Show simple item record

dc.creatorRadakisnin, Revati
dc.date2017
dc.date.accessioned2023-03-06T03:47:54Z
dc.date.available2023-03-06T03:47:54Z
dc.identifier.urihttp://dspace.unimap.edu.my:80/xmlui/handle/123456789/77995
dc.descriptionMaster of Science in Biomedical Engineeringen_US
dc.description.abstractThe mechanical, thermal, morphological properties and in vitro degradation study of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA) based scaffold were investigated. In this study, a novel scaffold containing P. purpureum and PLA was produced using of the solvent casting and particulate leaching method. PLA composite with various P. purpureum contents (10 wt%, 20 wt%, and 30 wt%) were prepared and subsequently characterised. The morphologies, structures and thermal behaviours of the prepared composite scaffolds were characterised using field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The morphology was studied using FESEM; the scaffold possessed 70-200 μm-sized pores and had a greater porosity factor (99%) with a high level of interconnectivity. The mechanical properties and in vitro degradation of the developed porous scaffolds were further characterized. Compression tests were conducted to evaluate the compressive strength and modulus of the scaffolds, according to ASTM F451-95. The compression strength of the scaffolds was found to increase from 1.94 to 9.32 MPa, while the compressive modulus increased from 1.73 to 5.25 MPa as the fillers’ content increased from 0 wt% to 30 wt%. In this study, the synthesized composite scaffolds were immersed in a PBS solution at 37 °C for 40 days. Interestingly, the degradation rate was reduced for the PLA/PP20 scaffold, though insignificantly, this could be attributed to the improved mechanical properties and stronger fibre-matrix interface. Microstructure changes after degradation were observed using FESEM. The FESEM results indicated that a strong fibrematrix interface was formed in the PLA/PP20 scaffold, which reflected the addition of P. purpureum into PLA decreasing the degradation rate compared to in pure PLA scaffolds. From the results, it can be concluded that the properties of the highly porous P. purpureum/PLA scaffold developed in this study can be controlled and optimized. This can be used to facilitate the construction of implantable tissue-engineered cartilage.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlis (UniMAP)en_US
dc.rightsUniversiti Malaysia Perlis (UniMAP)en_US
dc.subjectTissue scaffoldsen_US
dc.subjectTissue engineeringen_US
dc.subjectPennisetum purpureumen_US
dc.subjectArticular cartilageen_US
dc.subjectBiomedical engineeringen_US
dc.titleDevelopment and characterization of Pennisetum Purpureum/pla biocomposite scaffolden_US
dc.typeThesisen_US
dc.contributor.advisorMohd Shukry, Abdul Majid, Ir. Dr.
dc.publisher.departmentSchool of Mechatronic Engineeringen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record