Sediment model for natural and man-made channels using general regression neural network
View/ Open
Date
2008-09Author
Junaidah, Ariffin
Nurashikin, Ahmad Kamal
Muhamad Syahreen, Sa’adon
Mohd Nasir, Taib
Suhaimi, Abdul-Talib
Aminuddin, Abd-Ghani
Nor Azazi, Zakaria
Ahmad Shukri, Yahaya
Metadata
Show full item recordAbstract
This paper presents a new sediment transport model using general regression neural network (GRNN) that are applicable
for both natural and man-made channels. GRNN is a supervised network that trains quickly sparse data sets. The network
architecture responses very well with data that is spasmodic in nature than back propagation algorithm. Field data (499 data)
extracted from rivers in Selangor, Perak and Kedah are used in the training and testing phases. The model is further tested
using hydraulics and sediment data from rivers in the United States namely Sacremento, Atchafalaya, Colorado, Mississippi,
Middle Loup, Mountain Creek, Niobrara, Saskatchewan, Oak Creek, Red, Rio Grande rivers and Chop Irrigation Canal. Four
independent variables, namely, relative roughness on the bed (R/d50), ratio of shear velocity and fall velocity (U*/Ws), ratio
of shear velocity and average velocity (U*/V) and the Froude Number (V/√gy) are used as input variables in the input layer
and the total sediment load QT as the output variable. The proposed GRNN sediment model had accurately predicted 89% of
the river data sets (local and foreign rivers) with 90% of the predicted values lie in the discrepancy ratio of 0.5 – 2.0. For the
sake of illustrations, accuracy of the derived sediment transport model is also measured using smaller range of discrepancy
ratios.
URI
http://www.myiem.org.my/content/iem_journal_2008-179.aspxhttp://dspace.unimap.edu.my/123456789/13734
Collections
- IEM Journal [310]