• Login
    View Item 
    •   DSpace Home
    • Professional Associations
    • IEM Journal
    • View Item
    •   DSpace Home
    • Professional Associations
    • IEM Journal
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Daylight modelling and thermal performance of atrium of new MECM building at Putrajaya

    Thumbnail
    View/Open
    DAYLIGHT MODELLING AND THERMAL PERFORMANCE OF.pdf (2.565Mb)
    Date
    2004-09
    Author
    Fuziah, Sulaiman
    Azni, Zain Ahmed, Prof. Dr.
    Shuzlina, Abdul Rahman
    Adizul, Ahmad
    Metadata
    Show full item record
    Abstract
    Putrajaya, Malaysia. The LEO building was designed to incorporate renewable and energy efficiency strategies. Several window designs were considered for the new showcase building. To ascertain that innovative window designs achieve the low energy consumption objectives, a study was done to analyse and compare the effect of several adaptations of the punch-hole window designs on the illumination levels of the indoor spaces of the office building. Architectural scale models were used under a sky simulator to analyse the impact of those window designs on indoor illumination. A scale model of the atrium section of the building was also studied to assess the daylighting performance of the atrium. Again, a sky simulator designed and built to conform to the tropical sky model, was used for the purpose. However, naturally-ventilated atriums are not commonly found in hot-humid climates. Therefore, this paper presents the results of the daylight modelling and the thermal performance of an atrium designed to consume low energy. The daylighting performance was determined for each floor of the 5-storey structure using the daylight factor method. The calculation of the absolute indoor illuminances was done using solar and daylight modelling. The thermal performance was evaluated using Computational Fluid Dynamics (CFD) simulations using Climate Model Year Data and architectural parameters as input. The thermal performance was analysed based on temperature differences and airflow characteristics. It was found that the atrium provides indoor lighting for the office spaces within the recommended levels. The temperature differences, airflow distribution and velocities also indicate that indoor thermal comfort is not compromised despite of the energy minimizing considerations. The results of this work have actually been incorporated in the design of a low energy MECM government office of which the construction is in the last stages of completion in Putrajaya, Malaysia. This paper also presents the recommendations made on the possible improvements to the basic design in order to optimize natural daylighting and natural ventilation while protecting the building façade from solar thermal penetration.
    URI
    http://myiem.org.my/content/iem_journal_2004-175.aspx
    http://dspace.unimap.edu.my/123456789/13423
    Collections
    • IEM Journal [310]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback