

THERMO-ENZYMATIC HYDROLYSIS OF

BITTER CASSAVA STARCH:

FUNDAMENTAL AND PROCESS

OPTIMIZATION STUDIES

by

NOORULNAJWA DIYANA BT YAACOB

(0731110215)

Thister

A thesis submitted In fulfilment of the requirements for the degree of Master of Science (Bioprocess Engineering)

School of Bioprocess Engineering UNIVERSITI MALAYSIA PERLIS

2010

ACKNOWLEDGEMENT

In the Name of God, Most Gracious, Most Merciful

First and foremost, I would like to show my deepest gratitude to both my parents for trying to provide me with all the best in life though it would mean lots of sacrifice on their behalf. Thank you for your unconditional love and encouragement, support and understanding all this while. Thank you also for giving me the absolute freedom to choose the path of life to walk. This achievement would serve to be one of the first great accomplishments of many more to come.

Next on my list are to both my supervisors, Assoc. Prof Mohamed Zulkali Mohamed Daud and Madam Ku Syahidah Ku Ismail. I'm very lucky and honored to have the opportunity to carry out my studies under them. Their incessant guidance, support motivation and knowledge passed down has made the impossible possible. Their help and assistance gave me the strength and driving force to reach for greater heights. I would also like to convey my gratitude to Assoc. Prof. Dachyar for his kindness to help and give guidance when clouded with uncertainties. The knowledge departed from him had also enlightens me in many ways. High appreciation I give to Dr. Paul Mullenix from SystatS Consulting in his advice and knowledge for statistical part in this thesis.

Not forgetting also, those who had given their helping hand along the years of my studies. The technicians in Advanced Material Research Center (AMREC), SIRIM Berhad, Kulim HiTec for helping in using the XRD, AFM and DSC, and School of Materials Engineering for providing guidance in using the SEM.

The moral and emotional supports from fellow friends are also not forgotten. In no particular order, they are Aza, Linda, Alina, Wanie, Azirah, Anis, Fhatah, Chunk and Mai. I

would like to add my younger sister, into the list who is always there for support, assistance and cheering the atmosphere up with her jokes and stories.

To the staff in lab of school of Bioprocess engineering, Cik Ieta, Pn Sriyana, Pn Hasyiera, Cik Hafiza, En. Nabil and En Anas, also supporting staff, En. Syam, En. Ammar and Cik Jue, my sincere appreciation goes to them for their help either directly or indirectly which had contributed to the completion of the thesis. Last and not least, I would like to thank MOSTI for offering research grants which enables this research to be carried out.

TABLE OF CONTENTS

	Acknowledgement		
	Table of C	ontent	iii
	List of Tab	oles	xii
	List of Fig	ures	xiv
	List of Plat	tes	xvi
	List of Abb	previation	xvii
	List if Sym	ibols	xxi
	Abstrak (B	ures tes previation bols Bahasa Melayu) English)	xxii
	Abstract (I	English)	xxiii
	Chapter 1	Bahasa Melayu) English)	
	1.1	Overview	1
	1.2	Bioethanol	2
	1.3	Bitter Cassava- A promising Bioethanol	4
		Feedstock	
\bigcirc	1.4	Thermo-Enzymatic Hydrolysis of	5
		Starch	
	1.5	Research Approach	6
	1.6	Research Objectives	7

	2.1	Biology of cassava	8
		2.1.1 Utilization	10
	2.2	Starch	12
		2.2.1 Starch sources	12
	2.3	Starch structure	15
		2.3.1 Major Component	15
		2.2.1 Starch sources Starch structure 2.3.1 Major Component 2.3.1.1 Amylose 2.3.1.2 Amylopectin	15
		2.3.1.2 Amylopectin	16
		2.3.2 Minor Component	17
		2.3.2.1 Lipids	18
		2.3.2.2 Phosphate	19
		2.3.2.3 Protein	19
	2.4	Crystallite and polymorphic pattern	20
	2.5	Crystallinity	23
	2.6	Starch Properties	24
		2.6.1 Granule Swelling and Solubility	24
\bigcirc		2.6.2 Gelatinization	28
	2.7	Hydrolysis Kinetic to the Starch	32
		Properties	
	2.8	Thermo-Enzymatic Hydrolysis of Starch	33
		2.8.1 Starch Liquefaction	34
		2.8.1.1 Biochemical Properties of α-amylase	35

	2.8.1.2 Determination of Liquefaction	36
	Efficiency	
	2.8.2 Saccharification of liquefied	37
	starch)
	2.8.2.1 Biochemical properties of	38
	amyloglucosidase	
2.9	Optimization Study 2.9.1 The 2K Factorial Design	38
	2.9.1 The 2K Factorial Design	38
	2.9.2 Response Surface Methodology	39
	2.9.3 Response Surface Methodology	40
2.10	Bioethanol Production	42
Chapter 3	· s protecte	
3.1	Materials and Enzymes	45
3.2	Chemical Preparations	46
wils !	3.2.1 Citrate-phosphate Buffer	46
	3.2.2 3, 5- dinitrosalicyclic acid (DNS)	46
	Reagent (Bruner, 1964)	
3.3	Overall Experiment Flowchart	4 7
3.4	Starch Isolation	50
3.5	Fundamental Studies	50
	3.5.1 Granule Morphology	50
	3.5.2 Proximate Analysis	51

3.5.2.1 Total Nitrogen	51
3.5.2.2 Protein	52
3.5.2.3 Carbohydrate	52
3.5.2.4 Phosphorus	52
3.5.2.5 Moisture Content	53
3.5.2.6 Ash	54
3.5.3 Amylose Content	54
3.5.3.1 Apparent Amylose Content	54
3.5.3.2 Total Amylose Content	55
3.5.4 X-ray Diffraction	55
3.5.4.1 Determination of Relative	55
Crystallinity	
3.5.5 Swelling Factor	56
3.5.6 Solubility	57
3.5.7 Gelatinization Parameters	57
3.6 Statistical Analysis	58
3.7 Preliminary Study of Liquefaction	58
Process	
3.7.1 Liquefaction Process	58
3.7.1.1 Effect of substrate concentration	58
and reaction time	
3.7.1.2 Effect of pH	59
3.7.1.3 Effect of Enzyme concentration	59
3.7.1.4 Effect of Ca^{2+}	60

		3.7.2 Determination of Dextrinizing	60
		Activity of α-amylase	
	3.8	Preliminary Study of Saccharification	61
		Process	
		3.8.1 Saccharification Process	61
		3.8.1.1 Effect of Temperature and Time	61
		3.8.1.2 Effect of pH	61
		3.8.1.3 Effect of Enzyme Concentration	62
		3.8.1.4 Effect of Divalent Ions	62
		3.8.2 Determination of Glucose	62
		Concentration	
	3.9	Experimental Design	63
		3.9.1 Two-Level Full Factorial Design	63
		3.9.1.1 Liquefaction Process	63
		3.9.1.2 Saccharification Process	65
	3.10	Response Surface Methodology	67
	nis *	3.10.1 Liquefaction Process	67
		3.10.2 Saccharification Process	70
\bigcirc	3.11	Optimization of Liquefaction and	71
		Saccharification Process	

4.1	Physicochemical Properties of Manihot esculenta starch	73
	4.1.1 Morphological Granular	74
	Characteristics	30
	4.1.2 Chemical Compositions	80
	4.1.3 X-ray Pattern and Crystallinity	81
	4.1.4 Swelling Power and Solubility	83
	4.1.5 Gelatinization	86
4.2	Process variables for liquefaction and	91
	saccharification process	
	4.2.1 Liquefaction Process	91
	4.2.1.1 Effect of substrate concentration	91
	and reaction time	
	4.2.1.2 Effect of pH	92
• ×	4.2.1.3 Effect of Enzyme Concentration	94
ands'	4.2.1.4 Effect of Divalent ions	95
	4.2.2 Saccharification process	97
\bigcirc	4.2.2.1 Effect of Temperature and Reaction	97
	Time	
	4.2.2.2 Effect of pH	98
	4.2.2.3 Enzyme of Enzyme Concentration	99
	4.2.2.4 Effect of Divalent Ions	100

4.2.3	Optin	num condition of liquefaction	101
	and s	accharification process	
4.3	Facto	orial Experimental Design	102
	4.3.1	Liquefaction Process	102
	4.3.2	Saccharification Process	106
	4.3.3	Selection of variables and range for	110
		optimization	
4.4	Resp	oonse Surface Methodology	111
	4.4.1	Liquefaction Process	111
		4.4.1.1 Regression Analysis	111
		4.4.1.2 Residual Analysis	114
		4.4.1.3 Model Analysis	116
		4.4.1.4 Optimal Design	119
	4.4.2	Saccharification Process	121
	01	4.4.2.1 Regression Analysis	121
· KO	× *	4.4.2.2 Residual Analysis	123
ands '		4.4.2.3 Model Analysis	125
Y		4.4.2.4 Optimal Design	127
\bigcirc			

