

Development of Microgap and Nanogap Automated Permittivity Measurement System By original

Azizullah B. Saifullah

Azizullah B. Saift (0830110300) is protection (0830110300) A thesis submitted In fulfillment of the requirements for the degree of Master of Science (Microelectronic Engineering)

School of Microelectronic Engineering

UNIVERSITI MALAYSIA PERLIS

2011

		UNI	VERSITI MALAYSIA PERLIS
			DECLARATION OF THESIS
	Author's full name	: .AZ	IZULLAH B SAIFULLAH
	Date of birth	: .22.	AUGUST 1984
	Title	: De	velopment of Microgap and Nanogap Automated Permittivity Measurement
	Academic Session	: .20	10/2011
	I hereby declare that the library of UniMA	ne thesis beco P. This thesis	omes the property of Universiti Malaysia Perlis (UniMAP) and to be placed is classified as :
		AL (Co	ntains confidential information under the Official Secret Act 1972)*
	RESTICTED	(Col rese	ntains restricted information as specified by the organization where arch was done)*
		is to ag	gree that my thesis is to be made immediately available as hard y or on-line open access (full text)
O T	I, the author, give per research or academic SIGN/ 840822 (NEW IC NO.) Date : 15/7	ATURE 2-02-546 PASSPORT /2011	e UniMAP to reproduce this thesis in whole or in part for the purpose of (except during a period ofyears, if so requested above). Certified by: United Bodd Control Certified by: United Bodd Control Certified by: United Bodd Control Certified by: SIGNATURE OF SUPERVISOR SIGNATURE OF SUPERVISOR 1 Prof. Dr. Uda B Hashim NAME OF SUPERVISOR Date : 15/7/2011

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

First and foremost, I would like to convey my deepest thanks to the Almighty Allah (SWT), the Omnipotent, the Merciful and the Compassionate, for giving me the strength, patience, courage and determination in compiling this research. Alhamdulillah. I beg Him to continue His blessings on me forever. The journey towards the completion of this thesis was full of unexpected challenges and it is almost impossible to complete this thesis single-handedly without the help and support of others. I would like to give my heartfelt thanks to everyone who has provided me with such support. I would like to extend my infinite gratitude to my supervisors Professor Dr. Uda B. Hashim for his extraordinary support and understanding in guiding me through this thesis successfully.

I would like to thank my dear parent, Saifullah B. Samsuddin and Akbari Bee Bt. Badru Duja and my family for their love, prayer, patience, encouragement and full support during my study. Thank you

Many colleagues have worked closely with me on this research work. First I would like to thank Muhammad Emi Azri, Mohd Naim, Kasim, Shahrir, and the rest of Institute of Nano Electronic Engineering members for their continuous support and motivation; working with all of you is a good experience that could never be forgotten. Special thank to Madam Thikra for providing the brief fabrication process flow for Chapter 3 of this thesis. I do appreciate the constant help from lab technicians who always understand and their great help during the process of completing this research work. I also want to thank Mr. Mohd Hatta and Teaching Factory member for helping me to fabricate the PCB board.

Last but not least, I would like to express my greatest appreciation to all of the peoples who have helped me in doing this research, may ALLAH bless you all. Thank You,

AZIZULLAH B. SAIFULLAH

UNIVERSITI MALAYSIA PERLIS

TABLE OF CONTENTS

ACKNOWLI	EDGEMENT	III
TABLE OF (CONTENTS	IV
LIST OF TA	BLES	
LIST OF FIG	GURES	IX
LIST OF AB	BREVIATIONS	XIV
ABSTRAK		XVII
ABSTRACT		XVIII
CHAPTER 1	BACKGROUND	
1.1	Introduction	1
1.2	Overview of MNAPMS	1
1.3	Problem Statement	2
1.4	Objective	4
1.5	Research Scope	4

1.1	Introduction	. 1
1.2	Overview of MNAPMS	. 1
1.3	Problem Statement	. 2
1.4	Objective	. 4
1.5	Research Scope	. 4
16	Thesis Organization	5
1.0		

	14	Objective	1
	1.4		4
	1.5	Research Scope	4
	1.6	Thesis Organization	5
		15 Y	
CHAPT	TER 2	LITERATURE REVIEW	
•	2.1	Introduction	7
15	2.2	Biosensor and Its Applications	7
	2.3	Electrical Based Biosensor	9
	2.4	Principle of Capacitor	10
\bigcirc	2.5	Overview of Nanogap Capacitor	11
	2.6	Theory of Permittivity	14
	2.7	Impedance Measurement	16
		2.7.1 Impedance Measurement Method	17
		2.7.2 Principle Of Impedance Measurement	19
	2.8	Chapter Summary	20

CHAPTER 3: MICRO AND NANOGAP STRUCTURE FABRICATION AND CHARACTERIZATION

3.1	Introduction	
3.2	Starting Material	
3.3	Mask Design	
	3.3.1 Mask 1- Lateral Nanogap Gold Electrode Pattern	
	3.3.2 Mask 2- Pad Gold Electrode Pattern	
3.4	Micro and Nanogap Capacitor Fabrication Process	
3.5	Characterization of Nanogap Capacitor.	
	3.5.1 Morphological Characterization	
	3.5.2 Electrical Characterization	
	3.5.3 Calculation of Cross Section Area	
	3.5.4 Characterization for Ten Sample of Microgap Capacitor	
	3.5.5 Electrical Model of Nanogap Capacitor with DNA Sample	e 33
3.6	Chapter Summary	
	xeo	
CHAPTER 4	4: HARDWARE DESIGN	

	4.1	Introdu	ction	
	4.2	Hardwa	are Development Tools and Software	
		4.2,1	Overview of National Instruments Multisim 10	
	5	4.2.2	Overview of OrCAD	
*A	4.3	RLC X	Scale Mini Description	
3	4.4	Permitt	ivity Measurement System (PMS)	44
Y	4.5	Power S	Supply Circuit	
		4.5.1	+15V Output Design	47
		4.5.2	+5V Output Design	49
		4.5.3	-5V Output Design	51
		4.5.4	-15V Output Design	53
	4.6	Sinusoi	dal Wave Generator	
		4.6.1	Triangle Wave Generation	56
		4.6.2	Triangle to Sinusoidal Wave Converter Circuit	
	4.7	Program	nmable Low Pass Filter Circuit	68
		4.7.1	Filter Design	71

		4.7.2	MAX262 Circuit Connection	73
	4.8	Impedan	ce Measurement Circuit	75
		4.8.1	Simulation of Electrical Model for DNA During Immobilization	76
		4.8.2	Simulation of Electrical Model for DNA During Hybridization	78
	4.9	Phase D	ifferential Measurement Circuit	80
		4.9.1	Sinusoidal to Square Wave Converter	81
		4.9.2	Wave Comparator	82
		4.9.3	Square Wave to DC Voltage Converter	86
		4.9.4	Simulation of Phase Differential Measurement Circuit	88
	4.10	Printed (Circuit Board (PCB)	90
		4.10.1	OrCAD Capture	91
		4.10.2	OrCAD Layout	91
		4.10.3	PCB Fabrication Process	92
	4.11	Chapter	Summary	93
СНАРТ	TER 5	: SOFT	WARE DESIGN	
	51	Introduc	tion	94
	5.2	Develop	ment Tool	94
	0.2	521	Overview of Windows Mobile Device Centre	94
		522	Overview of Visual Studio	95
	5.3	Graphic	User Interface (GUI) Design	96
*	5.4	Program	ming of Permittivity Measurement System	97
	5.5	Program	mable Low Pass Filter Programming	97
	5.6	Clock fo	r Sinusoidal Wave Generator and Low Pass Filter Programming	. 102
	5.7	Signal C	apture Programming	. 103
	5.8	- Signal A	nalysis Programming	. 106
	5.9	- Result D	Pisplay Programming	. 108
	5.10	Chapter	Summary	. 110
			-	

CHAPTER 6: SYSTEM INTEGRATION AND TESTING

6.1	Introduction	111
6.2	Testing equipment	111

6.	.3	Testing M	111 fethod	2
6.	.4	Power Su	pply Circuit Testing	3
6.	.5	Integratio	n and Testing of Sinusoidal Wave Generation Circuit 11	6
		6.5.1	Integration and Testing of Triangle Wave Generation Circuit 11	6
		6.5.2	Testing of Triangle to Sinusoidal Wave Converter Circuit	2
6.	.6	Integratio	on and Testing of Programmable Low Pass Filter Circuit 12.	5
6.	.7	Integratio	on and Testing of Impedance Measurement Circuit	3
6.	.8	Integratio	on and Testing of Phase Differential Measurement Circuit	9
6.	.9	Testing of	f PMS Accuracy	2
6.	.10	Chapter S	Summary 14	3
CHAPTE	R 7:	CONCI	LUSION AND RECOMMENDATION	
7.	.1	Introducti	ion	4
7.	.2	Conclusio	on	4
7.	.3	Recomme	endation	6
			X ^{OC}	
REFERE	NCE	E		7
PUBLICA	TIC	ONS	15	2

C

LIST OF TABLES

	Table 3.1: Gap length, capacitance value with no sample, initial resistance, and	
	cross section area for ten samples of fabricated microgap capacitors3	33
	Table 4.1: Components and circuits the +15V power supply are connected4	17
	Table 4.2: Components and circuits the +5V power supply are connected	50
	Table 4.3: Components and circuits the -5V power supply are connected	52
	Table 4.4: Components and circuits the -15V power supply are connected5	53
	Table 4.5: 74193 up/down counter pin number and description	57
	Table 4.6: Calculated base voltage for designated angles	54
	Table 4.7: Calculated and nearest available resistor value for based resistor6	55
	Table 4.8: Calculated values for I_{I_2} , I_{2_3} , I_{4_3} , I_{4_3} , I_{5_3} , and I_{6_3}	56
	Table 4.9: Calculated and nearest available resistor value for resistor R2, R3, R4,	,
	R5, and R6	57
	Table 4.10: Name and function of each pin in MAX262	70
	Table 4.11? The cutoff frequency, clock frequency and the ratio between clock	
	and cutoff frequency	73
	Table 5.1: Program address location for MAX262)8
\bigcirc	Table 5.2: Program address location for designed MAX262) 9
	Table 5.4: Ranging level and resistor value)6
	Table 6.1: Measurement accuracy of PMS 14	12
	Table 7.1: Improving suggestion for future work for each part of PMS14	16

LIST OF FIGURES

	Figure 1.1:	Three parts of MNAPMS	2
	Figure 3.1:	(a) Silicon Wafer (b) SOI Wafer	. 22
	Figure 3.2:	Design specification for Mask 1	. 23
	Figure 3.3:	The mask 1 design which is used to develop the lateral nanogap gold	
		electrode	. 24
	Figure 3.4:	Design specification for mask 2	. 24
	Figure 3.5:	Schematic representation Sa , where $Sa=2hSa$. 25
	Figure 3.6:	The mask 2 design which is used to develop the pad gold electrode	
		pattern	. 25
	Figure 3.7:	Gold/Ti- PolySilicon-Silicon structure fabrication process flow	. 27
	Figure 3.8:	Captured image of the fabricated nanogap	. 29
	Figure 3.9:	Electrical model of micro and nanogap capacitor	. 29
	Figure 3.10	2: The measurement setup using Novocontrol Alpha-A dielectric	
	.5	analyzer for electrical analysis of fabricated micro and nanogap	
	(D).	capacitor	. 30
\bigcirc	Figure 3.1	1: Impedance over frequency measurement for the fabricated nanogap	
		capacitor	. 31
	Figure 3.12	2: Measured capacitance and loss tangent over frequency for the	
		fabricated nanogap capacitor	. 32
	Figure 3.13	3: Electrical model of nanogap capacitor with introduce of DNA sample	. 34

Figure 4.1: Multisim 10 workspace and description	37
Figure 4.2: Capture Design windows with Session log, Tool palette and Project	
Manager	40
Figure 4.3: The I/O, PWM, and ADC port in XScale Mini main board	43
Figure 4.4: The I/O port on GPIO	43
Figure 4. 5: The ADC port on GPIO	43
Figure 4.6: Basic block diagram for PMS.	45
Figure 4.7: Development process flows of PMS	46
Figure 4.8: LM317 with TO-39 package	47
Figure 4.9: Biasing circuit for LM317	48
Figure 4.10: Simulation of +15V output voltage	49
Figure 4.11: LM7805 with T0-220 package	49
Figure 4.12: LM7805 circuit	50
Figure 4.13: Simulation of +5V output voltage	51
Figure 4.14: LM337 with TO-220 package	51
Figure 415: Biasing circuit of LM337	52
Figure 4.16: Simulation of -5V output voltage	53
Figure 4.17: Simulation of -15V output voltage	54
Figure 4.18: Block diagram for sinusoidal wave generation	56
Figure 4.19: 74193 up/down counter	58
Figure 4.20: Connection of two 74193 up/down counter to create an 8 bit up/down	
counter	58
Figure 4.21: 8 bit Continues count up/down circuit.	59

	Figure 4.22:	Continues circuit	60
	Figure 4.23:	Timing Diagram for up and down counter circuit	60
	Figure 4.24:	8 bit Current Digital to Analog converter (DAC) with two reference	
		voltage	61
	Figure 4.25:	Digital to analog converter circuit	61
	Figure 4.26:	Multisim simulation of triangle wave generator circuit	62
	Figure 4.27:	Triangle wave output on Oscilloscope XSC1	62
	Figure 4.28:	Diode clipper circuit	64
	Figure 4.29:	Multisim simulation of diode clipper circuit	68
	Figure 4.30:	Input triangle waves with harmonic distortion value and output	
		sinusoidal wave with harmonic distortion value on oscilloscope	
		XSC1	68
	Figure 4.31:	MAX262 pin configuration	70
	Figure 4.32:	Main menus for MAX260/MAX261/MAX262 Filter Design software	71
	Figure 4.33;	Filter Parameter window	72
	Figure 4.34:	Connection configurations for MAX262	74
	Figure 4.35:	Auto balancing bridge circuits	76
\bigcirc	Figure 4.36:	Current wave and voltage wave of DNA immobilization sample	
		electrical model capacitor with 1kHz frequency	77
	Figure 4.37:	Current wave and voltage wave of DNA hybridization sample	
		electrical model capacitor with 1kHz frequency	79
	Figure 4.38:	Sinusoidal to square wave converter circuit	81
	Figure 4.39:	Simulation of the input sinusoidal wave and the output square wave	82

