

AN OPTIMIZED OF CONGESTION CONTROL MECHANISM OF VANETs FOR NON-SAFETY MESSAGES TRANSMISSION USING TAGUCHI METHOD

by

SHAMSUL JAMEL ELIAS (1140210705)

A thesis submitted in the fulfilment requirements for the degree of Doctor of Philosophy

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

2017

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS				
Author's full name	SHAMSUL JAMEL ELIAS			
Date of birth	:03 <u>-10-1971</u>			
Title	: AN OPTIMIZED CONGESTION CO SAFETY MESSAGES TRANSMISSIO	NTROL MECHANISM OF VANETS FOR NON- N USING TAGUCHI METHOD		
Academic Session	: <u>2015/2016</u>			
-	I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as :			
	AL (Contains confidential informat	ion under the Official Secret Act 1972)*		
RESTRICTED (Contains restricted information research was done)*		on as specified by the organization where		
x OPEN ACCESS I agree that my thesis is to be made immediately available as copy or on-line open access (full text)				
• •	I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of years, if so requested above).			
		Certified by:		
SIGN	TURE	SIGNATURE OF SUPERVISOR		
71100	3-08-5929	DR. MOHD NAZRI MOHD WARIP		
(NEW IC NO. /	PASSPORT NO.)	NAME OF SUPERVISOR		
Date :		Date :		

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENTS

Praise and thanks to Allah (SWT) who gave me the strength and courage to complete this project. I would like to express my deepest appreciation to my supervisor, Dr Mohd Nazri Mohd Warip and co-supervisor, Ir Prof Dr R Badlishah Ahmad for their continuous support, patience, vivacious discussions, invaluable constructive comments and friendship that have assisted me and kept me focused in completing this research.

I also thank my good friend, Dr Yusof Darus for his willingness to share his thoughts and expertises in VANETs; special colleague Dr Jamaluddin Jasmis, Pn Aznor Abdul Halim for their utmost support, understanding and patience in listening to my sad stories and hearties replacement on my learning works whenever I was struggling to complete my thesis. I am also thankful to Universiti Technology MARA and the Ministry of Higher Education for funding my PhD study. My special gratitude goes to my parents, parents-in-law and friends for their encouragement and cheerful stories at all times. My special thank also goes to all my childhood friends, staffs at SCCE, co-researchers at ENAC at UniMAP and colleagues at FSKM. Universiti Technology MARA who have helped me in many ways to complete this journey.

Last but not least, this PhD journey would not be possible without the support of my wife, Dr Noreha Che Sidik and my lovely daughters and son. I am indebted and thankful for their contribution, endless patience and love, never ending support and motivation for me to be where I am currently.

TABLE OF CONTENTS

		PAGE
DEC	CLARATION	i
ACI	KNOWLEDGEMENTS	ii
TAI	BLE OF CONTENTS	iii
LIS	T OF TABLES	viii
LIS'	T OF FIGURES	xi
LIS	T OF ABBREVIATIONS	xvii
ABS	STRAK	XX
ABS	STRACT	xxi
CH	T OF TABLES T OF FIGURES T OF ABBREVIATIONS STRAK STRACT APTER 1 INTRODUCTION Background Problem Background Research Aim	1
1.1	Background	1
1.2	Problem Background	3
1.3	Research Aim	7
1.4	Research Objectives	7
1.5	Research Contributions	8
1.6	Significance of the Study	9
1.7	Scope of Research	10
1.8	Thesis Structure	12

CH	APTER 2 LITERATURE REVIEW	14
2.1	Introduction	14
2.2	Ad hoc Networks	16
	2.2.1 Mobile Ad Hoc Network (MANET)	18
	2.2.2 Vehicular Ad Hoc Network (VANET)	19
	2.2.3 WLAN Standards	32
2.3	Congestion Control Mechanism	36
2.4	OMNET++ Overview	42
	2.4.1 INET Framework	43
	 2.2.3 WLAN Standards Congestion Control Mechanism OMNET++ Overview 2.4.1 INET Framework 2.4.2 INET-MANET 2.4.3 Packet Size Routing Protocols Rebroadcasting Scheme Related Works on Congestion Control Algorithm 	44
	2.4.3 Packet Size	47
2.5	Routing Protocols	47
2.6	Rebroadcasting Scheme	51
2.7	Related Works on Congestion Control Algorithm	52
2.8	Summary	56
CH	APTER 3 RESEARCH METHODOLOGY	58
3.1	Overview	58
3.2	Operational Framework	59
	3.2.1 Problem Formulation	61
3.3	Mobility Model Concepts	62
	3.3.1 handleMsg() Functions	66
	3.3.2 convenience Functions	67

3.4	Research P	Procedures	68
3.5	Design of E	Experiments based on Taguchi method	69
	3.5.1 Opt	timization Model Adaptation	70
	3.5.2 Sin	nulation Setup	73
	3.5.3 Ass	sumptions and Limitations	79
3.6	Congestior	n Detection and Congestion Control	82
3.7	SNR Analy	ysis for City Scenario in Delay, PDR and Throughput	87
	3.7.1 Sm	aller-the-Better for Delay	87
	3.7.2 Lar	ger-the-Better for Packet Delivery Ratio (PDR)	90
	3.7.3 Lar	ger-the-Better for Throughput	93
3.8	SNR Analy	ysis for Highway Scenario in Delay, PDR and Throughput	97
3.9	Performan	ce Evaluation	99
	3.9.1 Per	rformance Metrics in VANETs	101
3.10	Summary	orn is prote	103
CH/	APTER 4	AN EFFICIENT OF CONGESTION CONTROL	105
	$\langle U \rangle$	ON MECHANISM (eCCOM)	105
4.1	Overview		105
4.2	eCCOM vs	s oRi parameter based on Send Interval	107
4.3	eCCOM vs	oRi parameter based on Packet Size	110
4.4	eCCOM vs	s oRi parameter based on Simulation Time	113
4.5	eCCOM vs	oRi parameter based on Bit rate	116
4.6	eCCOM vs	oRi parameter based on Number of Vehicles	119

4.7	Performance comparison of all tested variables based on Delay, PDR and Throughput	122
4.8	Discussion on Performance of all tested variables based on Delay, PDR and Throughput	124
4.9	Summary	126

CHAP		127
LINHA	ANCEMENT (paMAC)	127
5.1 0	Dverview Dverview Dverview Dverview Dverview	127
5.2 p	baMAC vs oRiq parameter based on Send Interval	129
5.4 pa	aMAC vs oRiq parameter based on Packet Size	132
5.5 p	baMAC vs oRiq parameter based on Simulation Time	135
5.6 pa	aMAC vs oRiq parameter based on Bit rate	138
5.7 pa	aMAC vs oRiq parameter based on Number of Vehicles	141
	erformance comparison of all tested variables based on Delay, PDR nd Throughput	144
	Discussion on Performance of all tested variables based on Delay, PDR nd Throughput	146
5.10	Summary	148
CHAP	PTER 6 A SMART HYBRID PERFORMANCE MATRIX (inHAN)	150
6.1 (Dverview	150
6.2 T	he Impact of Send Interval on inHAN scheme vs oRIG scheme	152
6.3 T	he Impact of the Packet Size on inHAN scheme vs oRIG scheme	155