Conclusions

131

	Recommendations for Future Research	133
	References	134
	Appendices	
	Appendix A	147
	Appendix B	149
	Publications	150
	in the second	
	References Appendices Appendix A Appendix B Publications Publications	
	TON	
Ś	his	
\bigcirc		
\smile		

xi

LIST OF TABLES

	2.1	Cassava productionin 2007 and 2008	11
	2.2	Unit cell structure of A- and B-type crystallites	21
	2.3	Degree of crystallinity (%) of starches determined by different	25
		methods	
	2.4	Gelatinization properties of some cassava varieties	31
	3.1	List of chemicals and enzymes used and its brand	45
	3.2	Factors and levels for two-level factorial design study of	64
		dextrinizing activity	
	3.3	Table for two- level factorial design (liquefaction process)	64
	3.4	Factors and levels for two-level factorial design study of glucose	65
		production	
	3.5	Table for two-level factorial design (saccharification process)	66
	3.6	Factors and levels of liquefaction process after augmentation	68
	3.7	Central composite design for response surface methodology	69
		(liquefaction process)	
\bigcirc	3.8	Factors and levels of saccharification process	70
	3.9	Central composite design for response surface methodology	71
		(saccharification process)	
	3.10	The goal limits of the factors and response of the optimized	72
		liquefaction process	

3.11	The goal limits of the factors and response of the optimized	72
	saccharification process	
4.1	Chemical compositions of cassava starch	81
4.2	Pearson correlation coefficient between physicochemical	87
	properties of cassava starch	
4.3	Gelatinization parameters of cassava starch	89
4.4	Optimum parameter in liquefaction and saccharification process	102
4.5	Experimentation results of two-level factorial design for	104
	liquefaction process	
4.6	ANOVA results for liquefaction process	105
4.7	Experimentation results of two-level factorial design	107
	for saccharification process	
4.8	ANOVA results for saccharification process	109
4.9	Experimentation results of CCD for liquefaction process	112
4.10	ANOVA results of CCD liquefaction process	113
4.11	Optimal design of liquefaction process	120
4.12	Experimentation results of CCD for saccharification process	121
4.13	ANOVA results of CCD saccharification process	123
4.14	Optimal design of saccharification process	129

LIST OF FIGURES

Figure

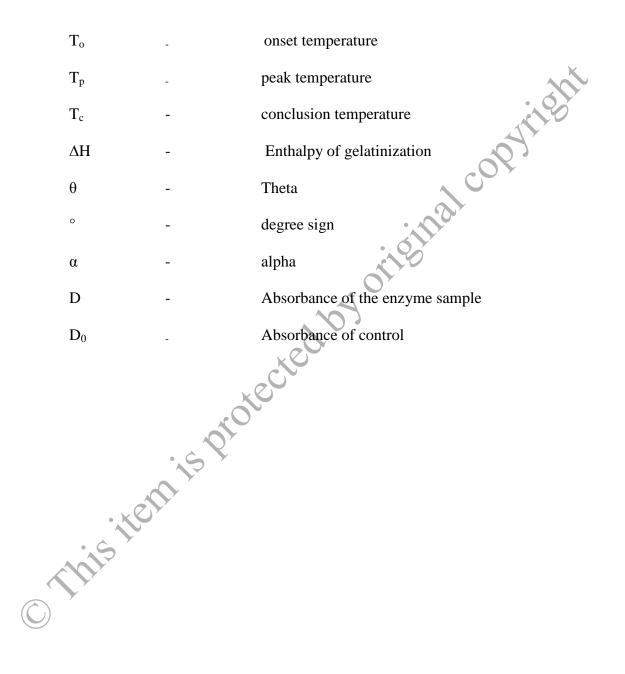
	2.1	Overview of the industrial processing starch into cyclodextrine,	14
		maltodextrine, glucose or fructose syrups	
	2.2	Amylose and amylopectin structure	16
	2.3	Schematic representation of a section of amylopectin	17
	2.4	A- and B- type polymorphs of amylose	21
	2.5	X-ray diffraction patterns of A-, B-, and C- type starches with	22
		characteristics d-spacing	
	2.6	Drawing of the process of swelling of a potato starch granule	27
		in hot water	
	2.7	CCD for 2 and 3 factors	41
	3.1	Flowchart diagram of the fundamental study of cassava starch	47
	3.2	Flowchart diagram for preliminary study of liquefaction and	48
		saccharification process	
	3.3	Flowchart diagram of process optimization	49
	3.4	Calculation of the relative degree of the crystallinity	56
	4.1	XRD diffractogram of Manihot esculenta starch	82
\bigcirc	4.2	X-ray diffraction patterns of (red) native, (black) gelatinized,	83
		(blue) enzymatic treatment cassava starch	
	4.3	Swelling power of Manihot esculenta starch	85
	4.4	Solubility of Manihot esculenta starch	85
	4.5	Swelling-Solubity curve	85
	4.6	The DSC thermogram of Manihot esculenta starch	90

