• Login
    View Item 
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Bioprocess Engineering (FYP)
    • View Item
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Bioprocess Engineering (FYP)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Green synthesis of silver nanoparticles using piper betle leaf extract and their antimicrobial properties against isolated phyto-pathogen model

    No Thumbnail [100%x80]
    View/Open
    Abstract,acknowledgement.pdf (263.2Kb)
    Introduction.pdf (145.3Kb)
    Literature Review.pdf (180.8Kb)
    Methodology.pdf (413.5Kb)
    Result and Discussion.pdf (936.3Kb)
    Conclusion and Recommendation.pdf (38.99Kb)
    Refference and Appendics.pdf (525.5Kb)
    Date
    2017-06
    Author
    Nooramalina, Azhar
    Metadata
    Show full item record
    Abstract
    Silver nanoparticles are well known as one of the promising agent especially for antibacterial activity. This project was aimed to evaluate the synthesized silver nanoparticles from Piper betle and their antimicrobial properties against phyto-pathogen model. The formation of silver nanoparticles in aqueous extract were confirmed by colour changes from yellowish to brown. To further confirm the presence of silver nanoparticles, UV-Vis spectrum was used and the absorbance of the silver nanoparticles were analysed at 452 nm. Antimicrobial activity of the synthesized silver nanoparticles of P. bettle was evaluated by using agar well plate on Escherichia coli (gram-negative bacteria), Pseudomonas aeruginasa (gram-positive bacteria) and the Aspergillus niger (fungi). The results show that synthesized silver nanoparticles on 1 mM concentration exhibits admirable zone of inhibition against E. coli, P. aeruginasa and A. niger (14.1±0.13, 14.5±0.17 and 14.7±0.40 mm, respectively). All the synthesized silver nanoparticles show significant antimicrobial activity compared to the aqueous extract of P. bettle. Minimum inhibition concentration (MIC) of the best synthesized silver nanoparticles of P. bettle (1 Mm) was further evaluated and shows that P. aeruginasa, E. coli and A. niger was perceived at three-fold, two-fold and one-fold dilution from the original samples respectively. In order to characterize the size and shape of silver nanoparticles, field emission scanning electron microscope (FESEM) was used and revealed that silver nanoparticles were in spherical shape that range from 15 to 19 nm in size. The presence of elemental silver was obtained by using energy-dispersive spectroscopy (EDX), which suggests that silver is presence as the primary element at absorption range 2.8 keV.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/73430
    Collections
    • School of Bioprocess Engineering (FYP) [366]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    NoThumbnail