NON-INVASIVE PATHOLOGICAL VOICE etet voi internation CLASSIFICATIONS USING LINEAR AND

NON-INVASIVE PATHOLOGICAL VOICE CLASSIFICATIONS USING LINEAR AND NON-LINEAR CLASSIFIERS

Hariharan Muthusamy (0640610093)

A thesis submitted In fulfillment of the requirements for the degree of Doctor of Philosophy (Mechatronic Engineering)

School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

ACKNOWLEDGEMENT

I would like to thank the Acoustic Applications Research Cluster, School of Mechatronic Engineering and University Malaysia Perlis (UniMAP) for providing a highly supportive research environment.

I would like to sincerely thank my supervisor Prof. Dr. Sazali Yaacob, Deputy Vice-chancellor (Academic and International), Universiti Malaysia Perlis for his guidance, encouragement, patience, inspiration and constructive feedback throughout the research and preparation of this thesis. His support towards my participation in international conferences, and commitment to an environment with adequate equipment and facilities are deeply appreciated. This thesis would not have been possible at all without his encouragement and support.

I would like to extend my sincere appreciation to my co-supervisor Assoc. Prof. Dr. Paulraj M P for his assistance and discussion throughout this research work. My special thanks to UniMAP for providing me a financial support through Graduate Assistantship (GA).

I would like to thank Dr. Indrani Christina Das, Dr. Mohd. Zambri B. Ibrahim, and Cik Fairus bt Mukthar from Hospital Tuanku Fauziah, Kangar, Perlis for allowing me to collect data from real patients.

ii

I would also like to express my sincere appreciation to all members of Acoustic Applications Research Cluster as well as those who have contributed indirectly towards the completion of this research.

I sincerely acknowledge the FRGS fund (No: 9003-00043) received from the Ministry of Science, Technology and Innovation, Malaysia, through UniMAP.

Last but not the least, I must thank my parents, my uncle and my brother. Their love, encouragement, and constant support enabled me to pursue and achieve my goals.

TABLE OF CONTENTS

	ACK	NOWLEDGEMENT	ii
	TABL	E OF CONTENTS	iv
	LIST	OF TABLES	х
	LIST	OF FIGURES	xv
	LIST	OF ABBREVIATIONS	xviii
	ABST	RAK	xxi
	ABST	RACT	xxii
1	INTR	ODUCTION	
	1.1	Preamble	1
	1.2	Problem Statement and Significance of the Study	4
	1.3	Research Objectives	6
	1.4	Thesis Organization	11
2	LITEF	RATURE REVIEW	
	2.1	Voice Disorders	14
	2.2	Types of Voice Disorders	15
	2.3	Prevalence of Voice Disorders	16
	2.4	Review of Previous Works	18
\bigcirc		2.4.1 Long-time Acoustical Parameters	18
		2.4.2 Short-time Acoustical Parameters	25
		2.4.3 Time-Frequency Analysis	27
		2.4.4 Application of Non-Linear Analysis	28

		2.4.5 Detection of Specific Disorders	31
	2.5	Observations from Previous Works	33
	2.6	Research Contributions	35
	2.7	Voice Disorders Database used in this Research	38
		2.7.1 MEEI Voice Disorders Database	38
		2.7.2 MAPACI Speech Pathology Database	39
		2.7.3 Dataset –III (collected at Hospital Tuanku Fauziah, Kangar, Perlis)	41
	2.8	Summary and Conclusion	42
3		USTIC FEATURE EXTRACTION METHODS FOR VOICE	
	3.1	Pre-processing of the Speech Signals	43
	3.2	Time-Domain Energy based Features	44
	3.3	Feature Extraction based on MFCC and SVD	49
		3.3.1 Mel Frequency Cepstral Coefficients	49
	. 20	3.3.2 Singular Value Decomposition	51
Thi	Ò	3.3.3 Parameterization using Mel-Frequency Cepstral Coefficients and SVD	52
		3.3.4 Summarization of MFCC features using SVD	53
	3.4	Wavelet Packet Transform and Entropy based Features	54
		3.4.1 Wavelet	55