	4.7	Effect of substrate concentration by time	92
	4.8	Effect of Ph on dextrinizing activity of BAN 480L	93
	4.9	Effect of enzyme concentration on dextrinizing activity of	95
		BAN 480L	
	4.10	Effect of divalent ion on dextrinizing activity	96
	4.11	Effect of temperature by time in saccharification process	98
	4.12	Effect of pH on saccharification process	99
	4.13	Effect of enzyme concentration on saccharification process	100
	4.14	Effect of divalent ions on saccharification process	101
	4.15	Normal probability plot of the effects for liquefaction process	105
	4.16	Normal probability plot of the effects for saccharification process	109
	4.17	Normal plots of residuals of dextrinizing activity	114
	4.18	Residuals vs predicted plot for dextrinizing activity	116
	4.19	Contour plot on the effect of enzyme concentration	118
		and time on dextrinizing activity at pH and 85°C	
	4.20	Ramps for various factors and response (liquefaction)	120
	4.21	Normal plot of residuals of glucose concentration on	124
		saccharification process	
	4.22	Residual vs predicted plot for glucose concentration on	126
		saccharification process	
	4.23	Contour plot on the effect of temperature and pH on glucose	127
		concentration using 0.2% amyloglucosidase at 40 min	
	4.24	Ramps for various factors and response (saccharification process)	128

LIST OF PLATES

2.1	Manihot esculenta plant		
4.1	4.1 SEM image of a native cassava starch a) $2\mu m$ b) $5\mu m$		
	c)10µm	3	
4.2	AFM image of the native cassava starch granule surface	77	
	a) 2µm b) 5µm		
4.3	SEM image of gelatinized cassava starch a) 50µm and	79	
This	b) 20µm		

LIST OF ABBREVIATIONS


	AFM	-	Atomic force microscopy
	Abs	-	Absorbance
	AM	-	Absorbance Amylose Amylopectin
	AMP	-	Amylopectin
	AMG	-	Amyloglucosidase
	ANOVA	-	Analysis of variance
	BLA	-	Bacillus licheniformis alpha amylase
	CCD	-	Central composite design
	CV	-	Correlation of variance
	CN	-	Cyanide
	DNS	-	Dinitro salisyclic acid
	DoE	· ?	Design of experiment
	DMSO	ap	Dimethyl sulfixe oxide
	DF V	-	Degree of freedom
	D.A.	-	Dextrinizing activity
	DSC	-	Differential Scanning Calorimetry
	DE	-	Dextrose equivalent
	DP	-	Degree of polymerization
	Da	-	Dalton
	e.g.	-	example
	e.t.c.	-	et cetera
	EU	-	Europe Union

	EM	-	Electron microscopy
	FFA	-	Free fatty acid
	g	-	gram
	g/g	-	gram per gram
	GL	-	glycolipids
	GC	-	Gas Chromatography
	HPLC	-	High Performance Liquid Chromatography
	HCl	-	Hydrogen chloride
	H ₃ BO ₃	-	Boric acid
	H_2SO_4	-	Sulfuric acid
	hr	-	hour
	ha	-	hectare
	I ₂ KI	- "Ŏ	Iodide solution
	J/g	P	joule per gram
	KH ₂ PO ₄	Q1.	Monopottasium Dihydrogen phosphate
	кі 🔨	_	Potassium Iodide
	kg	-	kilogram
	kV	-	kilovolt
	L	-	liter
	MAP	-	Monoammonium phosphate
	mg	-	milligram
	min	-	minute
	max	-	maximum
	mg/ml	-	milligram per milliliter

