Response surface methodology (RSM) in fabrication of nanostructured silicon
Date
2016Author
Ayu Wazira, Azhari
Kamaruzzaman, Sopian
Dewi Suriyani, Che Halin
Abdul Haqi, Ibrahim
Saleem Hussain, Zaidi
Metadata
Show full item recordAbstract
In this paper, a respond surface methodology (RSM) model has been developed using three levels Box-Benkhen experimental design (BBD) technique to study the influence of several metal-assisted chemical etching (MACE) process variables on the properties of nanostructured silicon (Si) wafer. Five process variables are examined i.e. concentrations of silver (Ag), hydrofluoric acid (HF), deposition time, H2O2concentration and etching time as a function of etching rate. Design-Expert®software (version 7.1) is used in formulating the RSM model of five factors with 46 experiments. A regression quadratic model is developed to correlate the process variables where the most significant factors are identified and validated using analysis of variance (ANOVA). The model for etching rate is found to be significant with R2of 0.8, where both Ag concentrations and etching time are the major influence.