6.4 The Impact of the Simulation Time on inHAN scheme vs oRIG scheme 158

6.5	The Impact of Bit Rate on inHAN scheme vs oRIG scheme	162	
6.6	The Impact of the Number of Vehicles on inHAN scheme vs oRIG scheme	165	
6.7	Performance comparison of all tested variables based on Delay, PDR and Throughput	168	
6.8	Discussion on Performance of all tested variables based on Delay, PDR and Throughput	170	
6.9	Summary	172	
CH	APTER 7 CONCLUSION AND RECOMENDATIONS	174	
7.1	Overview	174	
7.2	Discussion of Results	174	
7.3	Achievements	180	
7.4	Future Directions and Research Opportunities	181	
	7.3.1 Congestion Control	181	
	7.3.2 Smart Rebroadcast Algorithm	182	
	7.3.3 Autonomous Vehicles	182	
	7.3.4 Security	183	
7.5	Conclusion	183	
REFERENCES		187	
LIS	LIST OF PUBLICATIONS AND CONFERENCES		

LIST OF TABLES

NO.		PAGE
2.1	Summary of Intelligent Transports Systems (ITS) Application	22
2.2	Categorization of VANETs Application	31
2.3	Summary of IEEE 802.11 Specifications	32
2.4	Summary of WLAN Modes of Operation (Welekar, 2012)	33
2.5	Comparison of IEEE Standard (Welekar, 2012)	33
2.6	Summary of VANETs Congestion Control Techniques	41
2.7	Summary of the comparison of simulation tools	46
3.1	Summary of Mobility Framework Strategy	63
3.2	Simulation Parameters	73
3.3	Control Parameters L8 Orthogonal Array	74
3.4	Variation Levels of Control Parameters	74
3.5	Variation Levels of Noise Parameters	74
3.6	L8 experimental setup	87
3.7	Calculation of SN ratios and sensitivities	87
3.8	L8 experimental setup	90
3.9	Calculation of SN ratios and sensitivities	91
3.10	L8 experimental setup	93
3.11	Calculation of SN ratios and sensitivities	94
3.12	Performance Metrics	102
3.13	Performance Metrics used for Vehicular Networks	103

4.1	Percentage Improvement based on Send Interval	109
4.2	Percentage Improvement based on Packet Size	112
4.3	Percentage Improvement based on Simulation Time	115
4.4	Percentage Improvement based on Bit Rate	118
4.5	Percentage Improvement based on Number of Vehicles	121
4.6	Percentage Comparison based on Delay vs Tested Factors	122
4.7	Percentage Comparison based on PDR vs Tested Factors	122
4.8	Percentage Comparison based on Throughput vs Tested Factors	124
5.1	Percentage Improvement based on Send Interval	131
5.2	Percentage Improvement based on Packet Size	134
5.3	Percentage Improvement based on Simulation Time	137
5.4	Percentage Improvement based on Bit Rate	140
5.5	Percentage Improvement based on Number of Vehicles	143
5.6	Percentage Comparison based on Delay vs Tested Factors	145
5.7	Percentage Comparison based on PDR vs Tested Factors	145
5.8	Percentage Comparison based on Throughput vs Tested Factors	146
6.1	Percentage improvement based on Send Interval	155
6.2	Percentage Improvement based on Packet Size	157
6.3	Percentage Improvement based on Simulation Time	161
6.4	Percentage Improvement based on Bit Rate	164
6.5	Percentage Improvement based on Number of Vehicles	167
6.6	Percentage Comparison for Intelligent based on Delay vs Tested Factors	168
6.7	Percentage Comparison for Intelligent based on PDR vs Tested Factors	169

6.8	Percentage Comparison for Intelligent based on Throughput vs Tested Factors	170
7.1	The benefits and drawbacks of reported congestion control schemes in VANET.	175
7.2	Comparison of congestion control scheme in VANETs.	177
7.3	Comparison of network performance improvement scheme based on eCCOM, paMAC and inHAN	178

othis item is protected by original copyright

LIST OF FIGURES

NO.		PAGE
1.1	City scenario showing the high mobility environments on moving vehicles.	6
1.2	Highway scenario showing the high mobility environments on moving vehicles.	6
2.1	Taxonomy of the Literature on Congestion Control Mechanism.	15
2.2	An example of WLAN/Cellular network architecture for VANETs	20
2.3	Ad Hoc network architecture for VANETs.	21
2.4	Hybrid network architecture for VANETs.	21
2.5	An overview of Intelligent Transport System (ITS).	23
2.6	The seven channels of Dedicated Short Range Communication (DSRC)	24
2.7	WAVE Communications Stack in the VANETs Communication adapted from (Booysen, Zeadally, & Rooyen, 2011).	25
2.8	An example of scenario demonstrates the issues of broadcasting the non- safety messages from RSU at a high frequency.	30
2.9	Comfort/Non-Safety Application according to Toor & Muhlethaler, (2008)).	35
2.10	Flowchart of VANET algorithm (Darus & Bakar, 2011).	37
3.1	The General Overview Operational Framework	60
3.2	Topology for Mobility Models (Harri, Filali, & Bonnet, 2009).	62
3.3	A .ned configuration setup.	64
3.4	A mobile host configuration used in simulation	66
3.5	The derivation structure applied in experiment	67
3.6	Taguchi optimization process methodology for testing scenario evaluation derived from (R. S. Rao, Kumar, Prakasham, & Hobbs, 2008)	70

3.7	The map of Kuala Lumpur used in the simulation scenario	76
3.8	The snapshot of movement of nodes during the simulation	77
3.9	Snapshot command line consule execution	78
3.10	Snapshot during the execution process in an OMNeT++	78
3.11	The systematic architecture of optimization processes.	80
3.12	The proposed Congestion Detection Mechanism	82
3.13	Delay response for wifiPreambleMode	89
3.14	Delay response as a function of control parameters for mean SNR Plot	89
3.15	PDR response for <i>slotTime</i>	92
3.16	PDR response as a function of control parameters for mean SNR Plot	92
3.17	Throughput response for <i>rtsThresholdBytes</i>	95
3.18	Throughput response as a function of control parameters for mean SNR Plot	96
3.19	Delay response as a function of control parameters for mean SNR Plot	97
3.20	PDR response as a function of control parameters for mean SNR Plot.	98
3.21	Throughput response as a function of control parameters for mean SNR Plot.	98
4.1	Performance of Delay for oRi and eCCOM over VANETs.	107
4.2	Performance of PDR for oRi and eCCOM over VANETs.	108
4.3	Performance of Throughput for oRi and eCCOM over VANETs.	108
4.4	Comparison of percentage values based on eCCOM technique towards congestion for all factors	109
4.5	Performance of Delay for oRi and eCCOM over VANETs.	110
4.6	Performance of PDR for oRi and eCCOM over VANETs.	111
4.7	Performance of Throughput for oRi and eCCOM over VANETs.	111

4.8	Comparison of percentage values based on eCCOM technique towards congestion for all factors	112
4.9	Performance of Delay for oRi and eCCOM over VANETs.	113
4.10	Performance of PDR for oRi and eCCOM over VANETs.	114
4.11	Performance of Throughput for oRi and eCCOM over VANETs.	114
4.12	Comparison of percentage values based on eCCOM technique towards congestion for all factors	115
4.13	Performance of Delay for oRi and eCCOM over VANETs.	116
4.14	Performance of PDR for oRi and eCCOM over VANETs.	117
4.15	Performance of Throughput for oRi and eCCOM over VANETs.	117
4.16	Comparison of percentage values based on eCCOM technique towards congestion for all factors	118
4.17	Performance of Delay for oRi and eCCOM over VANETs.	119
4.18	Performance of PDR for oRi and eCCOM over VANETs.	119
4.19	Performance of Throughput for oRi and eCCOM over VANETs.	120
4.20	Comparison of percentage values based on eCCOM technique towards congestion for all factors	121
4.21	Comparison of percentage values based on Delay towards all tested factors	122
4.22	Comparison of percentage values based on PDR towards all tested factors	123
4.23	Comparison of percentage values based on Throughput towards all tested factors	123
5.1	Performance of Delay framework for oRiq and paMAC over VANETs	129
5.2	Performance of PDR framework for oRiq and paMAC over VANETs	130
5.3	Performance of Throughput for oRiq and paMAC over VANETs	130

