Computational Fluid Dynamic (CFD)
Abstract
This study was designed to focus on Computational Fluid Dynamics which were investigated for their effects on oxygenation capacity (OC) in simulations and experiments. Experiments were conducted in an aeration tank. OC had been calculated in
experiments by using specific formula based on the dimensions of the aeration tank and the amount of OC that can be obtained after calculation is between 6.2090x10−4and 6.1990x10−4 kg/min. Then simulations had been done in coarse, medium and fine
meshing in order to select the best mesh that can be used in simulation to be validate with the real experiments. After grid dependency study, medium meshing had been choose because of the percentage of error for the medium grid is within acceptable range that is from 7% to 20%. Thus, medium mesh was selected for further study of the simulation. Even though fine grid showed a greater accuracy of simulation performance, fast turnover was more desirable in order to reduce the simulation time as the various boundary conditions in the later study would influence the convergence rate of each test run. Thus, the
solutions from the medium grid were considered to be grid independent. Contour during the 10th minute of the simulations also had been take to show the difference of dissolve oxygen inside the aeration tank between coarse, medium and fine.