• Login
    View Item 
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Manufacturing Engineering (FYP)
    • View Item
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Manufacturing Engineering (FYP)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation and design of vibration compensation for a wheelchair

    Thumbnail
    View/Open
    Abstract,Acknowledgement.pdf (298.7Kb)
    Introduction.pdf (372.9Kb)
    Literature Review.pdf (535.0Kb)
    Methodology.pdf (1.175Mb)
    Results and Discussion.pdf (1017.Kb)
    Conclusion and Recommendation.pdf (274.9Kb)
    Refference and Appendics.pdf (481.1Kb)
    Date
    2016-06
    Author
    Muhamad Hafiz, Brahim
    Metadata
    Show full item record
    Abstract
    When traveling over uneven surfaces such as paved road and obstacles, wheelchairs experienced vibration that causes the body of the person who sit on the wheelchair to experienced whole body vibration. The effect of the whole body vibration induced health conditions progress slowly and if this vibration is continuity, the pain may develop into an injury or disease. The objective of this project is to investigate current mechanism used for compensating vibration in a manual wheelchair. Then, experimental setup designated to perform an experiment on how the current mechanisms compensate vibration undergoes by the wheelchair. The designated experiment focusing on the sources of vibration by measuring the eVDV level for current manual wheelchair either it reaches the precaution zone or not. For experiment frequency reading the value for the highest frequency is 12.555 Hz and this frequency detected. After the analysis on current mechanism, a new design of vibration compensation mechanism was produce and prove with the same method. For the improvement, customer requirement from the experiment have been used to design new concept. After improvement, the calculation result show that the highest frequency reading detected on front castor wheel with 7.77Hz frequency reading and for rear castor wheel, it decrease to 5.06Hz. For Catia frequency analysis, the result shows the highest frequency reading is 11.0895 Hz on rear suspension and for front suspension is 3.3898 Hz.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/70094
    Collections
    • School of Manufacturing Engineering (FYP) [338]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback