellular enzyme (Ibrahim, 2008). Intracellular enzyme is located in the cell, thus, 

the cell need to be disrupted in order to release the enzyme. This characteristic requires 

extra downstream processes to recover the enzyme, hence it will incur more processing 

cost (Headon & Walsh, 1994).  Furthermore, some extracellular enzymes are more 

stable than their intracellular counterparts because they are glycosylated and have a 

broad pH range for activity. In addition, the enzymes have some resistance to 

degradation due to proteases activity (Burns & Wallenstein, 2010). 

  On the other hand, although Penicllium sp is known as extracellular GOx 

producer (Sabir, Bhatti, Zia, & Sheikh, 2007), however it produces non-Newtonion 

fluids behaviour during fermentation which results in high viscous cultivation broth 

(Clarke, Johnstone-Robertson, Price & Harrison, 2006). The high viscosity and pseudo-

plasticity of the suspension caused many problems during cultivation which include 
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decreasing the mass transfer, heat transfer, and requiring more power input for mixing 

(El-Enshasy, 2007). Conversely, pelleted morphology offers an alternative growth form 

for the culture of fungi. It exhibits Newtonion fluids which produce less viscous culture 

broth and good mass and heat transfer properties which offers easier separation of the 

biomass from the broth (Suijdam, Kossen & Paul, 1980). 

Considering the above two drawbacks, it is necessary to find alternative 

microbial sources for GOx production which are free from the above drawbacks. In line 

with that, in order to increase the production efficiency, it is necessary to optimize the  

production of GOx. As common to enzyme production, the most crucial factors is 

medium composition, since it affects the production in terms of cost and its productivity 

(Schmidt, 2005). Hence, it is important to consider the optimization of fermentation 

medium in order to maximize the production efficiency and profits eventually. 

Although optimization of GOx production was reported widely, however, most 

of it was achieved by using conventional method like one-factor-at-one-time (OFAT) 

rather than statistical tools like Plackett-Burman design and Response Surface 

Methodology (RSM). Conventional method like OFAT modifies one factor while 

maintaining other factors at a specified constant level. This practice is time consuming 

as it requires a large number of experiments. It is also less effective since it does not 

consider the interaction between factors involved. By contrast, statistical experimental 

design offers considerable advantages as compared to OFAT for fermentation 

improvement. Plackett-Burman design allows a reliable short listing of medium 

components in fermentation prior to optimization study while Response Surface 

Methodology (RSM) allows studying the optimum conditions of the selected factors and 

studying interaction between the factors in limited number of experiment (Vaidya, 

Shah, Vyas & Chhatpar, 2001).  
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In this study, we report the isolation and identification of a novel GOx- 

producing strain from soil samples taken from different places of Perlis area, Malaysia. 

The isolated strain was identified as Aspergillus terreus based on the morphological 

characterization and molecular identification. To our knowledge, there has been no 

report regarding the production of GOx from Aspergillus terreus. Furthermore, this 

novel GOx-producing strain showed a predominant extracellular GOx and exhibits 

pelleted morphology which offers a better alternative to the existing sources of GOx 

which are known to be associated with some drawbacks. 

Since there has been no reported work on the production of GOx from this 

strain, it is necessary to optimize the growth conditions of the strain for optimal 

production and study the properties of the crude GOx. The optimization studies on 

composition of media components were carried out in three stages as follows: 

1. Plackett–Burman design was applied to address the most significant media 

components which affect GOx production. 

2. The one-factor-at-a-time (OFAT) approach was used to obtain the most possible 

optimum level of selected factors.  

3. The central composite design (CCD) was employed to determine the optimal 

condition and to study the interaction among the significant media components 

for the production of GOx.  

 Finally, studies on the enzymatic properties of the crude GOx produced from 

the optimized media conditions have been attempted. The properties of crude GOx were 

studied based on the change of components involved in the enzymatic reaction of the 

crude enzyme. These are oxygen consumption, glucose oxidation, hydrogen peroxide 

formation and gluconic acid production.  
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