5.4	Comparison of percentage values based on paMAC congestion mechanism towards all factors	131
5.5	Performance of Delay framework for oRiq and paMAC over VANETs	132
5.6	Performance of PDR framework for oRiq and paMAC over VANETs	133
5.7	Performance of Throughput framework for oRiq and paMAC over VANETs	133
5.8	Comparison of percentage values based on paMAC congestion mechanism towards all factors	134
5.9	Performance of Delay framework for oRiq and paMAC over VANETs	135
5.10	Performance of PDR framework for oRiq and paMAC over VANETs	136
5.11	Performance of Throughput framework for oRiq and paMAC over VANETs	136
5.12	Comparison on Percentage Plot for optimized congestion for all factors	137
5.13	Performance of Delay framework for oRiq and paMAC over VANETs	138
5.14	Performance of PDR framework for oRiq and paMAC over VANETs	139
5.15	Performance of Throughput framework for oRiq and paMAC over VANETs	139
5.16	Comparison on Percentage Plot for optimized congestion for all factors	140
5.17	Performance of Delay framework for oRiq and paMAC over VANETs	141
5.18	Performance of PDR framework for oRiq and paMAC over VANETs	142
5.19	Performance of Throughput framework for oRiq and paMAC over VANETs	142
5.20	Comparison on Percentage Plot for optimized congestion for all factors	143
5.21	Comparison of percentage values based on Delay towards all tested factors	144
5.22	Comparison of percentage values based on PDR towards all tested factors	145

5.23	Comparison of percentage values based on Throughput towards all tested factors	146
6.1	Performance of Delay intelligent algorithm for oRIG and inHAN over VANETs	152
6.2	Performance of PDR intelligent algorithm for oRIG and inHAN over VANETs	153
6.3	Performance of Throughput intelligent algorithm for oRIG and inHAN over VANETs	153
6.4	Comparison on Percentage for intelligent optimized for all factors	154
6.5	Performance of Delay intelligent algorithm for oRIG and inHAN over VANETs	155
6.6	Performance of PDR intelligent algorithm for oRIG and inHAN over VANETs	156
6.7	Performance of Throughput intelligent algorithm for oRIG and inHAN over VANETs	156
6.8	Comparison on Percentage for intelligent optimized congestion for all factors	157
6.9	Performance of Delay intelligent algorithm for oRIG and inHAN over VANETs	158
6.10	Performance of PDR intelligent algorithm for oRIG and inHAN over VANETs	159
6.11	Performance of Throughput intelligent algorithm for oRIG and inHAN over VANETs	159
6.12	Comparison on Percentage for intelligent optimized congestion for all factors	160
6.13	Performance of Delay intelligent algorithm for oRIG and inHAN over VANETs	162
6.14	Performance of PDR intelligent algorithm for oRIG and inHAN over VANETs	162
6.15	Performance of Throughput intelligent algorithm for oRIG and inHAN over VANETs	163

6.16	Comparison on Percentage for intelligent optimized congestion for all factors	164
6.17	Performance of Delay intelligent algorithm for oRIG and inHAN over VANETs	165
6.18	Performance of PDR intelligent algorithm for oRIG and inHAN over VANETs	165
6.19	Performance of Throughput intelligent algorithm for oRIG and inHAN over VANETs	166
6.20	Comparison on Percentage for intelligent optimized congestion for all factors	167
6.21	Comparison on Percentage for intelligent based on Delay towards all tested factors.	168
6.22	Comparison on Percentage for intelligent based on PDR towards all tested factors.	169

Comparison on Percentage for intelligent based on Throughput towards all tested factors. or internet of this item is protected 6.23 170