		3.4.2	Wavelet Transform	56
		3.4.3	Continuous Wavelet Transform	56
		3.4.4	Discrete Wavelet Transform	57
		3.4.5	Wavelet Packets	58
		3.4.6	Parameterization using Wavelet Packet Transform and Entropy Measures	59
	3.5	Effecti	veness of the Proposed Features	62
		3.5.1	Time-Domain Energy Based Features	62
		3.5.2	MFCC and SVD Based Features	65
		3.5.3	Wavelet Packet and Entropy Based Features	69
	3.6	Summ	ary and Conclusion	74
4		LOPM SIFICA	ENT OF CLASSIFIERS FOR THE	
	4.1	Linear	Classifier	76
		4.1.1	Linear Discriminant Analysis based Classifier	77
	4.2	Non-L	inear Classifiers	79
	· XC	4.2.1	k-Nearest Neighbor Classifier	80
	Ç	4.2.2	Multilayer Perceptron Classifier	81
		4.2.3	Probabilistic and General Regression Neural Networks	84
		4.2.4	Probabilistic Neural Network Classifier	84
		4.2.5	General Regression Neural Network Classifier	86

	4.3	Classifier Performance Measures	89
	4.4	Summary and Conclusion	91
5	RESU PATH	ILTS AND DISCUSSIONS OF NORMAL AND	
	5.1	Results for the Speech Signals in MEEI Voice Disorders Database under Controlled Environment	92
		5.1.1 Results of k-NN Classifier	92
		5.1.2 Results of LDA based Classifier	94
		5.1.3 Results of MLP Classifier	95
		5.1.4 Results of PNN Classifier	98
		5.1.5 Results of GRNN Classifier	100
	5.2	Results for the Speech Signals in MEEI Voice Disorders Database under Noisy Environment (SNR=30dB)	102
		5.1.1 Results of k-NN Classifier (SNR=30dB)	102
		5.1.2 Results of LDA based Classifier (SNR=30dB)	103
		5.1.3 Results of MLP Classifier (SNR=30dB)	104
	. x 0	5.1.4 Results of PNN Classifier (SNR=30dB)	106
•		5.1.5 Results of GRNN Classifier (SNR=30dB)	107
- Thi	5.3	Development of Graphical User Interface for An Intelligent Voice Disorders Diagnosing System	109
		5.3.1 Software Description	110
	5.4	Comparison of Results with Previous Works (Two Class Problem – Normal or Pathological)	113
	5.5	Summary and Conclusion	120

6 DETECTION OF SPECIFIC DISORDERS

	6.1	Detection of Three Specific Disorders under Controlled Environment	123
		6.1.1 k-NN Classifier	123
		6.1.2 LDA based Classifier	126
		6.1.3 MLP Classifier	127
		6.1.4 PNN Classifier	130
		6.1.5 GRNN Classifier	132
	6.2	Detection of Three Specific Disorders under Noisy Environment (SNR=30dB)	135
		6.2.1 k-NN Classifier (SNR=30dB)	135
		6.2.2 LDA based Classifier (SNR=30dB)	137
		6.2.3 MLP Classifier (SNR=30dB)	138
		6.2.4 PNN Classifier (SNR=30dB)	140
		6.2.5 GRNN Classifier (SNR=30dB)	142
	6.3	Comparison of Results with Previous Works (Detection of Specific Disorders)	144
•_C	6.4	Summary and Conclusion	151
A	CON	CLUSION	
	7.1	Thesis summary	153
	7.2	Contributions	158
	7.3	Suggestions for Future Research	159

REFERENCES

APPENDICES

- Appendix A Sensitivity and Specificity Results for MEEI Voice 174 Disorders Database (Two Class Problem-Normal or Pathological)
- Sensitivity and Specificity Results for MEEI Voice Appendix B 182 Disorders Database (Detection of 📣 Specific Disorders)
- Appendix C Sensitivity and Specificity Results for MAPACI 206 Speech Pathology Database
- Sensitivity and Specificity Results for Dataset-III Appendix D 214 (collected at Hospital Tuanku Fauziah, Kangar, Perlis)

o this tem is protected LIST OF PUBLICATIONS

222

Table 2.1	Summary of Significant Research Works using Long-time Acoustical Parameters	22
2.2	Summary of Significant Research Works using Short-time Acoustical Parameters	26
2.3	Summary of Significant Research Works using Time-Frequency Analysis	28
2.4	Summary of Significant Research Works using Non-Linear Analysis	30
2.5	Summary of Significant Research Works Done for the Detection of Specific Disorders	31
2.6	Details of the Investigations Made on the Specific Disorders	36
2.7	Pathological Female Patients' Information Sheet	39
2.8	Pathological Male Patients' Information Sheet	40
2.9	Patient's Information Sheet	41
3.1	Filters and Their Corresponding Frequency Bands Considered in MFCC Feature Extraction	53
3.2	Filters and Their Corresponding Frequency Bands Achieved by Wavelet Packet Decomposition	60
3.3	Difference of Mean of the Time Domain Energy Variation based Features of Normal and Pathological Speech Signals in MEEI Database	63
3.4	Difference of Mean of the Time Domain Energy Variation based Features of Normal and Pathological (AP Squeezing, Vocal Fold Edema, and Vocal Fold Paralysis) Speech Signals in MEEI Database for 50% Overlap	64
3.5	Difference of Mean of the Time Domain Energy Variation based Features of Normal and Pathological (AP Squeezing, Vocal Fold Edema, and Vocal Fold Paralysis) Speech Signals in MEEI Database for 75% Overlap	65

LIST OF TABLES

- 3.6 Difference of Mean of the MFCC and SVD based Features of 66 Normal and Pathological Speech Signals in MEEI Database
- 3.7 Difference of Mean of the MFCC and SVD based Features of 67 Normal and Pathological (AP Squeezing, Vocal Fold Edema, and Vocal Fold Paralysis) Speech Signals in MEEI Database for 50% Overlap
- 3.8 Difference of Mean of the MFCC and SVD based Features of 68 Normal and Pathological (AP Squeezing, Vocal Fold Edema, and Vocal Fold Paralysis) Speech Signals in MEEI Database for 75% Overlap
- 3.9 Difference of Mean of the Wavelet Packet and Entropy based 70 Features of Normal and Pathological Speech signals in MEEI Database
- 3.10 Difference of Mean of the Wavelet Packet and Entropy based 71 Features of Normal and Pathological (AP Squeezing, Vocal Fold Edema, and Vocal Fold Paralysis) Speech Signals in MEEI Database for db4
- 3.11 Difference of Mean of the Wavelet Packet and Entropy based 72 Features of Normal and Pathological (AP Squeezing, Vocal Fold Edema, and Vocal Fold Paralysis) Speech Signals in MEEI Database for db10
- 3.12 Difference of Mean of the Wavelet Packet and Entropy based 73
 Features of Normal and Pathological (AP Squeezing, Vocal Fold Edema, and Vocal Fold Paralysis) Speech Signals in MEEI
 Database for db20

Confusion Matrix

- 5.1 Results of the KNN Classifier for the Classification of Normal 94 and Pathological Voices in MEEI Voice Disorder Database
- 5.2 Results of the LDA Classifier for the Classification of Normal 95 and Pathological Voices in MEEI Voice Disorder Database
- 5.3(a) Results of the MLP Classifier for the Classification of Normal 97 and Pathological Voices in MEEI Voice Disorder Database (Overall Accuracy)

- 5.3(b) Results of the MLP Classifier for the Classification of Normal 97 and Pathological Voices in MEEI Voice Disorder Database (Number of Epoch)
- 5.3(c) Results of the MLP Classifier for the Classification of Normal 97 and Pathological Voices in MEEI Voice Disorder Database (Average Training Time)
- 5.4 Results of the PNN Classifier for the Classification of Normal 99 and Pathological Voices in MEEI Voice Disorder Database
- 5.5 Results of the GRNN Classifier for the Classification of Normal 101 and Pathological Voices in MEEI Voice Disorder Database
- 5.6 Results of the KNN Classifier for the Classification of Normal 103 and Pathological Voices in MEEI Voice Disorder Database with 30dB Noise
- 5.7 Results of the LDA Classifier for the Classification of Normal 104 and Pathological Voices in MEEI Voice Disorder Database with 30dB noise
- 5.8(a) Results of the MLP Classifier for the Classification of Normal 105 and Pathological Voices in MEEI Voice Disorder Database with 30dB noise (Overall Accuracy)
- 5.8(b) Results of the MLP Classifier for the Classification of Normal 105 and Pathological Voices in MEEI Voice Disorder Database with 30dB noise (Number of Epoch)
- 5.8(c) Results of the MLP Classifier for the Classification of Normal 105 and Pathological Voices in MEEI Voice Disorder Database with 30dB Noise (Training Time)
- 5.9 Results of the PNN Classifier for the Classification of Normal 107 and Pathological Voices in MEEI Voice Disorder Database with 30dB Noise
 - 5.10 Results of the GRNN Classifier for the Classification of Normal 108 and Pathological Voices in MEEI Voice Disorder Database with 30dB Noise
 - 5.11 Comparison of Results with Previous Research Works (Two 114 Class Problem Normal or Pathological)

- 6.1 Results of the KNN Classifier for the Classification of Normal 124 and Pathological Voices (AP Squeezing)
- 6.2 Results of the KNN Classifier for the Classification of Normal 125 and Pathological Voices (Vocal Fold Edema)
- 6.3 Results of the KNN Classifier for the Classification of Normal 125 and Pathological Voices (Vocal Fold Paralysis)
- 6.4 Results of the LDA Classifier for the Classification of Normal 126 and Pathological Voices (AP Squeezing, Vocal Fold Edema, Vocal Fold Paralysis)
- 6.5 Results of the MLP Classifier for the Classification of Normal 128 and Pathological Voices (AP Squeezing)
- 6.6 Results of the MLP Classifier for the Classification of Normal 129 and Pathological Voices (Vocal Fold Edema)
- 6.7 Results of the MLP Classifier for the Classification of Normal 129 and Pathological Voices (Vocal Fold Paralysis)
- 6.8 Results of the PNN Classifier for the Classification of Normal 131 and Pathological Voices (AP Squeezing)
- 6.9 Results of the PNN Classifier for the Classification of Normal 131 and Pathological Voices (Vocal Fold Edema)
- 6.10 Results of the PNN Classifier for the Classification of Normal 132 and Pathological voices (Vocal Fold Paralysis)
 - Results of the GRNN Classifier for the Classification of Normal 134 and Pathological Voices (AP Squeezing)
- 6.12 Results of the GRNN Classifier for the Classification of Normal 134 and Pathological Voices (Vocal Fold Edema)
- 6.13 Results of the GRNN Classifier for the Classification of Normal 135 and Pathological Voices (Vocal Fold Paralysis)
- 6.14 Results of the KNN Classifier for the Classification of Normal 136 and Pathological Voices (AP Squeezing) with 30dB Noise

- 6.15 Results of the KNN Classifier for the Classification of Normal 136 and Pathological Voices (Vocal Fold Edema) with 30dB Noise
- 6.16 Results of the KNN Classifier for the Classification of Normal 137 and Pathological Voices (Vocal Fold Paralysis) with 30dB Noise
- 6.17 Results of the LDA Classifier for the Classification of Normal 138 and Pathological Voices (AP Squeezing, Vocal Fold Edema, Vocal Fold Paralysis) with 30dB Noise
- 6.18 Results of the MLP Classifier for the Classification of Normal 139 and Pathological Voices (AP Squeezing) with 30dB Noise
- 6.19 Results of the MLP Classifier for the Classification of Normal 139 and Pathological Voices (Vocal Fold Edema) with 30dB Noise
- 6.20 Results of the MLP Classifier for the Classification of Normal 139 and Pathological Voices (Vocal Fold Paralysis) with 30dB Noise
- 6.21 Results of the PNN Classifier for the Classification of Normal 140 and Pathological Voices (AP Squeezing) with 30dB Noise
- 6.22 Results of the PNN Classifier for the Classification of Normal 141 and Pathological Voices (Vocal Fold Edema) with 30dB Noise
- 6.23 Results of the PNN Classifier for the Classification of Normal 141 and Pathological Voices (Vocal Fold Paralysis) with 30dB Noise
- 6.24 Results of the GRNN Classifier for the Classification of Normal 142 and Pathological Voices (AP Squeezing) with 30dB Noise
 - Results of the GRNN Classifier for the Classification of Normal 143 and Pathological Voices (Vocal Fold Edema) with 30dB Noise
- 6.26 Results of the GRNN Classifier for the Classification of Normal 143 and Pathological Voices (Vocal Fold Paralysis) with 30dB Noise
- 6.27 Comparison of Results with the Previous Works 144 (Detection of Specific Disorders)

LIST OF FIGURES

	Figure 2.1(a)	Cross Section of Mouth and Throat	15
	2.1(b)	Vocal Cords Diagram	15
	2.2	Classification of Voice Disorders	16
	2.3	Overall Methodology	37
	3.1(a)	Time-Domain Energy Plot of a Normal Speech Signal	45
	3.1(b)	Time-Domain Energy Plot of a Pathological Speech Signal	46
	3.2(a)	Illustration of the Energy Peaks	47
	3.2(b) & 2.2(c)	Area Enclosed by the Two Energy Peaks of a Speech Signal in One Short-Time Window	47
	3.2(c) 3.3	Basic Block Diagram of MFCC Feature Extraction	50
	3.4	An Example of Mel-Spaced Filterbank	50
	3.5	Feature Extraction using MFCC and SVD	52
	3.6	Basic and Multilevel Wavelet Decomposition	58
	3.7	Feature Extraction using Wavelet Packet Transform and Shannon Entropy Measures	62
	4.1	Multilayer Neural Network with One Hidden Layer	82
<	4.2	Architecture of General Regression Neural Network	88
\bigcirc	5.1	GUI Layout	111
	5.2	Open Dialog Box to Load a Speech File	111
	5.3	Software Results after Loading a Pathological Speech File	112
	5.4	Software Results after Loading a Normal Speech File	112
	5.5	Comparison of Positive Predictivity Results of the Five Classifiers under Clean and Noisy Environment (MEEI Database)	115

- 5.6 Comparison of Overall Accuracy Results of the Five Classifiers 115 under Clean and Noisy Environment (MEEI Database)
- 5.7 Comparison of Training Time(s) Results of the Five Classifiers 116 under Clean and Noisy Environment (MEEI Database)
- 5.8 Comparison of Overall Accuracy Results of the Five Classifiers 116 under Clean and Noisy Environment (MAPACI Database)
- 5.9 Comparison of Positive Predictivity Results of the Five 117 Classifiers under Clean and Noisy Environment (MAPACI Database)
- 5.10 Comparison of Training Time(s) Results of the Five Classifiers 117 under Clean and Noisy Environment (MAPACI Database)
- 5.11 Comparison of Positive Predictivity Results of the Five 118 Classifiers under Clean and Noisy Environment (Dataset III)
- 5.12 Comparison of Overall Accuracy Results of the Five Classifiers 118 under Clean and Noisy Environment (Dataset III)
- 5.13 Comparison of Training Time(s) Results of the Five Classifiers 119 under Clean and Noisy Environment (Dataset III)
- 6.1 Comparison of Overall Accuracy Results of the Five Classifiers 146 under Clean and Noisy Environment (AP Squeezing)
- 6.2 Comparison of Overall Accuracy Results of the Five Classifiers 147 under Clean and Noisy Environment (Vocal Fold Edema)
- 6.3 Comparison of Overall Accuracy Results of the Five Classifiers 147 under Clean and Noisy Environment (Vocal Fold Paralysis)
- 6.4 Comparison of Positive Predictivity Results of the Five 148 Classifiers under Clean and Noisy Environment (AP Squeezing)
 - 6.5 Comparison of Positive Predictivity Results of the Five 148 Classifiers under Clean and Noisy Environment (Vocal Fold Edema)
 - 6.6 Comparison of Positive Predictivity Results of the Five 149 Classifiers under Clean and Noisy Environment (Vocal Fold Paralysis)