	ml	-	milliliter
	М	-	Molar
	mM	-	miliMolar
	mA	-	miliampire
	NaOH	-	miliampire Sodium Hydroxide
	nm	-	nanometer
	Na ₂ SO _{3.} 7H ₂ O	-	Sodium sulfite heptahydrate
	NA	-	Not detectable
	Ν	-	Normality
	NaCl	-	Sodium Chloride
	ОН	-	Hydroxyl
	OFAT	-	One factor at time
	PRESS	0	Predicted residual error sum of squares
	PHI		Peak High Index
	ppm	a h	part permillion
	PL V	-	Phospholipids
	RSM	-	Response surface methodology
	rpm	-	rotation per minute
	sec.	-	second
	SPSS	-	Statistical Package for the Social Sciences
	SEM	-	Scanning electron microscopy
	TEM	-	Transmission Electron Microscopy
	TMA	-	Thermal mechanical analysis
	t/ha	-	tone per hactare

	TG	-	Triglyceride
	USA	-	United State of America
	VS.	-	versus
	v/v	-	volume per volume
	v/w	-	volume per weight
	w/g	-	volume per volume volume per weight watt per gram weight per volume X-ray diffractometer
	w/v	-	weight per volume
	XRD	-	X-ray diffractometer
	μl	-	microliter
	μm	-	micrometer
	°C	-	degree Celsius
	°C/min ⁻¹	-	degree Celsius per minute
	¹³ C-NMR	0	Carbon 13 Nuclear Magnetic Resonance
O	13C-NMR	n is pic	

LIST OF SYMBOLS

ABSTRAK

Ciri-ciri asas kanji ubi kayu yang akan digunakan di dalam penghasilan bioetanol dikaji dengan terperinci. Di dalam kajian ini, ubi kayu yang tidak boleh dimakan (Manihot esculenta) telah digunakan sebagai bahan mentah bagi kanji di mana ia akan melalui hidrolisis enzimatik untuk menghasilkan glukosa. Kemudiannya melalui proses penapaian bagi mendapatkan bioetanol. Analisis hampiran terhadap kanji ini menunjukan bahawa kandungan karbohidrat adalah sebanyak 91.17% manakala jumlah ketara amilosa masingmasing adalah 16.6% dan 17.1%. Phospohorus dan abu menunjukkan nilai terendah dan kadar kelembapan air adalah 10.5%. Nitrogen dan jumlah lemak boleh diabaikan. Dengan menggunakan pelbagai peralatan analisis, ciri-ciri dapat dikenalpasti. Didapati bahawa asas kanji ini memiliki bentuk polihedrik dengan memvisualisasikannya di bawah SEM dan permukaannya halus tanpa kehadiran liang-liang. Di bawah XRD, pola menunjukkan bahawa ubi kayu dikelaskan sebagai kanji jenis A dan suhu gelatinisasi mereka tinggi, 89.4°C. Pengampulan dan kebolehlarutan terjadi sebagai akibat dari gelatinisasi dari granul kanji. Semua ciri-ciri asas, memberikan kesan yang baik untuk tepung ini untuk digunakan sebagai bahan asas dalan industri bioetanol. Hidrolisis enzimatik kanji dari sumber-sumber alam dikenalpasti sebagai aplikasi berpotensi dalam penghasilan komersial bioetanol. Kesan dari pelbagai pembolehubah proses dipelajari untuk penukaran optimum pati ubi kayu menjadi glukosa menggunakan α -amilase dan amyloglucosidase. Kanji adalah polisakarida tersimpan yang berasal daripada tumbuhan, yang tidak dapat ditukarkan ke gula dengan mudah. Pemotongan kanji memerlukan gelatinisasi terlebih dahulu dengan rawatan pemanasan, pencairan oleh amylase dan penukaran untuk gula oleh amyloglucosidase. Untuk mendapatkan kepekatan glukosa yang lebih tinggi; pencairan dan proses sakarifikasi harus dioptimumkan. Rekabentuk eksperimen komposit factorial penuh dan rekabentuk komposit berpusat (CCD) digunakan dalam perancangan eksperimen dan analisis keputusan.Kajian awal telah dilakukan untuk mengetahui pembolehubah yang berpotensi untuk kedua-dua proses. Keberkesanan α -amilase dalam pencairan adalah ditentukan oleh dextrinizing aktiviti (DA) sedangkan prestasi amyloglucosidase berdasarkan pada kepekatan glukosa. Keadaan optimum untuk pencairan bagi 35% buburan ubi kayu adalah dengan menggunakan 0.33% BAN480L di dalam penimbal natrium acetate (pH7) pada 85°C untuk 12.72 minit. Keadaan optimum untuk pemtongan adalah pada 60.75°C, pH4.53, dengan menggunakan AMG300L 0,2% dalam masa 40min. Sebuah model kecukupannya sangat memuaskan apabila kadar pekali untuk pencairan dan sakarifikasi masing-masing adalah 0.9977 dan 0.9795.