O

LIST OF ABBREVIATION

AP	Access Point
AODV	Ad hoc On-Demand Distance Vector
BE	Best Effort Traffic
BK	Background Traffic
BSS	Basic Service Set
ССН	Basic Service Set Control Channels Cooperative Reservation of SCH
CRaSCH	Cooperative Reservation of SCH
CSMA/CA	Carrier Sense Multiple Access with collision avoidance
DSRC	Dedicated Short Range Communication
DCF	Distributed Coordination Function
DSCA	Dynamic Service-Channels Allocation
DYMO	Dynamic MANET On-demand
DSR	Dynamic Source Routing
EDCA	Enhanced Distributed Channel Access
FCC	Federal Communications Commission
FIFO	First in First out
GPRS	General Packet Radio Service
GPS	Global-Position-System
IEEE	Institute of Electrical and Electronics Engineers
ITA	Intelligent Transport Application
ITS	Intelligent transports system
ISM	Industrial, Science and Medical

- MAC Medium Access Control
- MANET Mobile ad hoc Network
- MF Mobility Framework
- National Highway Traffic Safety Admin NHTS
- NAs Network-Authorities
- OBE **On-board-Equipment**
- OBU On board units
- stected by original conviront OFDM Orthogonal Frequency Division Multiplexing
- OSI **Open System Interconnect**
- PCF **Point Coordination Function**
- PDR Packet Delivery Ratio
- RERR Route Error
- RREQ **Route Request**
- RREP Route Reply
- RSU Road-side-unit
- Regional-Transportation-Authorities **RTAs**
- Signal-Phase-and-Timing **SPAT**
- Service Channels SCH
- TEA Transport-Efficiency-Applications
- TSA Transport-Safety-Applications
- UMTS UTRA Terrestrial Radio Access Time Division Duplex
- VIN Vehicle Identification Number
- VSC Vehicle-Safety-Communication

- Lure Lastructure LCCH interval Lace Traffic Video Traffic Video Traffic Vineless Access in Vehicular Environment VLAN Wireless Local Area Network Wireless Local Area Network VSCC Vehicle Safety Communication Consortium

Pengoptimuman Mekamisme Kawalan Kesesakan dalam VANETs Untuk Non-Safety Mesej Transmisi Menggunakan Kaedah Taguchi

