• Login
    View Item 
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Computer and Communication Engineering (FYP)
    • View Item
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Computer and Communication Engineering (FYP)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulation analysis of wavelength-time (2-D) modified double weight code for optical CDMA system

    No Thumbnail [100%x80]
    View/Open
    Abstract,Acknowledgement.pdf (443.6Kb)
    Introduction.pdf (323.3Kb)
    Literature Review.pdf (637.7Kb)
    Methodology.pdf (610.0Kb)
    Results and Discussion.pdf (1.423Mb)
    Conclusion and Recommendation.pdf (277.1Kb)
    Refference and Appendics.pdf (346.2Kb)
    Date
    2015-05
    Author
    Hamed Ahmed, Mohammed Salmin
    Metadata
    Show full item record
    Abstract
    The explosive growth of bandwidth demand, together with advance in latest communication services and emerging applications has inspired huge interest in application of code division multiple access (CDMA) technique in optical network. The major interference factor in optical CDMA (OCDMA) is to overcome the multiple access interference (MAI) noise which induces the occurrence of bit error rate. Ideal code property with minimum cross-correlation will mitigate MAI, reduce phase induced intensity noise (PIIN) and expand code scalability. Part of the work devotes to analyzing how OCDMA can suit into the future generation of optical network. In this report the new incoherent two-dimensional (2-D) modified double weight (MDW) OCDMA wavelength-time is projected and demonstrated. The code is simulated for high performance. The good property of cross-correlation results in optimum PIIN suppression in comparison to 1-D MDW OCDMA code .This is reflected through high SNR value or low bit error rate (BER) as the cardinality increases. The comparison outcome of 2-D MDW code with 1-D MDW code indicates substantial performance improvements in cardinality, BER, bit rate and distance. Based on the simulation results the 2-D MDW OCDMA achieves high scalability; below 10-9 BER error floor. The combination of wavelength and time-chip can be further enhanced the overall system performance. The 2-D MDW OCDMA code has successfully mitigating MAI by the balance detection technique. The 2-D MDW OCDMA simulation model is developed to validate the realization of the code for BER, bit rate and distance performance. In short the 2-D MDW OCDMA code successfully suppresses PIIN and mitigating MAI which result in high cardinality, reduce Psr, high bit rate and distance.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/41752
    Collections
    • School of Computer and Communication Engineering (FYP) [310]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    NoThumbnail