Show simple item record

dc.contributor.authorVijean, Vikneswaran
dc.contributor.authorHariharan, Muthusamy, Dr.
dc.contributor.authorSazali, Yaacob, Prof. Dr.
dc.contributor.authorMohd Nazri, Sulaiman
dc.date.accessioned2014-05-10T18:13:00Z
dc.date.available2014-05-10T18:13:00Z
dc.date.issued2013
dc.identifier.citationInternational Journal of Medical Engineering and Informatics, vol. 5(4), 2013, pages 352-371en_US
dc.identifier.issn1755-0661 (Online)
dc.identifier.issn1755-0653 (Print)
dc.identifier.urihttp://www.inderscience.com/info/inarticle.php?artid=57192
dc.identifier.urihttp://dspace.unimap.edu.my:80/dspace/handle/123456789/34385
dc.descriptionLink to publisher's homepage at http://www.inderscience.com/index.phpen_US
dc.description.abstractPattern reversal visually evoked potentials (VEPs) provide valuable information about the visual nerves pathways and is a promising field to be explored for the investigation of vision impairments. The conventional method of analysis however, is centred on the detection of amplitude and latency values from the averaged VEP responses. This paper proposes alternative method of analysis using Stockwell transform (ST) for discrimination of vision impairments using single trial VEPs. The pattern reversal VEPs for the research is collected non-invasively from 16 eyes of ten subjects. The signals are decomposed into delta, theta, alpha, beta, gamma1 and gamma2 bands, and five different features are extracted from the ST matrix. The features are weighted using feature weighting method based on clustering centres of k-means clustering (KMC), fuzzy c-means clustering (FMC), and subtractive clustering (SBC) to improve the interclass variations. Extreme learning machine (ELM) and Levenberg-Marquardt back propagation neural network (LMBP) are used to discriminate the vision impairments, and the proposed method is able to achieve a maximum accuracy of 99.95%.en_US
dc.language.isoenen_US
dc.publisherInderscience Enterprises Ltd.en_US
dc.subjectELMen_US
dc.subjectExtreme learning machineen_US
dc.subjectFeature weightingen_US
dc.subjectLevenberg-Marquardt back propagation neural networken_US
dc.subjectLMBPen_US
dc.subjectStockwell transformen_US
dc.subjectVEPen_US
dc.subjectVision impairmenten_US
dc.subjectVisually evoked potentialen_US
dc.titleStockwell transform and clustering techniques for efficient detection of vision impairments from single trial VEPsen_US
dc.typeArticleen_US
dc.identifier.url10.1504/IJMEI.2013.057192
dc.contributor.urlvicky.86max@gmail.comen_US
dc.contributor.urlhari@unimap.edu.myen_US
dc.contributor.urls.yaacob@unimap.edu.myen_US
dc.contributor.urlnazri_sulaiman@hotmail.comen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record