ABSTRAK

VANETs adalah konsep teknologi baru terkini terhasil daripada MANETs. Kelajuan tinggi dan perubahan topologi rangkaian yang kerap adalah ciri-ciri utama VANETs dan akses Internet. Teknologi rangkaian menyediakan aplikasi kenderaan yang tidak berkesudahan, termasuk bukan keselamatan, keselesaan dan hiburan. Kelajuan tinggi dan mobiliti nod dan pemotongan servis yang kerap adalah sukar untuk merekabentuk skim MAC dalam VANETs yang memenuhi keperluan servis kualiti (OoS) dalam semua senario rangkaian. Dalam tesis ini, kami menyediakan penilaian yang komprehensif pada kesan pergerakan dan perubahan terhadap IEEE 802.11p MAC. Kajian ini menggunakan metrik prestasi asas seperti nisbah kelewatan, nisbah penghantaran paket (PDR) dan pemprosesan, serta kesan mobiliti. Kajian ini juga membahaskan hubungan antara faktor-faktor mobiliti dan kesan akses mengikut perubahan dalam persekitaran rangkaian yang diujilari. Selain itu, masalah kelajuan relatif nod dikenalpasti untuk scenario bandar (eCCOM), lebuh raya (paMAC) dan hibrid (inHAN). Untuk mencapai prestasi yang baik, kami mencadangkan mekanisme pengoptimuman yang bijak bagi kawalan kesesakan dan algoritma untuk mengurangkan kemerosotan prestasi rangkaian. Keputusan simulasi yang diujilari menunjukkan kesan yang ketara ke atas prestasi mobiliti IEEE 802.11p MAC, pengenalpastian masalah ketidakadilan baru dalam V2I komunikasi. Akhirnya, kesimpulan eksperimen kami untuk eCCOM, kami meminimumkan kelewatan dengan purata peningkatan sehingga 21%, 5%, 13%, 18% dan 17% untuk dalam tempuh penghantaran, saiz paket, masa simulasi, saiz kadar bit dan bilangan kenderaan. Kami juga mengoptimumkan PDR dengan peningkatan purata sehingga 22%, 19%, 35%, 4% dan 15% dan pemprosesan yang lebih baik dengan peningkatan purata sehingga 25%, 5%, 32%, 11% dan 8% dalam tempuh penghantaran, saiz paket, masa simulasi, saiz kadar bit dan bilangan kenderaan masing-masing. Dalam paMAC penggurangan kelewatan dengan purata peningkatan sehingga 34%, 6%, 28%, 8% dan 9% untuk dalam tempuh penghantaran, saiz paket, masa simulasi, saiz kadar bit dan bilangan kenderaan. Kami juga mengoptimumkan PDR lebih baik dengan purata peningkatan sehingga 23%, 8%, 15%, 7% dan 14% dan pemprosesan yang lebih baik dengan purata peningkatan sehingga 33%, 7%, 29%, 11% dan 7% untuk dalam tempuh penghantaran, saiz paket, masa simulasi, saiz kadar bit dan bilangan kenderaan masingmasing. Bagi inHAN penggurangan kelewatan dengan purata peningkatan sehingga 27%, 13%, 10%, 9% dan 26% dalam tempuh penghantaran, saiz paket, masa simulasi, saiz kadar bit dan bilangan kenderaan. Kami juga mengoptimumkan PDR lebih baik dengan purata peningkatan sehingga 36%, 33%, 7%, 23% dan 27% dan pemprosesan yang lebih baik dengan purata peningkatan sehingga 39%, 24%, 20%, 10% dan 23% untuk dalam tempuh penghantaran, saiz paket, masa simulasi, saiz kadar bit dan bilangan kenderaan masingmasing. Mekanisme kami memperkenalkan metrik yang dinamik dalam ujilari kepadatan kenderaan didalam senario eCCOM, paMAC dan inHAN untuk mengawal penghantaran paket antara kenderaan dan infrastruktur. Keputusan kami menunjukkan potensi yang besar untuk penyelidikan masa depan dan penggunaan teknologi tinggi dalam bidang VANETS.

An Optimized Congestion Control Mechanism of VANETs for Non-Safety Messages Transmission using Taguchi Method

ABSTRACT

Vehicular ad hoc networks (VANETs) are emerging technology concept in mobile ad hoc networks (MANETs). High speed and frequent network topology changes are the main characteristics of vehicular networks and Internet accessibility. This networking technology provides vehicles with endless possibilities of applications, including non-safety, comfort and entertainment. Due to high speed and mobility of nodes and their frequent disconnections, it is difficult to design a MAC scheme in VANETs that satisfies the Quality-of-Service (QoS) quality-of-service requirements in all networking scenarios. In this thesis, we provide a comprehensive evaluation of the mobility impact on the IEEE 802.11p MAC performances. The study evaluates basic performance metrics such as delay, packet delivery ratio (PDR), throughput, as well as the impact of mobility factors. The study also presents a relation between the mobility factors and the respective medium access impact according to the changes in tested network environment. Moreover, a new discriminatory problem according to node relative speed is identified for city (eCCOM), highway (paMAC) and hybrid (inHAN) scenarios. To achieve better performance, we propose smart optimization mechanism for congestion control and algorithm to alleviate network performance degradation due to high mobility. Extensive simulation results show the significant impact of mobility on the IEEE 802.11p MAC performance, an identification of a new unfairness problem in the vehicle-to-infrastructure (V2I) communications. Finally, we conclude the experiment for eCCOM by minimize the delay with the average improvements of up to 21%, 5%, 13%, 18% and 17% in send interval, packet size, simulation time, bit rate size and number of vehicles. We also optimize PDR better with the average improvements of up to 22%, 19%, 35%, 4% and 15% and the throughput performs better with the average improvements of up to 25%, 5%, 32%, 11% and 8% in send interval, packet size, simulation time, bit rate size and number of vehicles respectively. In paMAC we minimize the delay with the average improvements of up to 34%, 6%, 28%, 8% and 9% in send interval, packet size, simulation time, bit rate size and number of vehicles. We also optimize PDR better with the average improvements of up to 23%, 8%, 15%, 7% and 14% and the throughput performs better with the average improvements of up to 33%, 7%, 29%, 11% and 7% in send interval, packet size, simulation time, bit rate size and number of vehicles respectively. As for inHAN we minimize the delay with the average improvements of up to 27%, 13%, 10%, 9% and 26% in send interval, packet size, simulation time, bit rate size and number of vehicles. We also optimize PDR better with the average improvements of up to 36%, 33%, 7%, 23% and 27% and the throughput performs better with the average improvements of up to 39%, 24%, 20%, 10% and 23% in send interval, packet size, simulation time, bit rate size and number of vehicles respectively. Our mechanism introduces a dynamic metric that depends on the vehicular density on eCCOM, paMAC and inHAN in order to control the packet transmissions inter-vehicle-infrastructure. Our results show great potential for future research direction and usage in the area of vehicular technology.