ABSTRACT

Fundamental characterization of cassava starch that will be used in bioethanol production was studied entensively. In the present study, non edible cassava (Manihot esculenta) is used as the raw material for starch, which undergoes enzymatic hydrolysis to produce glucose then precede the fermentation to obtain bioethanol. Proximate analysis of this starch showed that the carbohydrate content is 91.17% while apparent and total amylose are 16.6% and 17.1% respectively. Phosphorus and ash showed the lowest value and the moisture content is 10.5%. Nitrogen and Total fat are negligible. By using various analytical equipments, its characteristics were identified. It was found that the root starch has a polyhedric shape by visualizing under SEM and the surface was smooth with no evidence of pores. Under XRD, the pattern shows that the cassava was classified as A-type starch and their gelatinization temperature was high, 89.4°C. Swelling and solubility take place as a result of gelatinization of starch granule. All the fundamental characteristics, gave a good impact for this starch to be used as a raw material in bioethanol industry. Enzymatic hydrolysis of starch from natural sources finds potential application in commercial production of bioethanol. The effects of various process variables were studied for optimum conversion of cassava starch to glucose using α -amylase and amyloglucosidase. Starch is a reserved polysaccharide of plant origin, which cannot be converted to sugar easily. Starch saccharification requires prior gelatinization by heat treatment, liquefaction by α - amylase and conversion to sugars by amyloglucosidase. In order to get higher glucose concentration; liquefaction and saccharification processes must be optimized. Full factorial composite experimental design and central composite design (CCD) were used in the design of experiments and analysis of results. Preliminary study was done to investigate the potential variable for these two processes. The performance of α - amylase in liquefaction was determined by dextrinizing activity (D.A.) while the performance of amyloglucosidase was based on glucose concentration. The optimal condition for liquefaction for 35% cassava starch slurry was obtained by using 0.33% BAN480L in sodium acetate buffer (pH 7) at 85°C for 12.72 min. The optimal conditions for sacharification were found to be at 60.75°C, pH 4.53, using 0.2% AMG300L in 40 min. A model adequacy was very satisfactory, as coefficient of determination were 0.9977 and 0.9795 for liquefaction and sacharification, respectively.

CHAPTER 1

INTRODUCTION

1.1 Overview

Demand for energy is increasing day by day. This phenomenon occurred due to the growing of population and worldwide societies are becoming more industrialized. Energy demand was related to the fossil fuel reserved. While the demand of the energy is increased, fossil fuel reserved is depleted. Since most of the energy that produces today is generated by fossil fuel, a new alternative source of energy should be find out to overcome the situation.

Bachar (2007) stated that "Only 1.08 trillion barrels of petroleum reserves are left on Earth, and only one new barrel is found for every four us". With over 31.03 billion barrels consumed annually worldwide (2006) and rapidly increasing, there is less than 25.4 years left". Based on the statistical analysis that have done by Bachar (2007), the depleted of fossil fuel reserved will become a serious problem for the world if there is no action to be taken. Statistics that have done by International Energy Statistics for Europe petroleum stock shows the decreasing from 134 '000 barrels in 2005 to 812'000 barrels in 2009. Petroleum stock in Europe, Asian & Oceania, and OECD declined every year. The same phenomenon occurred in Asia & Oceania and OECD country.

PETRONAS was incorporated on 17 August 1974 as the national oil company of Malaysia, vested with the entire ownership and control of the petroleum resources in the country. It has since grown from just being the manager and regulator of Malaysia's upstream sector into a fully integrated oil and gas corporation, ranked among the