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Pembentukan Sokongan Asas Sifat dalam Mesin Pemodelan Pengendapan 

Melakur  

 

ABSTRAK 

 

Pembentukan Sokongan Asas Sifat merupakan teknik yang dicadangkan di dalam 

mesin Pemodelan Pengendapan Melakur. Teknik ini mampu memberi maklumat tentang 

isipadu dan bilangan struktur sokongan di mana ia berkait rapat dengan penghalaan 

pengendapan  model. Terdapat dua jenis asas sokongan dalam pembentukan model 

produk Pemodelan Pengendapan Melakur, iaitu Asas Sokongan Sendiri dan Asas 

Sokongan Luaran. Asas Sokongan Sendiri tidak memerlukan bahan sokongan manakala 

Asas Sokongan Luaran melibatkan penggunaan bahan sokongan tambahan dalam 

pembentukannya. Pada masa kini, pelbagai teknik telah dicadangkan untuk mengenal 

pasti sifat adalah terhad kepada proses pembuatan yang spesifik. Daripada aspek yang 

lain, proses perancangan LM adalah tidak automatic sepenuhnya dan menjuruskan ke 

arah penurunan kualiti produk dan meningkatkan keupayaan untuk membuat kesilapan. 

Tambahan pula, banyak kesilapan yang terjadi adalah di sebabkan penglibatan manusia 

dalam proses yang kritikal ini. Isu lain ialah format fail STL yang digunakan untuk 

memindahkan data CAD kepada proses perancangan pembuatan berlapis menghasilkan 

kehilangan maklumat rekabentuk dan fungsi sifat. Penentuan Penghalaan Pengendapan 

Model yang optimum adalah didapati sukar dan mengambil masa yang panjang untuk 

dibina yang mana ianya dipengaruhi oleh kelajuan dan pertukaran hujung muncung ketika 

pemendapan bahan. Objektif utama tugasan ini adalah untuk mengintegrasikan antara 

Rekabentuk Terbantu Komputer dan Pembuatan Terbantu Komputer dengan 

menggunakan teknik asas sifat. Ini dapat membantu dalam mengautomasikan 

perancangan proses Pemodelan Pengendapan Melakur sebelum pembuatan model dengan 

pengurangan ralat manusia. Dalam tugasan ini, jumlah minimum isipadu dan bilangan 

struktur sokongan dipilih bagi menentukan penghalaan pengendapan model yang 

optimum. Tugasan yang dijalankan juga tertumpu kepada penambahbaikan kawasan 

permukaan tidak bersentuh di antara struktur sokongan dan model.Ketepatan rangkaian 

ditentukan melalui lima struktur MLP (Struktur 1 hingga 5). Ketepatan untuk semua 

struktur MLP pada spesifik nod adalah dianalisi. Hasil gabungan struktur MLP 1 dan 

MLP 2 adalah dengan jumlah isipadu dan bilangan struktur sokongan yang minimum 

akan dipilih sebagai Penghalaan Pengendapan Model yang optimum. Proses 

mengoptimumkan parameter ini dilakukan dengan menggunakan rangkaian neural buatan. 

Proses mengoptimumkan jumlah isipadu dan bilangan struktur sokongan dilakukan 

dengan menggunakan rangkaian neural buatan. Paramter ini juga perlu dipertimbangkan 

disebabkan kos fabrikasi dan masa pembinaan. Model yang telah melalui proses 

penambahbaikan seterusnya dihasilkan dengan menggunakan mesin FDM-3000. 

Keputusan Penghalaan Pengendapan Model yang optimum dibandingkan dengan model 

yang telah digunakan di dalam kerja-kerja yang terdahulu. Hasil kajian ini menunjukkan 

bahawa penghalaan yang sama telah dikenalpasti. Keputusan eksperimen juga 

menunjukkan bahawa persentuhan antara struktur sokongan dan model telah 

ditambahbaik sebanyak 38%. Permukaan tidak bersentuh pada kawasan yang tidak 

diperlukan dari kedudukan yang paling atas hingga kedudukan yang paling bawah oleh 

struktur sokongan telah dihasilkan. Teknik ini juga boleh digunakan dalam percetakan  

teknologi 3D terkini. 
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Feature-based Support Generation in Fused Deposition Modeling Machine 

(FDM) 

 

ABSTRACT 

 

Feature-based Support Generation is a technique that has been proposed in Fused 

Deposition Modeling (FDM) machine. This technique can provide information of volume 

and amount of support structure which are closely related to orientations of part 

deposition. There are two types of support features in FDM part model development, 

which are Self-Supported Features (SSF) and External-Supported Features (ESF). The 

SSF requires no support material while ESF involves the use of additional support 

material in their fabrication. Currently, various techniques have been suggested to 

identify features are limited to a specific manufacturing process. In other aspect, the LM 

process planning is not fully automatic and lead to part quality degradation and increases 

the possibility of making errors. Furthermore, many errors are occurred due to the 

involvement of human in this crucial process. Other issue is that the Stereolithography 

(STL) file format representation is used to transfer the CAD data to the LM process 

planning resulting to the loss of design and functional feature information. Determining 

the OPDO was found to be difficult and consumed longer build times that influenced by 

the speed and the change of nozzle's tip during material deposition. The main objective 

of this work is to integrate between Computer Aided Design (CAD) and Computer Aided 

Manufacturing (CAM) using a feature-based technique. This will help in automation of 

FDM process planning prior to the manufacturing of part model with less human error. 

In this work, the minimum volume and amount of support structure are selected in order 

to determine the optimum part deposition orientation. This work also focuses on the 

improvement of the non-contact surface area between the support structure and part 

model. The accuracy of the network is determined through five MLP structures 

(Structures 1 to 5). The accuracies for all MLP structures at specific hidden nodes are 

analysed. The output of combination of MLP 1 and MLP 2 structures with a minimum 

total volume of support structure and a minimum number of support structure will be 

chosen as an OPDO. The optimization of total volume of support structure and number 

of support structure is performed using an Artificial Neural Network (ANN). These 

parameters are also to be considered due to their fabrication cost and build time. The 

improved part model is then manufactured by using a FDM-3000 machine. The results of 

OPDO are compared with the models that have been used in previous works. The findings 

show that the same orientation is identified. The experimental results also show that the 

contact between the support structure and part model is improved by 38%. The non-

contact surface at unnecessary area from the top to the bottom of developed support 

structure was produced. This similar technique can also be used to produce the part using 

a current technology of 3D printing. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Overview 

 

Traditionally, design and manufacturing activities in industry are performed at 

separate sections. The design engineer designs the part prior to the development of 

operation sequences by manufacturing engineer. However in some cases, the 

modification of design must be made by manufacturing engineer for some reasons such 

as manufacturability and cost of the product. The modified design will affect the original 

functions of the product. The changes in design delay the marketing, hence, reduce its 

market competitiveness. In conventional manufacturing, the integration of design and 

manufacturing of a product is therefore needed in order to reduce the design lead time 

(McMahon et al., 1993; Zulkifli, 1999).  

The scenario of prototype development in industry has changed. The development 

requires to introduce the product faster to the market at lower cost with less design 

modification. This requirement demands on how to shorten the product design time, the 

development cycle and reduce development cost. The product must also be able to form 

with any geometric complexity in various applications in order to increase the 

competitiveness (Daniel et al., 2014; Shuaib et al., 2015; Xueling et al., 2012; Zhenwen 

et al., 2015). 

