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Abstrak 
 
 
 
Sistem SRVA yang telah dimajukan telah berjaya memperbaiki permukaan 

lengkap serta meminimumkan masa pembentukan model prototaip di dalam FDM. 
Keputusan menunjukkan bahawa peningkatan bahagian orientasi pembentukan lapisan 
mengurangkan nilai kekasaran permukaan. Bagi orientasi 00 dan 900 bahagian 
pembentukan lapisan, nilai kekasaran permukaan adalah menghampiri nilai keluaran 
daripada “fuzzy logic” di mana perbezaan peratusannya adalah 1.78% dan 1.52%. Maka 
nilai yang dikira di dalam SRVA sistem boleh diterima pada orientasi ini.Walaupun 
begitu, bagi orientasi 450 bahagian pembentukan lapisan, ia adalah 2.26% lebih tinggi 
daripada nilai keluaran  “fuzzy logic” kerana semasa proses pembentukkan, penyokong 
model sekeliling memberi kesan kepada permukaan lengkap model prototaip. 
Bagaimanapun, nilai ini boleh di terima kerana penyokong model sekeliling tidak diberi 
penekanan di dalam penyelidikkan ini. Keputusan juga menunjukkan bahawa kaedah 
pemadanan penghirisan memperbaiki kekasaran permukaan model prototaip. Kekasaran 
permukaan yang telah diukur dengan kaedah ini menunjukkan 1.22% lebih rendah 
berbanding tanpa kaedah pemadanan penghirisan, tetapi 0.56% lebih tinggi daripada 
yang diperolehi oleh “fuzzy logic”. Keputusan ini diperolehi tanpa perlu mengulangi 
pembinaan model atau bahan kerja di dalam FDM untuk penghasilan kualiti kekasaran 
permukaan yang baik memandangkan kaedah yang dicadangkan di dalam tesis ini 
berjaya memoptimakan kitaran RP, maka masa pembinaan di dalam RP dapat 
dikurangkan. 
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Abstract 
 

 
In rapid prototyping (RP), part deposition orientation and surface finish are two significant concerns, but 

they are contradicting with each other. In model building in RP,  a concession is commonly made between these two 
features to get good quality surface roughness at a short build time. A concession among these two contradicting 
concerns can be achieved via an adaptive slicing method; on the other hand, selection of an appropriate part 
deposition orientation will further provide an improved solution. In this thesis, an effort towards determining an 
optimum part deposition orientation and adaptive slicing method for Fused Deposition Modeling (FDM) process for 
enhancing part surface finish, and hence, reducing build time (repeating process in RP cycle) is proposed.  The 
quality of the surface roughness is determined by using visual and analysis.  This Surface Roughness Based Visual 
and Analysis (SRVA) system is obtained based on the calculation of surface roughness (Ra).  In this present work, the 
Region Based Adaptive Slicing method is applied in building the model in FDM.  The proposed methodology allows 
the RP user to observe and analyze the prototype model before fabricating the prototype model in the FDM.  A 
program based on fuzzy logic is also used to verify the input and output parameters obtained from the proposed 
method. 

The developed SRVA system has successfully improved the surface finish and minimized the build time in 
fabricating the prototype model in FDM.  The result showed that increasing part deposition orientation would 
decrease the Ra value of the model. For 00 and 900 part deposition orientation, the Ra from measurement are closed 
to the Ra output from fuzzy logic with percentage differences 1.78% and 1.52% respectively. Therefore, the Ra values 
calculated from the SRVA system are acceptable for these orientations. However, for 450 part deposition orientation, 
it is 2.26% higher than the Ra output from fuzzy logic because during fabrication process, the surrounding support 
model affects the surface finish of the prototype model. However, this value is also acceptable because the effect of 
surrounding support model to the surface finish has not been the focus of the present work.  The result also shows 
that the adaptive slicing method has improved the surface roughness of the prototype model. The inspected Ra 
obtained by this method is 1.22% lower than that obtained without adaptive slicing method, but 0.56% higher than 
that obtained by fuzzy logic.  This result is obtained without the necessity to repeatedly fabricate the model or 
piecework in FDM for good quality surface roughness as the proposed method in this thesis successfully managed to 
optimize RP cycle; hence the build time in RP is reduced.   
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Chapter 1 

Introduction 

 

 

1.0 Background 

 

Rapid prototyping (RP) is an itinerary of action in which a part is manufactured 

using layer-by-layer deposition of material. It is an imperative technology as it has 

prospective to lessen up 30% to 50% of the manufacturing lead-time of the product 

even the relative part complexity is very high [1,2].  

