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W/Kg  Watt/Kilogram 

AC  Alternating Current 

DC  Direct Current 

RM  Ringgit Malaysia 

B.F  Building factor 

FEM  Finite Element Method 

TNB  Tenaga Nasional Berhad 

TNBD  Tenaga Nasional Berhad Distribution 

SESCO Sabah Electricity Supply Company 
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Pembahagian Ketumpatan Fluks Dan Kehilangan Kuasa  Pada Teras 
Alat Pengubah Pembahagian 100kVA Sambungan-T Yang Berbeza 

Sudut 
 

Abstrak 
 

Kehilangan kuasa yang terhasil daripada permagnetan telah mendapat 
perhatian sejak dari dahulu lagi. Alat pengubah yang dibina daripada sambungan-T 
Butt Lap menghasilkan kehilangan kuasa paling tinggi. Ini kerana fluks terpaksa 
berpusing arah sebanyak 90º di dalam kawasan arah susah dan perlu naik dan turun ke 
lapisan bersebelahan menyebabkan kehilangan kuasa yang tinggi terhasil pada 
sambungan-T ini. Untuk mengatasi masalah ini, beberapa jenis potongan bersudut 
seperti 23º, 45º dan 60º diperkenalkan di dalam usaha untuk menghasilkan rekabentuk 
yang lebih baik. Pembinaan model teras alat pengubah pembahagian 100kVA untuk 
pengukuran kehilangan kuasa dan faktor pembinaan telah dibuat dan ekperimen telah 
dilakukan untuk menunjukkan sambungan-T yang mana dapat menberikan kehilangan 
kuasa paling minima dan faktor pembinaan terbaik. Ketumpatan fluks setempat 
diukur dengan menggunakan “search coil” untuk menunjukkan pembahagian 
ketumpatan flux setempat pada sambungan tepi dan sambungan-T. Ketumpatan fluks 
harmonik asas, fluks harmonik ketiga dan fluks harmonik kelima pada fluks normal 
dan fluks inplane telah diukur di sambungan tepi dan sambungan-T. Kehilangan kuasa 
setempat diukur dengan menggunakan “thermistor” pada lokasi yang sama dengan 
“search coil”. Keputusan menunjukkan bahawa kehilangan kuasa paling minima, 
faktor pembinaan terbaik, ketumpatan fluks untuk fluks normal, fluks harmonik asas, 
fluks harmonik ketiga, fluks harmonik kelima pada fluks normal dan fluks inplane 
serta kehilangan kuasa setempat adalah paling rendah pada model teras alat pengubah 
sambungan-T 60°.  
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xviii 

Flux Density And Power Loss Distribution In 100kVA Distribution 
Transformer Core Assembled With Different Cutting Angle Of T-

Joint 
 

Abstract 
 

The power losses occurring under magnetising condition have received a great 
deal of attention for a long time. The transformer designs with Butt Lap joint cause 
the highest power loss at the T-joint. These due to the flux need to rotate 90º into the 
hard direction and transfer up and down to the adjacent layers causes high rotational 
power loss occurred at the T-joint. To overcome this problem, the different cutting 
angle such as 23º, 45 º and 60º at the T-joint was introduces in order to find out the 
most efficient design. The development of the 100kVA Distribution Transformer 
model core with the four difference types of the T-joint for the power loss and 
building factor measurement has been tested in order to find which T-joint has 
minimum power loss and better building factor. The localised flux density was 
measured using the search coil in order to find out their distribution at the corner joint 
and T-joint. The fundamental, third and fifth harmonic in the normal and inplane flux 
density were measured at the corner joint and T-joint. The localised power loss was 
measured using the thermistor at the similar location of the search coil. The results 
show that the minimum power loss, better building factor, the minimum fundamental, 
third and fifth harmonic the normal and inplane flux density and also minimum 
localised power loss are occurred at the transformer model core assembled with the 
60° T-joint.  

  

 

 

 

 

 
 
 
 
 
 
 
 
 
©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y 
or
ig
in
al
 c
op
yr
ig
ht
 



Chapter One 

Introduction 
 
1.1. Introduction 
 

For a long time industry and academia have been working to improve the 

methods for predicting losses in the laminated transformer cores. The important 

research findings have been reported over the last decades based on modern numerical 

techniques for the field calculation and prototype testing (Jose F.d.O, 2000). This 

work is an attempt to compile much of the available information about the losses in 

the laminated cores and to elaborate the less loss but still in the practical tool for 

possible application in the transformer industry. 

 Mostly, the magnetic cores of the three phase transformers work under the 

alternating magnetisation but the different type of the magnetisation is produced in the 

T-joint of the three limb three phase transformers. It has been widely reported that in 

these regions, the magnetic material is subjected to the rotational magnetisation 

(Radley B., 1981, Kanada T., 1996). The magnetic excitation which produces the 

rotational and alternating magnetisation at arbitrary direction within the plane of the 

lamination is called as the two dimensional magnetisation. If the excitation causes the 

rotation of the flux density vector, then the magnetisation is also referred to as the 

rotational magnetisation. The core losses in the laminated cores are estimated to 

dissipate over 3% of all generated electricity (Moses A.J., 1992). The measurement of 

the power losses under the alternating magnetisation conditions are precisely defined 

by the international standards (IEC, 1996). It is attempted to measure the magnetic 

properties of the magnetic material under the circular flux density or magnetic field 

(Stanislaw Z., 2005). This study is focused on the stacked laminated cores and to suit 

an appropriate sample of tested units, restricted to the three phase three limb cores 

built from the grain oriented silicon of the high permeability steel at 50 Hz. The range 

of the flux densities chosen for the analysis is 1.0 T to 1.8 T. The intention of 

covering is not only the usual operating condition but also in the special cases where 

the low induction (1.0 T to 1.3 T) is required and also the temporary overfluxing with 

the transformer operating close to saturation levels (1.7 T to 1.8 T). 
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1.2. The Aim Of This Research 
 

The aim of this research is to investigate the influence of the different cutting 

angle of T-joint on the power loss and flux distribution hence will found which type 

of the cutting angle of T-joint with the lowest power loss on the transformer core 

lamination.  

In summary, the works have been done for this research are to design, develop 

and construct the 100kVA Distribution Transformer core model assembled with the 

Butt Lap joint, 60º T-joint, 45º T-joint and 23º T-joint. Method that use in the 

investigation is the No-Load Test by arrays of the search coil. The nominal power loss 

for the core material is measure using the Epstein Test Frame. From the result of the 

nominal power loss and the actual power loss measurement will be found the building 

factor for each transformer core model. The Single Sheet Tester was used to find the 

flux in the easy and hard direction. The localised power loss for each point in the 

lamination of each cores model has been measured by using the temperature rise 

technique with the thermistor. The path way of the flux travels in the core of each 

type of the T-joint was simulated by using the Finite Element Method of the 

QuickField software. The mesh and contour graph of the localised fundamental and 

harmonic flux density of T-joint core was drawn by using the Matlab software and 

also the mesh and contour graph of the localised power loss at each T-joint. 
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Chapter Two 
 

Magnetic Properties, Flux Distributions And Losses 
 
2.1. Magnetic Properties Of Ferromagnetic Materials 
 

The magnetic properties of a given material can be divided into two groups. 

The first group belongs to those properties such as the saturation magnetisation and 

the saturation magnetostriction. These properties are the fundamental constants with 

the ferromagnetic element or its alloy. The second groups are those properties which 

depend on the structure and previous history of a given material. The structure 

sensitive properties include the permeability, remanence, coercive force and 

magnetostriction. 

The magnetic properties of the material can be described as the magnetisation 

and domain theory, magnetisation curve, demagnetising field, magnetocrystalline 

anisotropy, the magnetism and rotational magnetisation, the alternating magnetisation, 

the rotational magnetisation and the soft magnetic materials in the rotational 

magnetisation. 

 
 
2.1.1. The Magnetisation And Domain Theory 
 

The magnetisation curve can be described in the terms of the domain theory. It 

is convenient to treat the curve in the three main parts and explain each part in terms 

of the domain theory (D. Jiles, 1996). Figure 2.1 shows the domain processes 

occurring as the material is magnetised to saturation. The first part called initial part 

which the domain process occurs which is a growth of domain which are align 

favourably with respect to the field and a consequent reduction in size of domains 

which are aligned in direction opposing the field. The second part called middle part 

which the mechanism becomes significant, this is domain rotation in which the atomic 

magnetic movements within an unfavourably aligned domain overcome the 

anisotropy energy and suddenly rotate from their original direction of magnetisation 

into one of the crystallographic easy axis which is nearest to the field direction. The 

third part called upper portion which the domain process coherent rotation takes 
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place. In this process the magnetic moments, which are aligned along the preferred 

easy axis lying close to the field direction are gradually rotated into the field direction 

as the magnitude of the field is increased. Figure 2.2 and 2.3 show the domain wall 

structure of the grain oriented silicon steel, M5 magnify by 500X and 300X. 

 

 
Figure 2.1: Domain processes occurring as the material is magnetised to saturation 

 
 

Figure 2.2: Domain wall structure of M5 magnify by 500X 
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Figure 2.3: Domain wall structure of M5 magnify by 300X 
 

2.1.2. Magnetisation Curve 
 

The curve which relates the induction, B to the field strength, H is called the 

magnetisation curve. This curve is important because it can find the permeability, μ at 

any values of the B or H as well as the initial and the maximum permeability which 

are often used for the comparative purposes. The permeability, μ is the ratio of the B 

over H. The initial permeability (μin) is found from the slope of the B-H curve at the 

low fields. The maximum permeability (μm) is the maximum value found by dividing 

the B by H, graphically is the slope of the line from the origin to the point on the knee 

of the curve. At the large values of the H, the material becomes saturated and at the 

saturation limit the curve becomes the horizontal line (B.D. Cully, 1972). Figure 2.4 

shows the B versus H curve of the ferromagnetic material. 

 

 
Figure 2 4: The B versus H curve of the ferromagnetic material 
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2.1.3. Demagnetising Field 
 

It is necessary to consider the demagnetisation factor in the ferromagnetic 

materials. The exact internal field in the ferromagnetic material is made up of two 

parts, 

dappin HHH −=                                      (2.1) 

Where Happ represents the applied magnetic field outside the specimen and Hd 

represents the demagnetising field and depend on the magnetisation in the material 

and the shape of the specimen [2.2]. It is expressed in  

MNH dd =                                       (2.2) 

Nd is the demagnetising factor which is calculated from the sample geometry. 

 

2.1.4. Magnetocrystalline Anisotropy 
 

When the ferromagnetic material is subjected to an applied field, the observed 

magnetisation depends on the both magnitude of the field and the crystallographic 

direction along which it is applied. The large field of the magnetisation will reach the 

saturation value which is the same for all crystallographic directions. This shows that 

all magnetisation vectors have been rotated as to be parallel to the applied field. The 

crystallographic direction for which the magnetisation reaches saturation in the lowest 

applied field is known as the easy direction of magnetisation or the easy axis of 

magnetisation. This is the axis which the magnetisation vectors of the domains lay in 

the absence of an applied field (George L., 1998). Figure 2.5 shows the magnetisation 

curves in the various crystallographic directions to illustrate the magnetocrystalline 

anisotropy of the iron 
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