Layered Manufacturing (LM) is found to have new possibilities to fulfil the 

changes in this scenario (Dai et al., 2014; Daniel et al., 2014; Ivanova et al., 2013; 
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Novakova-Marcincinova et al., 2012; Yang et al., 2014). The first LM process was 

developed by Charles Hull in 1986. The LM is a volume additive manufacturing process 

in which 2D layer-by-layer deposition of material is stacked gradually from lower to 

upper to develop 3D physical model directly from Computer Aided Design (CAD). This 

technology is able to build any complex shapes which are nearly impossible to carry out 

by using conventional machines. In LM, most of CAD data are converted into 

Stereolithography (STL) file format before transferring them to the machine. A major 

advantage of this technology is that the designer has the ability to actually print out any 

ideas and creativities without limit.   

The steps involve in LM start with the development of CAD model. Current 

activities in LM require human involvement in order to integrate between CAD and CAM 

systems especially to determine the orientation of part deposition in process planning. 

The errors and the repeating LM cycles due to human involvement lead to the 

development of automatic system for all steps in process planning.  

In this research, the feature is introduced in order to automate the selection of 

orientation of part deposition in Fused Deposition Modeling (FDM) machine. The FDM 

is an extrusion-based LM process which requires support generation to prop up hollow 

geometrics and overhanging features of a part during manufacturing process. The features 

that have been identified in FDM process planning is as the key elements in the integration 

of orientation of part deposition and support generation (Kulkarni et al., 2000).  

This work will focus on manufacturing feature in FDM. The feature is considered 

to represent the way how to manufacture it.  It can be extracted by decomposing the 

successor layer into volumetric units belong to non-support or support feature 

(overhanging area). The non-support feature is defined as successor layer areas or 

volumes which have full support from the immediate previous stacked layers, while the 
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support feature is known as successor layer areas or volumes covered partially or may not 

be covered at all by the immediate previous stacked layers. The External-Support 

Structures (ESSs) are employed to improve the manufacturability of layers which do not 

have a layer adjacency or with only partial adjacency in the build direction (Yang et al., 

2003). 

In FDM, the support features contain Self-Supported Feature (SSF) and External-

Supported Feature (ESF).  This work focuses on extracting ESF which is able to 

determine the volume and number of ESS. These features will be studied in details for 

the optimization of part deposit orientation in FDM.  

The ESS traditionally has contact with the part model that tend to degrade the 

quality of surface finish (Ahn et al., 2005, 2007; Alexander et al., 1998; Majhi et al., 

1999; Pandey, 2003). This problem can be resolved by implementing the concept of 

features during fabricating the support structure.  

 

1.2 Definition of Feature 

 

In manufacturing process, features are used to integrate between CAD and CAM 

systems. In general, feature can be divided into three categories and they are:                           

1) Functional feature,  which is related to their function, design and performance; 2) 

Design feature, which is expressed in geometric terms, primitive design functions (such 

as block, cylinder and slot) and their combination and 3) Manufacturing feature, is that 

the volumetric unit to be removed or added in conventional machining and LM, 

respectively, during manufacturing processes (Salomons et al., 1993). Through features, 

the integration between CAD and Computer Aided Manufacturing (CAM) systems can 

be used to resolve this problem. 
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The Artificial Neural Network (ANN) is used to optimize the orientation of part 

deposition based on the total volume and number of support structure as a main input 

parameters. 

 

1.3 Statement of the Problems 

   

The issues related to this work are identified and stated in this section.  

i. Feature-based technique is highly significant for integrating CAD and CAM 

systems. Various techniques have been suggested in this system to identify 

features but they are limited to specific manufacturing process (e.g. volume 

removal for Computer Numerical Control (CNC) machining. (Kerbrat et al., 

2010).  

ii. In manufacturing process, the LM process planning is not fully automatic and lead 

to part quality degradation (e.g. dimensional accuracy and surface finish) (Pandey 

et al., 2007) and increases the possibility of making errors. In this process 

planning, most of the steps such as creation of geometric model using a solid 

modeler, determination of suitable deposition orientation, slicing, generation of 

material deposition paths, part deposition and then post processing operations are 

done automatically except the orientation of part deposition. The specific 

manufacturing standard makes feature-based techniques difficult for the 

manufacturing system to adopt an existing feature extraction system.  

iii. There is no generic interface to accommodate the use of features in the LM 

process. Furthermore, the Stereolithography (STL) file format (as a de facto 

standard) representation is used to transfer the CAD data to the LM process 

planning resulting to the loss of design and functional feature information. 
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iv. In feature extraction, it is difficult to reconstruct geometric and manufacturing 

features from a volume enclosed by spatial triangles without any topological 

relationship (Yang et al., 2003).  

v. Other issue is also related to the process planning in selecting the Optimum Part 

Deposition Orientation (OPDO). Furthermore, many errors are occurred due to 

the involvement of human in this crucial process.  Determining the OPDO was 

found to be difficult and consumed longer build times that influenced by the speed 

and the change of nozzle's tip during material deposition for both part model and 

support (Thrimurthulu et al., 2004).  

In FDM, there is only one build direction (vertical direction). Hence, the 

adjacency is considered in a single building direction. This study is work on the system 

that can extract the features with respect to the FDM. The ANN is proposed in this system 

in order to automate the process planning for selecting the OPDO. 

 

1.4 Research Objectives 

 

The objectives of the research are listed below. 

i. To employ a Feature-based Support Generation data extraction technique to 

automate the process planning in FDM.  

ii. To select the OPDO through features in which the information of support structure 

can be determined. The automation of this work can be achieved by the integration 

between CAD and CAM. 

iii. To improve the contact areas between part model and support structures using 

extracted features. The reduction of unnecessary support volume assures to 
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enhance the surface quality of final part model by reducing unnecessary support 

volume. 

 

1.5 Scope of Research Work 

 

The scope of this work involve the use of Artificial Intelligence (AI) to determine 

the optimum part deposition orientation. Six pre-defined orientations of the part are 

identified. Two main parameters, the total volume of support structure and the number of 

support structure which have a significant effect on final product are chosen.  The 

optimization approach using ANN is used for this purpose. The work is also looking at 

the improvement of the parts’ surface using feature-based technique. Overall, the 

activities in process planning of FDM machine will be automated.  

 

1.6 Organization of the Thesis 

 

The thesis is presented in six chapters as follows: 

Chapter 1 introduces the background of Layered Manufacturing (LM) technology. 

The problem statement and objectives of the research are stated. It also gives the 

overviews of the topics to be included in the thesis. 

Chapter 2 reviews the work in the field of feature-based method and process 

planning in LM. The emphasis on the systems that utilize the Artificial Intelligent (AI) 

approach for selecting the OPDO are presented. 

Chapter 3 describes the methodology and system organization of the Feature-

based Support Generation system developed in this work. This methodology is applied 

when dealing with the support features for generating the support structure.  
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Chapter 4 presents the implementation of the Feature-based Support Generation 

concept to identify the OPDO. The ANN results obtained are experimentally tested and 

discussed. Some results are then compared and verified with the previous work. This 

chapter also discusses the concept of Feature-based Support Generation to improve the 

contact areas between part model and support structures. The improvement of the surface 

contact for selected part models are reported and discussed.  

Chapter 5 states the overall conclusions of the research and suggestion for future 

work in the related field of study. The contributions to knowledge and research limitations 

are finally drawn. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

Selection of orientation of part deposition is an imperative element as it influences 

amount of developing time and cost, structure to support the overhang area, precision of 

dimensions and surface irregularity. An appropriate orientation of part deposition can 

enhance precision of part and quality of surface and minimize the manufacturing time and 

required structures to support the part (Pandey et al., 2007; Thrimurthulu et al., 2004).  

The reviews on the feature-based in LM, the orientation of part deposition 

determination and the use of Artificial Intelligent (AI) which are related to the research 

work are discussed in the following sections. 

Nowadays, LM, which is currently known as Additive Manufacturing (AM) has 

changed from a process for Rapid Prototyping (RP) to an appropriate manufacturing 

process for producing commercial and customized healthcare products (Huang et al., 

2013).  

The analysis of the work using an Artificial Neural Network (ANN) provides 

algorithms, pre-trained models, and able to create, train, visualize, and simulate both 

training and testing data set (“https://www.mathworks.com/products/neural-

network.html”). The ANN using MATLAB is an advanced interactive software designed 

for scientific and engineering computation. This software is very flexible and used for 

solving problem in many area (Martinez and Martinez, 2007). 
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The development and revolution in LM and related technologies are summarized 

in Table 2.1. 

 

Table 2.1: Development of  LM and related technologies (Pandey, 2012). 

Year Technology 

1770 Mechanization 

1946 First computer 

1952 First Numerical Control (NC) machine tool 

1960 First commercial laser 

1961 First Commercial Robot 

1963 First interactive graphics system (early version of CAD) 

1988 First commercial LM system 

 

 

2.2 Layered Manufacturing - Fused Deposition Modeling Machine 

 

Layered manufacturing (LM) is the technology that fabricates an object from one 

layer to another from a CAD model. A part consisting desired geometry is produced by 

adding required layers of materials which also known as additive manufacturing process. 

Much work on LM processes such as Stereolithography Apparatus (SLA), and FDM have 

been discovered since these technologies were introduced.  

The development of LM technology changed rapidly in order to cater high 

demands in various applications. This technology has been applied in automotive, 

biomedical micro devices, jigs and fixtures, machine components and other industries 

(Daniel et al., 2014; Li et al., 2014; McCullough et al., 2013; Zhang et al., 2014). 
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However, earlier authors (Byun et al., 2006a, 2006b; Durgun et al., 2014;  Massod 

et al., 2000, 2003; Phatak et al., 2012; Thrimurthulu et al., 2004) attempted to determine 

the Optimum Part Deposition Orientation (OPDO) for FDM process. 

An FDM machine is a Numerical Controlled machine consisting of two miniature 

extruder head nozzles (Bellehumeur et al., 2004; Tyberg et al., 1999). The prototypes are 

fabricated by semi-molten Acrylonitrile Butadiene Styrene (ABS) plastic filament 

through a heated nozzle onto a working table. The extrudate in a predetermined pattern 

will bond with adjacent previous deposited plastic after it cools and solidifies 

(Bellehumeur et al., 2004; Tyberg et al., 1999). This process occurs at both part model 

and support structure. 

 

2.3 Features in Layered Manufacturing 

 

Salomans et al. (1993) reported that the feature can be divided into three types 

and defined as follows: 1) Functional features, which are explained based on their usage 

as compared to their size and location; 2) Design features, which are described in 

geometric terms like the primitive geometric (slot, pocket, rib and hole) and                              

3) Manufacturing feature, which is possible to be defined as the volumetric unit to be 

discarded or added during manufacturing processes. 

 

2.3.1 Feature-based in Layered Manufacturing   

 

Features technology has been explored for the last few decades since before LM 

technology was introduced in the market. However, Kerbrat et al. (2010) reported that 

the features usually rely on a specific field. The specific manufacturing standard makes 
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features which are developed for conventional manufacturing system i.e. Computer 

Numerical Control (CNC) machining solely fit to its domain. The same features-based 

technique is not applicable in LM and is still under development.  

Much work have been conducted in LM using Feature-based Process Planning 

(Mani et al., 1999; Qian et al., 2001; Yang et al., 2003). Mani et al. (1999) proposed a 

region based slicing technique in LM. They employed a distinct layer thickness for 

various regions on the surface of the parts which corresponds to its surface finish. This 

technique is performed manually and restricted to the choice of different layer thickness. 

Futhermore, Yang et al. (2003) stated that the work conducted by Mani et al. (1999) was 

difficult to be automated. 

Qian and Dutta (2001) explored the use of features in LM. They recommended an 

algorithm for the recognition of feature and decomposition of volume based on ACIS 

geometric 3D modelling kernel. The established algorithm dealt with the interactive 

feature in LM. Their work indicated that the interactive feature displayed the staircase 

interaction which decreased the surface finish quality. They also proposed Feature 

Interaction Loop (FIL) and Feature Interaction Surface (FIS) to specify the feature 

interaction for LM regardless of the interaction category. They found that the FIL was 

formed when the adjacent features interacted. The adjacent features are conditions where 

features share the same topological entities, such as edge(s) or face(s), in the part volume. 

The authors stated that the feature interactions due to surface features can also be 

identified and characterized by the feature interaction surface. The feature used in their 

work is the feature defined in the manufacturing domain without the consideration of LM 

process. 

Yang et al. (2003) described LM features in two-direction LM or Orthogonal 

Deposition Manufacturing (ODM) system by employing volumetric approaches. The 
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automatic feature extraction in their work had taken into consideration both layer and 

path adjacency from STL model. These approaches divided the orthogonal LM features 

into three distinct volumetric elements which are Self-Supported Volume (SSV), 

External-Supported Volume (ESV) and Flat Volume (FV). Each characteristic is defined 

based on the different method during manufacturing. The SSV feature is the characteristic 

which does not need the ESS in its fabrication and ESV features and vice versa. The FV 

feature is identified from each SSV feature for the purpose of improving the staircase 

error in the process of fabrication. The efficiency of fabricated layers and the minimal 

additional external support were achieved and significantly improved the surface quality 

via the analysis of feature and decomposition of volume. 

 

2.4 Features Extraction and Identification in Layered Manufacturing 

 

 LM manufacturing process has unique characteristics. The fabrication of 3D part 

model from 2D layers using additive layer-by-layer create features. These features must 

be extracted for each successor layer for its manufacturability. Both non-support feature 

and self-supported feature can be manufactured without ESS. However, the ESF which 

requires ESS is identified in order to increase its manufacturability (Yang et al., 2003). 

The process flow chart for the Feature-based Process Planning explored by Yang 

et al. (2003) is illustrated in Fig. 2.1   
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Figure 2.1: Process flow of the Feature-based Process Planning (Yang et al., 2003). 

 

2.5 Process Planning 

 

Manufacturing of part model from the raw materials to the desired prototype 

requires a proper process planning (Zhang et al., 1994). In LM, process planning activities 

include orientation of part deposition determination, slicing, support structure generation, 

and path planning (Kulkarni et al., 2000). 

Conventionally, the orientation of part deposition is manually determined while 

other activities are automatically generated. The orientation of part deposition affects the 

results of the other process planning activities. At this stage, the result of the following 

activities can be used as a guide to determine the orientation of part deposition (Kulkarni 

et al., 2000) . In current LM process planning, the determination of orientation of part 
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deposition is possibly a source of errors  (Pandey et al., 2007; Thrimurthulu et al., 2004).  

In addition, the repeating process planning increases unnecessary cost. The best solution 

to this problem is to integrate between CAD and CAM for process planning in selecting 

the best orientation of part deposition (Pandey et al., 2007; Thrimurthulu et al., 2004). 