RP is the most common name given to a host of related technologies that are 

used to construct physical objects directly from CAD data sources. Based on the 

principle of layer manufacturing, the RP technique begins with the intersection of the 

3D model from CAD (typically an .STL file) with layers of 2D horizontal planes. As a 

result, a stack of 2D geometry contours is attained, each signifying a cross-section of 

the 3D model.  

Next, the raw material is placed on the bench. The computer takes the bottom 

slice of the 3D model and transmits different levels of energy to the raw material to the 

location as designated by the geometric contour. The raw material is filled in one slice 

after another from the bottom-up, and the process is repeated until a complete 3D part is 

produced.  

Nowadays additive technologies in RP process offer advantages in many 

applications compared to classical subtractive fabrication methods such as milling or 

turning. However, Fused Deposition Modeling (FDM) is one of commonly used RP 

processes. 
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FDM is an extrusion-based RP process, although it works on the same layer-by-

layer principle as other RP systems. FDM is capable of using multiple build materials in 

a build/support relationship and it was developed by Stratasys, Inc. of Eden Prairie, 

MN, USA in the early 1990s as a concept modeling device that is now used more for 

creating masters and direct-use prototyping. 

 

1.1   Rapid Prototyping (RP) Cycle  

 
 

The RP cycle begins with the CAD design, and may be repeated inexpensively 

several times until a model of the desired characteristics is produced as shown in Figure 

1.1. The final file or files must be in solid model format to allow for a successful 

prototype build. From the CAD file, an export format called the .STL file must be 

created. 

The .STL file, so named by 3D Systems for STereoLithography, is currently the 

standard file format for all U.S. RP systems. STL files are triangulated representations 

of solid models. The individual triangles are represented by simple coordinates in a text 

file format. STL files are usually stored in binary format to conserve disk space. 

After the .STL file is created, it must be prepared differently for various types of 

RP systems. Some systems can accept the .STL file directly, whereas others require 

preprocessing. Preprocesses include verifying the .STL file, slicing, and setting up 

parameters for machines control. Preprocessing is usually done at a computer separate 

from the RP system to save time and to avoid tying up valuable machine time. 
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Figure 1.1 The Rapid Prototyping cycle 
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After the .STL has been preprocessed and saved into a new slice format, the new 

file can then be transferred to the RP system. File transfer can be done several ways, 

from manually transferring by disk or tape to network transfer. Since more complicated 

files are usually very large, a local area network or Internet connection is now almost 

essential for easy file transfer. Once the final file formats are transferred to the RP 

device, the build process occurs. Most RP machines build parts within a few hours, but 

can run unattended for several days for large parts. 

Upon completion of the build process, post processing of the part must occur. 

This includes removal of the part from the machine, as well as any necessary support 

removal and sanding or finishing. If the finished part meets the necessary requirements, 

the cycle is complete. Otherwise, iterations can be implemented in the CAD file and the 

cycle is repeated.  

 

1.2 Statement of the problem 

 

In general, all RP technologies use layer-by-layer slicing method and stack one 

slice after another from the bottom-up to fabricate the model. Basically, there are two 

important issues here. Firstly, what is the thickness of the layer?, and secondly, how to 

reduce the gaps between layers which contribute to the staircase effect, and hence, the 

surface roughness of the prototype model. 

The first issue deals with the slicing method of the model. The layer thickness is 

proportional with surface roughness. If the layer thickness is increased, the staircase 

effect is increased, and hence, the surface roughness is also increased.  

The second issue deals with part deposition orientation. As mentioned earlier, 

the raw material is filled in one slice after another from the bottom up. If the layers 
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during the fabrication processes are stacked in different orientation, then there would 

have some gaps between these layers. In theory, the increment of part orientation would 

reduce the gap, and hence, improved the surface roughness.  

Consequently, to conclude the above statements, it becomes: 

( )LayerThickness Surface Roughness Ra
Part Orientation

∝  

Earlier researchers [3,4] have studied this relationships, however, in this present 

work, the relationship is used to visualize and analyze the surface roughness and then 

proposed new implementation of RP cycle in FDM. 

 

1.3 Research objectives 

 

The primary objective of the research is to develop a Surface Roughness Based 

Visual and Analysis (SRVA) system for rapid prototyping (RP) in FDM (as shown in 

Figure 1.2) to improve surface finish and minimize the build time in RP process. The 

SRVA system would analyse the .STL file data before transferring it to the FDM 

machine. Using the SRVA, the RP user can directly attain the optimum part deposition 

orientation for fabrication of prototyping model in the FDM. The RP user can also 

analyze the portion which would give high effect of surface roughness and then apply 

the adaptive slicing method to improve further the surface finish of the model. 

Therefore, repeating RP cycle which was mentioned earlier in Figure 1.1 would be 

minimized.  
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