- Comparison of Training Times(s) of the Five Classifiers under 6.7 149 Clean and Noisy Environment (AP Squeezing)
- Comparison of Training Times(s) of the Five Classifiers under 6.8 150 Clean and Noisy Environment (Vocal Fold Edema)
- ers under Comparison of Training Times(s) of the Five Classifiers under 150

LIST OF ABBREVIATIONS

	AP	Anterior Posterior
	APQ	Amplitude Perturbation Quotient
	AUC	Overall Accuracy
	BBA	Best Basis Algorithm
	BW	Bandwidth
	CWT	Continuous Wavelet Transform
	DCT	Discrete Cosine Transform
	DWT	Discrete Wavelet Transform
	ENT	Ear, Nose and Throat
	EGG	Electroglottograph
	FFT	Fast Fourier Transform
	FN	False Negative
	Fo	Fundamental Frequency
	FP	False Positive
	FT KOV	Fourier Transform
	GA	Genetic Algorithm
	GMMS	Gaussian Mixture Models
\bigcirc	GNE	Glottal to Noise Ratio
	GRNN	General Regression Neural Network
	GUI	Graphical User Interface
	HCF	Higher Cut off Frequency
	HMM	Hidden Markov Model

	HNR	Harmonics to Noise Ratio
	k-NN	k-Nearest Neighbor
	LCF	Lower Cut off Frequency
	LD	Linear Discriminants
	LDA	Linear Discriminant Analysis
	LDB	Local Discriminant Bases
	LPC	Linear Prediction Coding
	LVQ	Learning Vector Quantization
	MEEI	Massachusetts Eye and Ear Infirmary
	MFCCs	Mel Frequency Cepstral Coefficients
	MLP	Multilayer Perceptron
	NNE	Normalized Noise Energy
	PC	Personal Computer
	PDF	Probability Density Function
	PFR	Phonatory Frequency Range
	PNN	Probabilistic Neural Network
	PP	Positive Predictivity
<	PPQ	Pitch Perturbation Quotient
ソ	SE	Sensitivity
	SF	Spread Factor
	SNR	Signal to Noise Ratio
	SP	Specificity
	SPI	Soft Phonation Index