	Figure 4.40: Wave comparator circuit	83
	Figure 4.41: Two inputs of square wave with difference phase and the output	
	square wave with difference duty cycle for (a) 0° , (b) 45° , and (c) 90° .	85
	Figure 4.42: Square wave to DC converter circuit	86
	Figure 4.43: Square wave for DC voltage converter output for a) 0° and b) 90°	87
	Figure 4.44: Output of the phase measurement for 45°	88
	Figure 4.45: The output of phase measurement for DNA sample during	
	(a) immobilization and (b) hybridization	89
	Figure 4.46: Process flow for Printed Circuit Board fabrication	90
	Figure 4.47: PMS circuit design using OrCAD Capture	91
	Figure 4.48: OrCAD Layout of PMS	92
	Figure 4.49: Fabricated PCB board with attached to XScale SBC	92
	Figure 5.1: GUI of Nanogap Automated Permittivity Measurements System	96
	Figure 5.2: MAX262 interface timing	99
	Figure 5.3: Low pass filter programming flow chart	. 101
	Figure 5.4. Flow chart for clock generation	. 103
	Figure 5.5: Flow chart for ranging and capture of current wave, voltage wave, and	
\bigcirc	phase differences voltage	. 105
	Figure 5.6: Flow chart for analyzing process	. 108
	Figure 5.7: Flow chart for result display programming	. 109
	Figure 6.1: Process flow for PMS testing procedure	. 112
	Figure 6.2: Power supply circuit with it testing points	. 113
	Figure 6.3: Output measurements for (a) OSC1 (b) OSC2 (c) OSC3 (d) OSC4	. 115

	Figure 6.4: Visual C++ coding of PWM generation for triangle wave generation	116
	Figure 6.5: Output for measured OSC5 at frequency of (a) 10Hz (b) 100Hz and	
	(c) 1kHz	119
	Figure 6.6: The measured LOGIC1 for (a) highest and (b) lowest counting value	119
	Figure 6.7: The measured OSC6 for frequency of (a) 10Hz (b) 100Hz (c) 1kHz	121
	Figure 6.8: The measured OSC7 for the frequency of (a) 10Hz (b) 100Hz and	
	(c) 1kHz	123
	Figure 6.9: The measured DA1 at the frequency of (a) 10Hz, (b) 100Hz, and	
	(c) 1kHz	125
	Figure 6.10: Visual C++ coding for programmable low pass filter	126
	Figure 6.11: Programmable low pass filter integration and testing circuit	127
	Figure 6.12: LOGIC2 test result	127
	Figure 6.13: OSC8 test result for (a) 10Hz (b) 100Hz (c) 1kHz	129
	Figure 6.14: OSC9 test result for (a) 10Hz (b) 100Hz (c) 1kHz	130
	Figure 6.15: DA2 test result for (a) 10Hz (b) 100Hz (c) 1kHz	132
	Figure 6.16: Visual C++ coding for impedance measurement circuit	134
	Figure 6.17: OSC10 result for (a) 10Hz, (b) 100Hz, and (c) 1kHz	137
	Figure 6.18: LOGIC3 result for ranging selection	137
	Figure 6.19: OSC11 (A) and OSC12 (B) measurement output for 100Hz output	137
	Figure 6.20: The output for OSC13 and OSC14 for the output current and voltage	
	wave in the impedance measurement circuit.	140
	Figure 6.21: The OSC15 output result for the output current and voltage wave in	
	impedance measurement circuit	141

Figure 6.22: The measurement of OSC16 for the output current and voltage wave

in impedance measurement circuit.	. 14	4	1
-----------------------------------	------	---	---

orthis item is protected by original convitable

LIST OF ABBREVIATIONS

PMS Permittivity Measurement System

Micro and Nanogap Automated Permittivity Measurement System **MNAPMS** .re. oviioinal copyinge

- V Voltage
- I Current
- Cross section of plate А
- Gap distance of nanogap Х
- Relative permittivity εr
- Electric constant εο
- f Frequency
- Xc Capacitance reactance
- Ζ Impedance
- θ Phase difference
- R Resistance

С

- Capacitance
- Coulomb
 - Boltzmann constant
- Charge of electron
- Т Period of full cycle
- Concentration of the species no
- S_n unit less parameter
- RF Radio Frequency
- L Inductance
- DC Direct Current

- I-V Current vs Voltage
- DUT Device Under Test
- SBC Single Board Computer
- I/O Input Output Port
- Voltage vs Time measurement OSC
- oriemal copyright DA Amplitude vs Frequency measurement
- LOGIC Measurement using logic analyzer
- DNA Deoxyribonucleic Acid
- ANN Artificial Neural Network
- GUI Graphic User Interface
- mpy orthis termination General Purpose Input Output GPIO

Membangunkan Sistem Automatik Pengukur Ketelusan Peranti Sela Mikro dan Nano

ABSTRAK

Objektif kajian ini adalah untuk membangunkan sistem elektronik yang terintegrasi dengan kapasitor biopenderia bersela nano. Sistem ini disebut Permittivity Measurement System (PMS). Ia mengukur nilai galangan kapasitor bersela nano dan mengira nilai ketelusan berdasarkan spesifikasi parameter kapasitor bersela nano yang diperolehi melalui proses pencirian. Parameter itu adalah kelebaran jurang, rintangan dalaman, nilai kapasitor dengan tanpa sampel, dan kawasan keratan rentas plat. Satu sampel kapasitor nanogap dan sepuluh sampel kapasitor microgap juga dicirikan. Terdapat lima komponen yang digabungkan untuk menghasilkan PMS. Komponen pertama adalah penjana gelombang bentuk sinus. Teknik yang digunakan untuk menjana gelombang sinus adalah penjana gelombang sinus kaedah digital. Julat frekuensi keluaran ialah dari 10Hz sehingga 1kHz dan voltan puncak ke puncak keluaran ialah 6V ke -6V. Komponen kedua adalah penapis lulus rendah. Komponen ini digunakan untuk menapis hingar dari gelombang sinus. MAX262 penapis aktif sejagat boleh aturcara dipilih sebagai penapis lulus rendah. Komponen ketiga yang mewujudkan PMS dan bersambung dengan kapasitor bersela nano adalah pengukur galangan. Kaedah automatik keseimbangan jambatan digunakan untuk mengukur nilai galangan dari kapasitor nano sela. Sebuah litar pemilih yang mempunyai lapan peringkat ditambah bagi meluaskan julat pengukuran galangan. Amplitud gelombang sinus yang dikenakan pada kapasitor nano sela ialah 200mV. Komponen keempat adalah pengukur pembezaan fasa. Ia bertanggungjawab untuk mengukur beza fasa antara gelombang arus dan voltan. Komponen kelima dan bahagian terpenting PMS adalah XScale-Mini SBC. Ianya bertanggung jawab untuk mengawal, menangkap, dan menganalisis isyarat daripada bahagianbahagian lain dari PMS. Visual C++ digunakan untuk membangunkan bahagian perisian XScale-Mini SBC. Gelombang arus, gelombang voltan, dan juga keluaran pembezaan fasa ditangkap dan dianalisa. Semua litar diuji dan isyarat yang dihasilkan dipaparkan dan dibincangkan. Ujian menunjukkan bahawa PMS mampu untuk mengukur dengan ketepatan sehingga 85%. Simulasi untuk model elektrik DNA semasa imobilisasi dan hibridisasi dilakukan. Litar yang dibina diuji melalui pengukuran kapasitor mikro dan nano sela tanpa sampel.

Development of Micro and Nanogap Automated Permittivity Measurement System

ABSTRACT

The goal of this research is to develop an electronic system that integrated with nanogap capacitor biosensor. This system is called Permittivity Measurement System (PMS). It measures the impedance value of the nanogap capacitor and calculates the permittivity value based on the parameter specification of nanogap capacitor obtained through characterization process. The parameters are gap width, internal resistance, capacitance value with no sample, and cross section area of the plate. One sample of nanogap and ten samples of microgap capacitor are characterized. Five components combined to create PMS. The first component is the sinusoidal wave generator and the technique that employed for sinusoidal wave generation is the digital approximation sinusoidal wave generation technique. The output frequency range is from 10Hz until 1kHz and the output peak to peak voltage is 6V to -6V. The second component is the low pass filter. This component is used for filtering the noise from sinusoidal wave. MAX262 programmable universal active filter is selected as the low pass filter. The third component that creates PMS and has contact with the nanogap capacitor is the impedance measurement unit. The auto balancing bridge method is employed to measure the impedance value of the nanogap capacitor. A range circuit with eight level of selection is added to wider the impedance measurement range. The amplitude of the sinusoidal wave that applied to the nanogap capacitor is 200mV. The fourth component is the phase differential measurement unit. It is responsible to measure the phase difference between current and voltage wave. The fifth and the main component of PMS is the XScale-Mini SBC. It is responsible to control, capture, and analyze signal from the other component of PMS. Visual C++ is used to develop the software part of XScale-Mini SBC. The current wave, voltage wave, and also the output phase differential is captured and analyzed. All the circuits are tested and the produced signals is shown and discussed. The test shows that PMS is capable to measure up to 85% of accuracy. The simulation for the electrical model of DNA during immobilization and hybridization is performed. The fabricated circuit is tested through the measuring of micro and nanogap capacitance.

CHAPTER 1

BACKGROUND

1.1 Introduction

This chapter explains the development background of Micro and Nanogap Automated Permittivity Measurement System (MNAPMS). Next, the objective and the scope of the research are highlighted. After that, the problem concerning other method of DNA immobilization and hybridization detection is discussed. Lastly, the organization of this thesis is explained.

1.2 Overview of MNAPMS

The development idea of the Micro and Nanogap Automated Permittivity Measurement System came during the characterization process of the fabricated nanogap capacitor using Novocontrol Alpha-A Dielectric Analyzer. The analyzer is bulky, non-portable, expansive, and non-specific. Thus, another compact, portable, low cost, and specific system should be developed with fully integrated with the micro and nanogap capacitor in order to obtain the higher accuracy result.

The developments of MNAPMS are divided into three difference parts. The first part is the fabrication and characterization of micro and nanogap capacitor. It is developed using standard CMOS fabrication procedure. The second part is the development of Permittivity Measurement System (PMS). This electronic system integrates with the nanogap capacitor and measure the permittivity value of the sample introduce to the capacitor. The reasons for measuring the permittivity value instead of capacitance value is because the permittivity value represented the value of the introduced sample in the capacitor but capacitance value represent the value of the capacitor with it sample. Although both values can produce the significant result, but the permittivity values are not tied to the type of capacitor that used in the measurement process. This means that whatever the type of micro and nanogap capacitor used in the measurement process the results are still the same. In order for the PMS to calculate the permittivity, value from the measured impedance, the gap length and the section area of the plate for the fabricated nanogap capacitor are required. The combination of nanogap capacitor with PMS is called the Micro and Nanogap Permittivity Measurement System (MNPMS). The third part of MNAPMS is the addition on Artificial Neural Network (ANN) to the MNPMS. The ANN is responsible to analyze the calculated permittivity value in order to determine the result of the DNA sample whether it hybridize or mismatch. The ANN requires training before it can make a proper decision. Figure 1.1 shows the three parts of MNAPMS.

Figure 1.1: Three parts of MNAPMS

1.3 Problem Statement

The standard commercial approach to deoxyribonucleic acid (DNA) hybridization detection are based on the use of fluorescent, radioscope and other labels that can be schematically summarized in the following procedure:

- A probe of single-stranded known sequence of DNA is immobilized on a substrate;
- ii) The unknown sequence (target) is labeled with a specific tag;
- iii) When hybridization occurs, the target sequence binds to its complementary strand immobilized on the surface; and
- iv) Its presence can be optically detected.

The required instrumentation is bulky, costly, and not portable. For this reason, a number of new approaches for direct label-free detection of DNA hybridization have been proposed in the last decade such as detection based on quartz crystal microbalance (QCM) (Okahata, 1998), the cantilever-based techniques (Cai L., 2000), and several examples of electronic detection method (De Pablo P.J., 2000). Direct electronic detection has several advantages with respect to other approaches. The detector is incorporated in the substrate, the output signal can be directly acquired and processed on a chip, and automatic recognition is achievable in real time and at low cost. This research will help to enhance the detection of hybridized DNA and at the same time developed a DNA hybridization detection kit in a low cost approach.

The detection method for the immobilization and hybridization of DNA is almost the same as the standard commercial approch except for the immobilization process is done on the nanogap capacitor. The permitivity value of the DNA sample during immobilization and hybridization is measured and compared. If there are significant change in the measured permittivity value during immobilization and hybridization, the sample is consider hybridize. Otherwise, it is consider mismatch.

1.4 Objective

The objective of this research is to develop a measurement system that measures the permittivity value of micro and nanogap capacitor. This system is designed to detect the immobilization and hybridization of deoxyribonucleic acid (DNA).

1.5 Research Scope

This research is embarked based on these following scopes:

- To execute masking design and fabrication process of micro and nanogap capacitor together with morphological and electrical characterization. One sample of nanogap capacitor and ten samples of microgap capacitor are morphologically and electrically characterize. The characterization result is crucial for the design of PMS.
- ii) To design and simulate the Permittivity Measurement System (PMS) circuits. It consists of power supply circuit, sinusoidal wave generation circuit, low pass filter circuit, and impedance measurement circuit and phase differential measurement circuit. The National Instrument MultiSim simulation software is used to validate the circuits design.
- iii) To write the programming code for XScale-Mini single board computer using Visual C++. An analysis is done in order to obtain the permittivity value from the captured signals. A Graphic User Interface (GUI) is used as the system interface and displays the output result.
- iv) To fabricate the Permittivity Measurement System (PMS) circuits. The fabricated circuits are interfaced with the XScale-Mini single board

computer. The samples of micro and nanogap capacitors are used to test the measurement accuracy of PMS.

1.6 Thesis Organization

This research thesis is divided into seven chapters. Chapter 1 explains the background development of MNAPMS. Next, the research objective and the research scope are defined and the problem statement is discussed.

Chapter 2 highlights the theoretical approach for the development of PMS. The chapter starts with explanation of biosensor application and continues with the discussion about the principle of the capacitor and the theory for the use of nanogap capacitor as a biosensor. The method of impedance measurement and its principle are discussed before a brief explanation of DNA.

Chapter 3 discusses about nanogap capacitor and its fabrication process. This chapter starts with the clarification of the starting material used for the fabrication of nanogap capacitor. Then, the chapter continues with the discussion of the masking design and the fabrication process step. After that, the morphological and electrical characterization for ten fabricated microgap sample and one sample of nanogap capacitor is explained. Lastly, the calculation of an electrical modal for nanogap capacitor during immobilization and hybridization state is done.

Chapter 4 explains about the hardware design of PMS. The design procedures starts with the design of power supply circuit and continues with the design of sinusoidal wave generation circuit, programmable low pass filter circuit, impedance measurement circuit, and the phase measurement circuit. The design of each circuit is thoroughly explained and the simulation result using NI Multisim 10 are showed and discussed. The simulations of the electrical model for DNA immobilization and hybridization are also done and the capacitance value for those models is calculated.

Chapter 5 discusses about the software development part of PMS. The chapter starts with the discussion of GUI design for PMS. Next, the whole PMS programming is summarized on the general flow chart and the specific programming for the low pass filter, clock generation, signal capture, signal analysis, and display programming flow chart are also explained.

Chapter 6 is about the testing and interfacing of the fabricated circuit with XScale Mini Single Board Computer. This chapter starts by explaining the type of test that is performed to the fabricated circuits. The programming function that associated with the sinusoidal wave generation circuit, programmable low pass filter circuit, impedance measurement circuit, and phase differential measurement circuit is also discussed. The measurement for accuracy of the fabricated PMS is done.

Chapter 7 summarizes the main contribution of the thesis and possible direction for future research is presented.

Thisit