 

2.6 Layered Manufacturing Process Planning in FDM 

 

Process planning in FDM is a crucial activity which is responsible for the 

transformation of product design specification into an effective fabrication process. The 

process planning activities consist of orientation of part deposition determination, the 

development of structures to support the part, slicing and path planning. This process 

planning occur recursively before the final part model is produced. In this planning, the 

result of the previous activity will be used as input to the next activity. Meanwhile, the 

output of this activity will then be used to alter the process of the previous activity 

(Kulkarni et al., 2000). Among these activities of process planning, orientation of part 

deposition is not automatically operated and hence, increases the likelihood of errors 

(Kulkarni et al., 2000). The orientation of part deposition has a significant effect on many 

key characteristics that determines the quality and cost of the final part model (Alexander 

et al., 1998). In this case, Pandey et al. (2007) and Thrimurthulu et al. (2004) found that 

the effective solution for this difficulty is to automate the selection of orientation of part 

deposition. 
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2.7 Orientation of Part Deposition and Support Structure 

 

Many attempts (Cheng et al., 1995; Frank et al., 1995; Lan et al., 1997; McClurkin 

et al., 1998; Xu et al., 1997) have been made to find a suitable orientation of part 

deposition using different criteria like part accuracy, surface quality, build time, volume 

of support structure and cost (Pandey et al., 2007). This is in agreement with Kulkarni et 

al. (2000) who suggested that other factors that are affected by the orientation of part 

deposition include shrinkage, curling, distortion, roundness, flatness of part model, resin 

flow, material cost and trapped volume. 

The orientation of part deposition determination and support structure generation 

are interrelated (Kulkarni et al., 2000; West et al., 2001). Kulkarni et al. (2000) reported 

that the processes used ESS in LM, the optimum part orientation were affected by total 

volume of support structure and total area of contact with support structure.  

The total volume of support structure can relate to the build time and total cost of 

the material used in the fabrication process (Hur et al., 1998). Meanwhile, the total area 

of contact with support structure is related to the time required for post-processing stage 

(removing and cleaning of ESS).  

The support is considered as an important element in FDM (Dutta et al., 2001; 

Huang et al., 2009; Jin et al., 2015; Kulkarni et al., 2000; Marsan et al., 1998; Xiaomao 

et al., 2009). It is used to determine the manufacturability of part of overhang geometry 

structures. Kulkarni et al. (2000) noted that the orientation of part deposition was typically 

chosen to be the least overhang area to be supported.  

In general, the overhang area of part can be classified into SSF and ESF (Huang 

et al., 2009; Yang et al., 2003). For self-supported feature, the support structure is not 

required during the fabrication process but it is necessary for the ESF. Kulkarni et al. 
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(2000) stated that the ESF are the area where the surface normal, N is pointing downwards, 

i.e. the vertical component of the surface normal is negative as shown in Fig. 2.2. 

 

 

 

 

 

 

 

Figure 2.2: Permitted Overhang Area of part model (Kulkarni et al., 2000).  

 

The self-supported feature can be manufactured without supports if the maximum 

angle of permitted overhang is 45o (Chalasani et al., 1995; Montero et al., 2001). The 

evolution of staking successor layer for several angles α=15, α=30, α=45 and α >45 

as shown in Fig. 2.3. The angle α=45o can be applied at both part (Montero et al., 2001) 

and support structure (Huang et al., 2009). 

 

 

 

 

 

 

Figure 2.3: Evolution of staking successor layer for several angles. 
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Huang et al. (2009) noted that the supports can be designed with straight and slant 

wall structures. They proved that the ESSs can be manufactured successfully with slant 

wall structure in which the slope is not smaller than self-support angle. The functions of 

ESS are listed below (Onuh et al., 1998):  

i. To act as a mounting device for holding the part in position as it is built. 

ii. To act as a constraint for reducing part distortion. 

iii. To support overhanging cross section. 

iv. To support unattached islands. 

 

However, the ESS also affect the quality of final product which includes poor 

surface finish (as it touches the part model) and fabrication efficiency (e.g. high build 

time) (Ahn et al., 2005; Majhi et al., 1999). In this case, the marks left by support structure 

degrade the surface quality of most LM parts. Additional post-machining such as grinding 

and coating which consume higher processing time is then required. In the worst case, 

this process needs high skilled operators to prevent detrimental damage to the original 

part geometry. Much work have been conducted to improve the drawbacks on part model 

(Ahn et al., 2005) in which ESS is compromised. 

 

2.8 Artificial Neural Network 

 

Artificial Neural Network (ANN) is a system that is considered to have the 

capability of learning, adapting to changes and imitating human thought processes. 

Learning in a neural network can be categorized into two. First, supervised mode, 

provided with training data, which is a deterministic set of input and corresponding output 

vectors, to establish a mapping between them. Second, unsupervised mode, which has no 
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external teaching using training data, and the network learns by self-organizing and 

classifying input information using internal rules (Kasabov, 1996). 

The Multi-Layer Perceptron (MLP) network is categorized as supervised learning 

ANN. The elements for MLP network are an input layer, an output layer, and a number 

of hidden layers. The methodology of ANNs consists of two processes which are network 

training and testing (Kankal et al., 2011). The MLP network training was chosen because 

it can provide a systematic and proper learning using training data. It is also capable to 

generalize feature recognition issues using testing data (Haykin and Network, 2004). The 

reviews indicated that the Levenberg-Marquardt algorithm was used to train the 

moderate-sized feed forward neural networks due to the fastest back propagation 

(Mirzadeh and Najafizadeh, 2008; Zhang et al., 2012). Witten et al. (2016) stated that to 

hold out one-third of the data for testing and use the remaining two-thirds for training. 

 

2.8.1 Artificial Intelligent in Layered Manufacturing  

 

Generally, human interference in LM can be replaced by using AI technology. 

This technology has a capability to automize the manual planning processes which are 

usually carried out by human into an automatic system (Huang et al., 2016).  

In FDM, the optimization of input (e.g. temperature, velocity) and output variables 

(e.g. orientation of part deposition, support structure, build time, surface roughness) using 

various AI methods such as ANN, fuzzy logic, adaptive-network-based fuzzy inference 

system, Genetic Programming (GP) and Support Vector Regression (SVR) (Nezhad et 

al., 2009; Peng et al., 2014; Vijayaraghavan et al., 2015). The advantage of these methods 

is that the relationship between input-output variables and mechanical behaviours of 
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FDM parts can be estimated (Boschetto et al., 2013; Ludmila et al., 2013a; Villalpando 

et al., 2014). 

Xu et al. (1999) employed Genetic Algorithm (GA) by considering the build time, 

accuracy and part stability for the optimum part orientation in the SLA systems.  They 

also introduced the variable thickness slicing technique which has a significant effect on 

the total build time of the part model.  Masood et al. (2003) used a Generic Algorithm 

(GA) to find the optimum part deposition orientation using the Volumetric Error (VE) for 

tessellated CAD models in FDM system. In their work, uniform slicing of tessellated 

CAD model and VE was computed by considering the build edges of slices as rectangular.   

Lirabi and Amirabi (2013) employed GA to find the optimum values for the 

proposed model based on heat and process constraints.  In FDM, GA is usually employed 

to optimize the manufacturing process parameters such nozzle temperature and nozzle 

speed in producing parts and products.   

In order to determine suitable values for variables, fuzzy logic is employed in LM. 

Sahu et al. (2013) used a combination of fuzzy logic and Taguchi method in order to 

present the experimental data for improving the dimensional accuracy of FDM using. The 

results shows that the length and width decreases but thickness shows positive deviation 

from desired value of the built part. These two methods of AI are suitable to find the 

parameter optimization.  However, current work in this thesis is for feature recognition 

in which ANN is widely employed for feature recognition as it offers some advantages 

(Sunil and Pande, 2009).    