 \bigcirc

- SVD Singular Value Decomposition
- Support Vector Machine SVM

- orthis term is protected by orthograd convited the

ANALISIS AKUSTIK DAN KLASIFIKASI BAGI SUARA PATOLOGIKAL DENGAN MENGGUNAKAN PENGELASAN LINEAR DAN TIDAK LINEAR

ABSTRAK

Penyakit vokal dan suara telah meningkat secara mendadak disebabkan keadaan pekerjaan, tabiat sosial yang tidak sihat dan penyalahgunaan suara. Penyakit vokal memberi kesan kepada bentuk getaran biasa dalam peti suara dan menyebabkan perubahan dalam gelombang suara akustik. Pakar perubatan profesional menggunakan teknik yang subjektif untuk memeriksa masalah suara, contohnya, pemeriksaan terus kepada pengetar suara dan pemeriksaan kepada pengetar suara menggunakan 'Laryngoscopy'. Teknik tersebut adalah sangat mahal, berisiko, memerlukan masa yang banyak, menyebabkan ketidakselesaan kepada pesakit dan memerlukan sumber yang mahal. Analisis akustik bagi gelombang suara telah terbukti sebagai alat yang terbaik untuk mengesan penyakit vokal kerana ia adalah salah satu alat yang tidak memberikan kesan sampingan dan memberikan satu pemeriksaan yang objektif. Dalam penyelidikan ini, satu kaedah tidak-invasif telah dijalankan untuk mengesan penyakit suara melalui analisis gelombang suara akustik. Dalam tiga puluh tahun ini, pebagai penyelidikan dan pembangunan telah dijalankan dalam bidang pengesanan penyakit suara automatik dalam bentuk analisis percakapan masa panjang, analisis percakapan masa pendek, analisis gelombang "Electroglottographic (EGG)", analisis masa- frekuensi, pengesanan pergerakan pengetar suara automatik dari teknik pengimejan dan teknik pemprosesan gelombang tidak sekata. Sebahagian besar parameter jangka panjang dihasilkan dari frekuensi asas, namun anggaran yang betul bagi frekuensi asas patologi tertentu adalah satu tugas yang sukar. Walaubagaimanapun, terdapat kaedah penyelesaian alternatif dengan membangunkan algoritma pengekstrakan sifat yang berkesan. Tiga kaedah pengekstrakan ciri- ciri telah dicadang berdasarkan kepada perbezaan tenaga domain masa, "Mel Frequency Cepstral Coefficients (MFCC)" digabungkan dengan "Singular Value Decomposition (SVD)" dan ciri- ciri paket "wavelet" dan entropi tanpa mengira frekuensi asas. Pengasing linear seperti pengasing berdasarkan "Linear Discriminant Analysis (LDA)" dan pengasing tak linear seperti pengasing "k-nearest neighbor (k-NN)", "Multilayer Perceptron (MLP)", "Probabilistic Neural Network (PNN)" dan "General Regression Neural Network (GRNN)" telah dicadangkan untuk mengasingkan suara patologikal daripada suara biasa. Dalam penyelidikan ini, tiga pangkalan data seperti "Massachusett Eye and Ear Infirmary (MEEI) Voice Disorders database", "MAPACI Speech Pathology database" dan "Dataset- III" (dikumpulkan di Hospital Tengku Fauziah, Kangar, Perlis) telah digunakan untuk menguji kelainan algoritma di antara pangkalan-pangkalan data dan di antara pengekstrakan ciri- ciri yang telah dicadangkan diuij dalam keadaan kehingaran pada 30dB "signal- to- ratio (SNR)". Dua jenis eksperimen telah dijalankan menggunakan algoritma pengekstrakan ciri- ciri dan klasifikasi yang telah dicadangkan. Dalam eksperimen pertama, klasifikasi suara normal dan suara patologikal telah disiasat. Dalam eksperimen kedua, pengesanan jenis masalah suara yang specifik telah dilakukan melalui masalah klasifikasi bentuk dua kelas. Pelbagai jenis masalah suara telah dipilih seperti "AP squeezing", "Vocal fold edema" dan "vocal fold paralysis" berdasarkan penyelidikan sebelum ini. Keputusan eksperimen menjelaskan kaedah yang dicadangkan memberikan ketepatan klasifikasi yang memberangsangkan untuk klasifikasi suara biasa dan patologikal di bawah keadaan hingar dan senyap. Dalam kes pengesanan masalah tertentu, ciri- ciri paket "wavelet" dan entropi memberikan kesan yang lebih baik berbanding dengan ciri- ciri berdasarkan perbezaan tenaga domain masa dan ciri- ciri berdasarkan MFCC dan SVD. Pengukuran prestasi berikut seperti "positive predictivity (PP)", "specificity (SE)", dan "overall accuracy (AUC)" telah dipertimbangkan untuk menjalankan ujian untuk menguji kehandalan dan keefektifan pengasing linear dan bukan linear. Untuk pangkalan data masalah suara MEEI, kadar kejayaan pengasing tersebut adalah melebihi 99% untuk pengklasifikasian suara biasa dan patalogikal dan untuk pengesanan masalah tertentu, kadar kejayaan terbaik adalah 100% telah diperolehi. Eksperimen ini juga telah diulangi untuk "MAPACI speech pathology database" dan "dataset- III" di bawah keadaan hingar dan tidak hingar. Keputusan tersebut menunjukkan bahawa ciri- ciri berdasarkan paket wavelet dan entropi menghasilkan ketepatan klasifikasi yang lebih baik berbanding dengan ciri- ciri berdasarkan tenaga domain masa dan ciri- ciri berdasarkan MFCC dan SVD untuk dua lagi pangkalan data. Kesimpulannya, algoritma pengekstrakan ciri- ciri dan pengklasifikasian yang telah dicadangkan boleh diterapkan untuk membantu pakar perubatan dalam siasatan awal bagi masalah suara mengikut aliran perubatan.

NON-INVASIVE PATHOLOGICAL VOICE CLASSIFICATIONS USING LINEAR AND NON-LINEAR CLASSIFIERS

ABSTRACT

In this research work, a non-invasive method is conducted to diagnose the voice diseases through acoustic analysis of voice signal. Three feature extraction methods are proposed based on the time-domain energy variations, Mel frequency cepstral coefficients combined with singular value decomposition and wavelet packet and entropy features. Linear classifier namely LDA based classifier and non-linear classifiers such as k-NN classifier, MLP network, PNN, and GRNN are suggested to discriminate pathological voices from normal voices. In this research work, three databases such as MEEI voice disorders database. MAPACI Speech Pathology database, and dataset-III (collected at Hospital Tuanku Fauziah, Kangar, Perlis) are used to test the independence of the algorithms to the databases and the proposed feature extraction algorithms are also tested in noisy condition at 30dB signal-to-noise ratio Two types of experiments are conducted using the proposed feature extraction and classification algorithms. In the first experiment, classification of normal and pathological voice has been investigated. In the second experiment, the detection of the specific type of voice disorders has been carried out through twoclass pattern classification problems. The different kind of voice disorders are selected such as AP squeezing, vocal fold edema and vocal fold paralysis based on the previous research works. The experiment investigations elucidate that the proposed feature extraction algorithms give very promising classification accuracy for the classification of normal and pathological voices under controlled and noisy environment. In the case of detection of specific disorders, wavelet packet and entropy features perform well compared to time-domain energy variations based features and MFCCs and SVD based features. The following performance measures such as positive predictivity, specificity, sensitivity, and overall accuracy have been considered, in order to test the reliability and effectiveness of the linear and non-linear classifiers. For the MEEI voice disorders database, the success rate of the classifiers is above 98% for the classification of normal and pathological voices and for the detection of specific disorders the best classification accuracy of 100% is achieved. The experiments have also been repeated for the MAPACI speech pathology database and dataset- III under controlled and noisy environment. The results indicate that the wavelet packet and entropy based features provides better classification accuracy compared to time-domain energy based features and MFCCs and SVD based features for the two more databases. It is concluded that proposed feature extraction and classification algorithms can be employed to help the medical professionals for early investigation of voice disorders.

CHAPTER 1

INTRODUCTION

This chapter gives the introduction to the subject of interest, discussion of the existing methods of voice disorders diagnosing methods, its drawbacks and also the advantages of non-invasive methods. This chapter also deals with the objectives of the proposed research and organization of the thesis.

1.1 Preamble

The voice can indicate an individual moods, age or illness. The voice can be used to attract others, to calm others, to irritate, and to frighten others. In this world, people are realizing the importance of voice, only when they got a voice problem. Voice problems affect the normal vibration pattern of the glottis. Voice is very important for certain professionals like singers, teachers, actors, reporters, lawyers, auctioneers, and phone assistants. Vocal fold problems have an impact on people's professional carriers and their quality of life (Krischke et al., 2005; Rasch, Günther, Hoppe, Eysholdt, & Rosanowski, 2005).

Voice disorders are due to nature of job, unhealthy social habits and due to vocal fatigue after an extensive period of talking. However, the problems may become chronic if the voice is abused or overused when vulnerable. During the upper respiratory infections, the risk of voice damage is increased (Murry & Rosen, 2000). Due to the vibration of the vocal folds, the structure of vocal folds become