CHAPTER 1

INTRODUCTION

1.1 Background

The rapid evolution and cost reduction of wireless communication technologies in the last decade have made them suitable for a wide spectrum of mobile and wireless applications. There are huge number of vehicles travelling along highways and streets around the world which produce millions of data being transmitted daily throughout the entire world. Therefore, there is a growing demand for real-time collision avoidance and warning technology to improve data transmission both for safety and non-safety messages and applications. Vehicular ad hoc networks (VANETs) consist of smart vehicles on the road and provide useful communication services among arbitraryformed collections of vehicles that are geo-located and with road side infrastructures. Due to quick advance technology, vehicles nowadays come with embedded computers, route planner, GSM/GPRS/WCDMA cellular networks, Global Positioning System (GPS), access to road-side wireless sensors devices and WiFi access point (Chao and Zeadally, 2008). Vehicular ad-hoc networks (VANETs) are derived from MANET mobile networks and wireless communication is applied between vehicles as mobile network nodes (Janech, Lieskovsky, & Krsak, 2012; Tayal & Triphathi, 2011). VANET communication has recently become a common research topic in the area of wireless networking. The goal of VANET research is to formulate a vehicular communication

system that provides the increase in data usage for passengers' safety and comfort (Lan & Chou, 2008).

According to T. C. Wang & Chang, (2011), there are two main categories of VANET applications: safety applications and user (or non-safety applications). The former is designated on the safety of vehicle on the road and can be used to warn cars of accidents as well as to prevent traffic jams. In addition, these applications can trigger the drivers to be wary of the early warnings to prevent accidents from happening. The latter implementation provides value added services in particular entertainment. For example, the drivers are able to share audio or video data between roadside units or vehicles T. C. Wang & Chang, (2011); Barberis & Malnati, (2011).

The envisioned applications range from critical safety applications, services and advanced driver assistance systems to traffic management and infotainment applications for intelligent transport applications, and comfort applications (Sichitiu & Kihl, 2008). For non-safety applications to work, it is significant that non-safety message must be reliably delivered to the designated vehicle in a timely manner. In line with this, a number of studies have been done to design and develop a reliable routing protocols in VANET (Ros et al., 2009; Lai et al.,2009 ; Yadumurthy, et al. 2005). However, in VANET, a single hope transmission is usually unable to cover all the intended receivers due to limited radio range across a larger distance. Therefore, a multi hop broadcast protocol is necessary to establish communication between vehicles. As a result, it is necessary to develop reliable and robust routing protocols in VANETs.

The implementation of message dissemination is one of the main challenges of VANET. In VANET, the network topology changes rapidly, which causes frequent