Reviews from the literature show that the study in LM has been extended to the 

scope of investigating and analysing feature recognition using ANN. For example, Cheng 

et al. (1995) presented a multi-objective approach for determining suitable orientation of 
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part deposition for Stereolithography parts. They concluded that dimensional accuracy 

and build time are conflicting requirements. The primary objective was to obtain a desired 

part accuracy and the secondary objective was to minimize the build time. Both of these 

objectives can be achieved by calculating for different types of surfaces and by reducing 

the number of slices. Other work shows that ANN is a reliable method to predict model 

of surface quality for any developed shapes (Boschetto et al., 2013). 

Nowadays, modern manufacturing practises an intelligent system to control the 

process activities and to produce high quality products (Ipek et al., 2013; Ngai et al., 

2014). 

Much work related to the system were performed by previous authors (Aylor et 

al., 1992; Barschdorff et al., 1991; Huang et al., 1993; Huang et al., 1994; Márkus et al., 

1987; Nguyen et al., 1991). Huang et al (1994) found that the application of ANN in 

manufacturing has a potential to increase the quality of product. They also stated that the 

ANN is capable to reduce the reaction time of a manufacturing system and improve its 

reliability and intelligent. Márkus et al. (1987) claimed that ANN had a high potential for 

automated manufacturing through his analysis. Barschdorff et al. (1991) stated that the 

advantages of ANN are that the desirable in intelligent manufacturing practices. The other 

reason of choosing ANN is due to the desirable output that can be achieved with a 

considerable degree of accuracy using a number of network architectures (Huang et al., 

1993). For example, Nguyen et al. (1991) found that the ANN approach in solving 

kinematic problem for robot can be an effective method to learn the manipulator. Aylor 

et al. (1992) developed the ANN in robot manufacturing that has a capability to consider 

the unknown number of faults, errors and limitations of poorly constructed system (robot) 

by providing a high accuracy of solution. 
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2.9 Surface Quality and Mechanical Properties of End Product 

 

In current manufacturing technology, the net-to-shape product is emphasized to 

eliminate the unnecessary activities, additional time, material waste and total cost. LM 

technology offers the manufacturing process of the part without considering the 

complexity of the geometric. In some cases, the LM has limitations which include poor 

surface finish due to staircase effect (Ahn et al., 2008; Ahn et al., 2009; Galantucci et al., 

2009; Jin et al., 2015; Pandey et al., 2003b). 

Much work has been conducted by previous researchers (Ahn et al., 2009; Ahn et 

al., 2012; Hope et al., 1997; Ma et al., 1999; Pandey et al., 2003a) to improve the part 

surface finish and mechanical properties of part model.  

The experiments were conducted by Ahn and his workers (2012) to quantify the 

surface roughness of the parts processed by Laminated Object Manufacturing (LOM). 

The result shows that this approach could be practicable and valuable for predicting the 

surface roughness of parts fabricated by LM technology. 

Ahn et al. (2009) proposed the method to predict the surface roughness of LM 

processed parts. The work released that the surface roughness values could be calculated 

at surface angles that were difficult or impossible to measure.  

Ma and He (1999) presented an adaptive slicing and selective hatching strategy 

for layered manufacturing. This technique is able to produce an accurate and smooth part 

surface. Their finding showed that the developed algorithms operate directly upon a Non-

Uniform Rational Basis Spline (NURBS) based CAD surface model for avoiding possible 

problems in connection to the STL interface. In addition, their work also provides an 

optional solution to the problem with mixed tolerances for the slicing of an LM model. 
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Hope et al. (1997) introduced an adaptive slicing procedure for improving the 

geometric accuracy of layered manufacturing techniques uses layers with sloping 

boundary surfaces that closely match the shape of the required surface. This method 

reduces the stair case effect which is characteristic of layered components with square 

edges. 

Recent work in LM extents to improve profile shape, dimensional accuracy and 

surface quality of parts. Process parameters resulting poor surface finish, accuracy and 

quality of FDM part models are also reviewed.  For example, many authors stated that 

the surface roughness, dimensional accuracy and shape quality of models depend on layer 

thickness and orientation of part deposition (Boschetto et al., 2012; Latiff et al., 2014; 

Rahmati et al., 2015; Song et al., 2014). The lower the layer thickness which incorporated 

with the OPDO produces better surface finish and high accuracy part models (Campbell 

et al., 2002; Nezhad et al., 2009).  

However, the orientation of part deposition also affect build time (Luo et al., 2015; 

Villalpando et al., 2014), cost (Raut et al., 2014; Zhang et al., 2015) and the complexity 

of support structure (Huang et al., 2015; Kumar et al., 2012; Leary et al., 2013; Leary et 

al., 2014). Determining the OPDO which results in a good surface finish may take a 

longer build time.  

The support structures required in FDM manufacturing process has its own 

drawbacks. These support structures further hinder the fabrication efficiency and part 

surface quality of the marks left (Ahn et al., 2005; Majhi et al., 1999). In some cases, it 

is unable to produce the part model at lower cost and shorter time with a good surface 

finish due to variation in shape and orientation of part deposition. This support the review 

by Kulkarni et al. (2000) who stated that the selection of orientation of part deposition 

resulted in a reduction of considered factors such as build time and cost.  
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The experimental results by Li et al. (2010) showed that the optimization model 

increase the efficiency of the LM process thus reduce the cost. Other works in related 

fields (Ghorpade et al., 2007; Moroni et al., 2015) found that the optimize part orientation 

as a key factor in reducing build time. In certain applications, other considerations (i.e. 

surface finish, strength and amount of trapped material) are taken into account. Studies 

by other workers (Fatimatuzahraa et al., 2011; Huang et al., 2014; Jin et al., 2015) focused 

on raster angle (range between 30 and 45) which have significant effects on the 

mechanical properties and surface quality.    

The reviews of this work cover two types of layers, flat and curve. Chakraborty et 

al. (2008) found that the part fabricated by curved layers result in better strength. This 

finding is consistent with the work by Savalani et al. (2015) in which high strength was 

produced through bending test. 

Previous work (Kim et al., 2008; Masood et al., 2010; Rayegani et al., 2014; Sood 

et al., 2009, 2010) studied on the effects of process parameters likes orientation of part 

deposition, build materials, build speed and build volumes on surface quality and 

mechanical properties of FDM part model. These parameters are important to determine 

the desired tensile strength, compressive strength, dimensional accuracy, surface finish, 

part build time and process cost (Boschetto et al., 2015; Ivan et al., 2015; Leacock et al., 

2015; Panda et al., 2015). 

Work by Mishra et al. (2014) attempted to maximise the tensile strength of the 

FDM processed parts by controlling the process parameters. Their results show that the 

change in raster deposition angle gives maximum tensile strength of part. This finding is 

consistent with the work conducted by previous researches (Ludmila et al., 2013c; 

Rayegani et al., 2014). 
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2.10 Process Parameters 

 

The study on effects of FDM process parameters on quality and precision of part 

model were carried out by Huang et al. (2014). The factors that contributed to a better 

quality products include the extrusion temperature, envelope temperature, extrusion 

velocity, filling velocity are identified as important parameters to produce a better quality 

products (Chang et al., 2011; Li et al., 2011; Peng et al., 2010; Ramanath et al., 2008). 

Peng et al. (2010) stated that the parts accuracy, however, can also be influenced by errors 

in numerical system influenced and material shrinkage. 

ABS is a common thermoplastic used in FDM due to its unique properties such as 

low cost, good process ability, strength and rigidity (Jami et al., 2013; Masood et al., 

2010). According to Jami et al. (2013) this plastic can retain its original shape at slightly 

elevated temperatures. Due to current demand by industry, other materials deposition in 

FDM process are introduced including polyamide, polycarbonate, polyethylene and 

polypropylene (Ludmila et al., 2013b). 

The mechanical properties of thermoplastic materials in FDM was improved in 

order to fulfil medical application (Drummer et al., 2012), engineering applications (Lee 

et al., 2005) and industrial requirements (Garg et al., 2015; Masood et al., 2010). The 

coating of ABS with metal and the combination of polyethylene with wood flour are some 

examples of new composite materials used in FDM. Both materials were tensile tested 

and provide a higher strength compared with common thermoplastic materials (Hui et al., 

2011; Kannan et al., 2013). Ceramic material can be used as another option in FDM 

because of its excellent strength property. The innovation of new materials make the FDM 

becomes a viable competitive manufacturing process (Bandyopadhyay et al., 2006; 

Bellini et al., 2005). 
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Previous researchers used a few models of FDM machines in their work since it 

was introduced in 1986. The work focused improving process parameters such as 

temperature and velocity for better quality product (Ahn et al., 2002; Bellini et al., 2003; 

Pandey et al., 2003b). For examples, two 3D printing machines, FDM 3000 and Zortrax 

(adoptions of FDM technology) are discussed. 

 

2.11 Fused Deposition Modeling 3000 (FDM 3000) 

 

The FDM 3000 machine used in this work is shown in Fig. 2.4. This machine uses 

the Insight software manufactured by Stratasys to manipulate and prepare the incoming 

STL data. Both part model and support material used in this machine is acrylonitrile 

butadiene styrene (ABS) provided in wire filament form. The Water Soluble Support 

(WSS) type of ABS is used for support structures that can be easily removed from the 

part model.  

 

 

Figure 2.4: FDM 3000 machine ("http://www.stratasys.com/,"). 
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The removable extrusion head of FDM 3000 machine is illustrated in Fig. 2.5. The 

main features of this head are ABS filament stock, drive wheels, liquefier and tips.  

 

 

Figure 2.5: Extrusion Head of FDM ("http://www.stratasys.com/,"). 

 

2.11.1 Drive Blocks 

 

The drive blocks refer to the raw-material feeding mechanisms and they are 

mounted on the back of the head. The drive blocks are controlled by computer and are 

able to load precision unload the filament. They are composed of two parallel wheels 

fixed to a small electric motor by gears. The wheels have a plastic or rubbers tread and 

turn opposite to each other with small gap. When the wheels are operating and the end of 

the filament is located between them, they continue to pull the material, according to the 

rotation direction. While loading, the filament is pushed in a horizontal direction on the 

platform by a tip. This process starts with the development of base support structure on 

machine platform before any part model and ESS are developed.  
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2.11.2 The Heating Chamber/Envelope 

 

The chamber for heating in FDM 3000 machine is a 90 curved elbow covered in a 

heating element. It has two main functions; 1) to alter the direction of the filament flow so 

that the material is extruded in a vertically downward position and 2) to function as a melting 

area for the material. The heating element is closed-loop controlled, and has feedback 

thermopiles to ensure the consistent temperature throughout. The filament coming from the 

chamber exit is in a semi molten state for easy extrusion. The heating parameters used in 

FDM 3000 machine are listed in Table 2.2. 

 

Table 2.2: Heating parameters in FDM 3000. 

Parameters 

 Min. Value 

( C) 

Med. Value 

( C) 

Max. Value 

( C) 

Model Temperature  265 268 270 

Support Model Temperature  210 218 233 

Chamber Temperature  60 65 70 

 

 

2.11.3  Tips 

 

Two tips for part model and support structure are utilized to decrease the diameter of 

the extruded filament for better detailed modeling. The extruding surface of the tip is flat and 

heated to maintain the shearing surface of material.  

The common problems such as nozzle clogging, uncertain substance invasion, 

substrate deformation and collapse lead to unexpected total cost including time 

consuming and money (Kim et al., 2015). The research work by Kim et al. (2015) looked 
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at material deposition process with different in pressure and supplied current to feed 

motor are able to eradicate these problems.  

 

2.12 Current Technology Adopted the FDM Method 

 

Zortrax was founded by Tomasiak and Olchanowski in 2011. This machine       

(Fig. 2.6) makes 3D physical models by depositing melted materials such as Z-ABS resins. 

Unlike FDM, the Zortax uses a single tip to produce the model and the support structures 

in their manufacturing process. The incoming STL data obtained from this machine are 

manipulated and prepared using Zortrax Z-Suite software ("https://zortrax.com/,"). 

 

 

 Figure 2.6: Zortrax M200 Professional Desktop 3D Printer ("https://zortrax.com/,"). 

 

2.13 Summary 

 

Feature-based technique is able to integrate the CAD and CAM systems for 

process planning in both machining and LM manufacturing processes. However, from 
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the reviews, the specific features used for machining is not applicable to be used in LM, 

vice versa. The reason is because of these processes contain different characteristics in 

which the volumetric unit has to be discarded (machining) or added (LM) during the 

manufacturing of the part model. In addition, the volumetric unit in FDM is also used to 

develop the support for the part model.  

In FDM process planning, the support generation and orientation of part 

deposition are interrelated. The information of support generation can be used to automate 

the choice of orientation of part deposition in process planning.    

The contact area between support and part model degrades the surface quality. 

The minimal contact area between these two entities is in interest to improve the surface 

quality of part model produced using FDM technology. 

Thus, this work will propose a method for optimization of orientation of part 

deposition using ANN. The support volume and amount of support structure are the main 

parameters used as inputs for the ANN. The process planning for this work can be 

automated and lead to low manufacturing time, increase quality of product and less 

human errors. Besides that, the contact surface between the part and support structure is 

also improved thus, improve the quality of final part surface.  
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1 Introduction 

 

  This chapter describes the methodology of this research work which can be 

divided into three parts. Part 1 is Feature-Based Support Generation System, Part 2 is 

Optimum Part Deposition Orientation (OPDO) Determination using Artificial Neural 

Network and Part 3 is Surface Improvement. 

The general process flow of this work is displayed in Fig. 3.1. 

 

 Process flow Machine/Equipment/Software 

 
 1. Feature-Based Support Generation  

 System  

   
a) Convert CAD drawing to .STL file. Solid Works CAD 

b) Redraw the 2D slices and offset operations for Visual Basic 

 lower layer.  

 2. OPDO Determination using ANN  

   
a) Data extraction (ESF). Visual Basic 

 i) Determine volume of support structure.  

 ii) Determine number of support structure.  

b) Accuracy of ANN (Structures 1 – 5). MATLAB – ANN  

c) Feature recognition. MATLAB – ANN 

d) Fabrication of product. FDM machine 

 3. Surface Improvement  

   
a) Recognize feature (ESF). Visual Basic 

b) Fabrication of product. FDM machine 

c) Determine surface roughness between part  Mitutoyo Tester 

 model and ESS.  

 

Figure 3.1: The general process flow of current work. 
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3.2 Part 1 - Feature-Based Support Generation System 

 

This section explains describes the methodology used in the current research. The 

work commences with the generation of 2D polygon. The offsetting operations for 

internal and external of the lower layer by considering Permitted Overhang Area (POA) 

are introduced. Next, the features based on the adjacency of upper and lower layers are 

identified. The volumes of ESS and Base-Support Structure (BSS) will be then measured. 

 

3.2.1 Methodology 

 

In developing part model, the 2D slices were produce through a slicing technique. 

The slices are planar polygon which are composed of internal and external contour rings 

(Guo et al., 2007). In this work, the recognization of the support feature depends on 

distinct area of these pair of slices (i.e. upper layer and lower layer). The utilization of 

POA to offset the internal and external of the lower layer was introduced. 

 

3.2.1.1 Permitted Overhang Area and Offset Generation  

 

POA is based on angle in which the support feature has an ability to support by 

themselves and is known as self-support angle (Kulkarni et al., 2000). At this angle, the 

overhang area of successor layer (either part model or support structure) can be produced 

with no support. In this experiment, the highest self-support angle is α = 45o (Chalasani 

et al., 1995; Montero et al., 2001). Therefore, the largest span of the POA is similar to 

the height of the layer thickness. The uniform slicing process and the support feature 

formation is shown in Fig. 3.2. This figure shows the POA, the developed at Self-Support 
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angle, α, and the layer thickness, t. These parameters were used to identify the features 

prior to the construction of part model and ESS. 

In this work, the concept of feature-based was introduced. Two support features 

of SSF (Layer 2 overhang area) and ESF (Layer 3 overhang area) are shown in Fig. 3.2(a). 

The SSF is the feature that is identified when the overhang area is within the range of 

POA while the ESF is the feature when the overhang area exceeded POA. The ESS is 

needed for the purpose of obtaining the adjacency in developing direction for ESF as 

shown in Fig. 3.2(b).  
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Figure 3.2: Process of uniform slicing: (a) ESF and SSF and (b) POA. α is the support 

angle, t is the uniform layer thickness and ESS is the External Support Structure.. 

  

The maximum POA (α = 45o) is a basis for the new lower layer generation. 

Therefore, the external and internal rings of lower layer contour were offset by a 

continuous distance, t. The external contour ring(s) were offset towards the outside and 

the internal ring(s) were offset towards the inside as shown in Figs. 3.3(a) and (b), 

respectively. Then, the new unit vectors for external and internal are given by il  and 1il   

and shown in the figures. These unit vectors for external and internal are given by the 

corresponding towards the outside and towards the inside offset of the original location 
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of the vertices enclosure which are identified by Vi-1 , Vi and Vi+1.  The offset distance for 

both towards the outside and towards the inside are referred as t. L’i and L’i+1 are the 

equidistant lines of Li and Li+1, respectively due to t value as shown in Fig. 3.3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Offsetting a slice. Vi is the origin of the temporary coordinate system at the 

arbitrary vertices of the loop. Li and Li+1 are the vectors produced by Vi-1Vi and ViVi+1, 

respectively. 

 

If il  and 1il  are unit vectors of Li and Li+1 respectively, hence the formula can be 

expressed as (Yang et al., 2002): 

Vi-1 

t 

L1 L'1 

L'i+1 V'i 

Vi 

Vi+1 
Li+1 

(a) Offsetting of an external ring (dashed lines). 

Vi-1 
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L1 

L'1 

Vi 

Vi+1 Li+1 
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(b) Offsetting of an internal ring (dashed lines). 
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1 1 1

i i i

i i i

l x i y j

l x i y j  

 

 

                                                                                                     (3.1) 

 

As for new offsetting of lower layer’s internal rings: 

 

1 1

i i

i i

y x x y t

y x x y t 

  

  
                                                                                                       (3.2) 

 

As for new offsetting of lower layer’s external rings: 

1 1

i i

i i

y x x y t

y x x y t 

   

   
                                                                                                    (3.3) 

 

where, vectors (xi, yi) and (xi+1, yi+1) are the vectors formed by coordinates Vi-1Vi and ViVi+1 

from the origin, respectively. 

As L’i and L’i+1 are not parallel, then xiyi+1 – xi+1yi ≠ 0.   Thus, by solving Equations 

(3.2) and (3.3), towards the inside and towards the outside coordinates can be described 

as following: 

  
1 1

1 1

( ) ( )
( , ) ,towards the inside

i ii i

i i i i

i ii i

x x t y y t
x y

x y x y

y y y y

 

 

 
 

  
 
  
 

                                                             (3.4) 

and;  

  
1 1

1 1

( ) ( )
( , ) ,towards the outside

i ii i

i i i i

i ii i

x x t y y t
x y

x y x y

y y y y

 

 

 
 

    
 
  
 

                                                       (3.5) 
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3.2.1.2 Area of New Lower Layer   

  

The area of new lower layer because of offsetting generation can be measured as 

follows: 

n
ex ex i inAreaof NewLower Layer POA A POA                                                         (3.6) 

 

where, POAex is the area of POA for external contour ring, Aex is the area of the external 

contour ring, n is the number of internal contour ring and POAin is the area of POA for 

internal contour ring. 

 

The area for new lower layer cause of offsetting generation was performed again 

for each pair of layers in the order that started from the Upper_most layer to the Lower 

_most layer and will be discussed in following section. The area of new lower layer 

generation is illustrated in Fig. 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Generation of a lower layer new area as a result of offsetting operation. exA  

denotes the area for external contour, POAex denotes the area of POA for external 

contour ring and POAin denotes the area of POA for internal contour ring. 
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3.2.1.3 Layer Adjacency and Area Difference for Feature Verification   

  

The techniques of layer adjacency and difference of area between upper and lower 

layers were proposed to obtain the same result of feature verification in a simple way. In 

this work, the methods are divided into four case studies. For each case, the Cross-

Sectional slice Region Area (CSRA) of subsequence layers for sample manufacturability 

are depicted in Figs. 3.5 to 3.8.  The Layer P was manufactured after Layer Q was 

produced. The Layer Q' is offsetting of Layer Q. The Layer P' is the projection of Layer 

P to Layer Q in z direction. 

 

 3.3 Case Study 

 

3.3.1 Case Study 1: Non-Supported Features (NSF)  

 

If ( ' ) ,P Q Q  then Layer P has adjacency in z direction. If ( ' ) ' ' ,P Q P  then 

Non-Supported Feature (NSF) was recognized among these two layers. Therefore, the 

Layer Q is the full adjacent of Layer P. By employing the method of area difference 

between the upper and lower layers, similar outcome was achieved if ' ' 0P Q              

(Fig. 3.5). 
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Figure 3.5: Case Study 1: Non-Supported Features. 

 

3.3.2 Case Study 2: Self-Supported Features (SSF) Require Non-Support 

Material  

 

For this case, the same situation to Case Study 1 was taken (If ( ' ) ,P Q Q  then 

Layer P has adjacency in z direction). However, if ( ' ) ' ' ,P Q P   then the support 

feature was identified among the layers as shown in Fig. 3.6. If

(( ' ) ' ') ( ') ' ,P Q P Q   subsequently the support feature that was identified does not 

need the support volume since all of its area were covered in the POA. In other words, 

the Layer P has partial adjacency in the vertical direction from its former Layer Q and 

can be manufactured with no support. By employing the area difference between the 

upper and lower layers method, similar outcome of feature verification was obtained if

' ' 0P Q  . 

 

 

 

 

Layer P 

Layer P' 

Layer Q' 

z 
Layer Q 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



40 

 

 

 

 

 

 

 

 

Figure 3.6: Case Study 2: Self-Supported Features require non-support material. 

 

3.3.3 Case Study 3: External-Supported Features (ESF) using Support Material 

 

This case study is similar to Case Study 2. However, if (( ' ) ' ') ( ') ' ,P Q P Q 

next the Layer P had a partial adjacency in the vertical direction from its former Layer Q. 

It required an ESS under Layer P support feature to obtain the adjacency in creating z 

direction, and is thus easily manufactured. By using the method of difference in area 

between upper and lower layers, the similar outcome of feature verification was achieved 

if ' ' 0P Q   (Fig. 3.7). 

 

 

 

 

 

 

Figure 3.7: Case Study 3: ESF using support material. 
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3.3.4 Case Study 4: Non-Adjacency External-Supported Features (ESF) using 

Support Material 

 

In this case, Layer P does not have the adjacency in z direction (i.e. If ' ,P Q

next the support feature was recognised as presented in Fig. 3.8. Layer P was unable to 

discover an adjacency in the direction that was vertical from its former Layer Q, hence, 

all area contain in Layer P was recognized as support features. The ESS was needed to 

support the entirety of Layer P for the purpose of increasing the adjacency in creating z 

direction, and can be easily manufactured. By utilizing the method of area difference 

between upper and lower layers, similar result of feature verification was gained if 

' ' 0P Q   (Fig. 3.8) 

 

 

 

 

 

 

 

Figure 3.8: Case Study 4: Non-adjacency ESF using support material. 
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3.4 Part 2 - Optimum Part Deposition Orientation Determination using Artificial 

Neural Network 

 

3.4.1 Methodology 

 

This section describes the system implementation in selecting the Optimum Part 

Deposition Orientation (OPDO). The integration of these techniques have three phases: 

Phase 1 - 2D Polygon Generation; Phase 2 - Feature Identification and; Phase 3 - 

Optimum Part Deposition Orientation Determination using Multilayer Perceptron (MLP) 

Network.  

In this study, 100 models were used for the accuracy analysis. 600 data set were 

generated in which, for each model, 6 data set represent different orientations of pre-

defined directions. These data set were then partitioned into two types, training and testing. 

The training data set was used to train the network in order to fit the model. Meanwhile, 

the testing data set was used to evaluate its performance and generalization ability. Out 

of 600 data set, 400 set were used for training and 200 set were used for testing. In general, 

the process flow of the system is illustrated in Fig. 3.9. 
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Figure 3.9: Flowchart for Feature-based Support Generation Data Extraction and 

analysis system. 
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3.4.2 Phase 1: 2D Polygon Generation 

 

Phase 1 starts with the steps that follow: 1). The part model employed in this work 

(Fig. 3.10) was evaluated in six pre-defined directions (Table 3.1). The part model 

original orientation was originated as appeared in CAD; 2) The uniform slicing technique 

was applied on the part model (in STL file) from the lower to the upper and; 3) At one 

time, each pair of two layers were used and the part’s CSRA  was subtracted. This 

operation was performed again for every pair of layers, in the order starting from the 

Upper most layer to the Lower most layer. These steps involved the use of Visual Basic 

(VB) software. The VB is a computational programming language providing features 

such as graphical user interfaces, object-oriented features, structured programming and 

much more. (Deitel et al., 2002). 

For a 2D, CSRA plane surface area created by a uniform slicing method across the 

part at layer k-th can be written as follows:  

_ 1Upper layer k
CSRA CSRA


                                                                                                                    (3.7) 

_Lower layer k
CSRA CSRA                                                                                                              (3.8) 

 

where, {1,2,..., ( 1)}k N  . The CSRA is the Cross-Sectional Slice Region Area,      

k is the layer of part model and N is the amount number of layers for part model. 

 

Resultant Area (RA) between the k+1 (Upper layer) and k-th (Lower layer) layers 

is described as a subtraction of Equations (3.7) and (3.8). Then, the RA can be expressed 

as below:  

1k k
RA CSRA CSRA


                                                                                                                     (3.9) 
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Figure 3.10: Sample of part model in pre-defined directions of x, y and z axes. 

 

Table 3.1: Part model in six directions with regard to the ±x, ±y and ±z axes. 

Orientation 

Plane parallel to  

FDM machine  

working table 

Direction of 

deposition 

Uniform slicing 

direction 

Direction 1 XY plane Z Parallel to XY plane 

Direction 2 XY plane -Z Parallel to XY plane 

Direction 3 YZ plane X Parallel to YZ plane 

Direction 4 YZ plane -X Parallel to YZ plane 

Direction 5 XZ plane Y Parallel to XZ plane 

Direction 6 XZ plane -Y Parallel to XZ plane 
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3.4.3 Phase 2: Features Identification 

  

In this phase, the support structure is categorized into ESS and BSS as presented 

in Fig. 3.11. The elaborations of these structures in relation to the working features are 

exposed in next section. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: ESS and BSS developed in FDM process. 

 

3.4.3.1 External-Supported Features (ESF) 

 

Phase 2 explains the methodology used for ESF identification (Case Studies 3 and 

4 as described in Sections 3.3.3 and 3.3.4, respectively). The steps involved the 

determination of the area, the volume and the amount of ESSs. The features identification 

is described later in three stages. 
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At Stage 1 (Fig. 3.12), the system commenced with the extraction of the LM 

features using the Equation (3.9) by considering the offsetting generation of CSRAk . Then, 

the Equations (3.8) and (3.9) can be re-written as follow:   

_ _
'

Offset Lower layer k
CSRA CSRA                                                                                        (3.10) 

1
' '

k k
RA CSRA CSRA


                                                                                               (3.11) 

 

where, CSRA'k is the Cross-Sectional Slice Region Area of offset lower layer and  RA' is 

the Resultant Area of upper and offset lower layers. If RA’ > 0, then the ESF was 

identified.  

 

The system was continued to calculate the area of support and the volume of 

support structure with the use of the Equations (3.12) and (3.13) in Stage 2. At stage 3, 

the number of groups was identified. These calculated volume and the number of groups 

were used to select the OPDO. The Stages 2 and 3 are concurrently executed. The system 

determined the amount of support structure with two specific situations are described 

below.  

The creation of area for support at layer k-th is explained as:  

1
( )

k k k k
Areaof Support RA RA Areaof Part Model


                             (3.12) 

  

The collection of support area creates ESS which is used to sustain the detected 

ESF. The volume of ESS is defined as: 

( 1, ) iESSVolume i i k
S Support Area t


                                                                       (3.13) 

 

where, t is the thickness of layer. 
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 The relationship between the volume(s) of support structures was checked with 

two situations in order to decide the amount of support structures. These conditions are:  

 

Situation 1 

If 1k k
Areaof Support Areaof Support


  ,                                                                                  (3.14) 

then k
Areaof Support and 1k

Areaof Support
 are in the different structure. 

Situation 2  

If 1k k
Areaof Support Areaof Support 


 ,                                                                                  (3.15) 

then k
Areaof Support and 1k

Areaof Support
 are in the same structure. 

 

A detailed algorithm process flow for feature identification in Stages 1 to 3 is represented 

in Fig. 3.12. 

 

3.4.3.2 Base-Support Structure (BSF) 

  

BSS refers to a support structure that is required to support the overhang volume 

of part model and volume of ESS at layer k=1. In FDM, the first layer of part model and 

ESS (k=1) was not located straightly on the working table. The gap between k=1 and the 

working table was filled with support volume of BSS (Fig.3.11) for obtaining the 

adjacency and hence, easy to manufacture. The total support volume of BSS is described 

as the following: 

1 2 1(
Volume

Base Support m t RA RA Areaof Part Model                                                   (3.16)  
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where, m is the amount of Base-Support layer and t is the thickness of the layer. In this 

work, the uniform slicing with layer thickness, t = 0.01 mm and the quantity of layer for 

BSS, m = 5 were utilized for every orientation of part deposition involved. 

 

For both ESS and BSS, the total volume of support in the whole fabrication 

process of the part model is then explained as: 

1

n

Total Support Volume ESS Volume Volumei
S S Base Support


                                                    (3.17) 
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Figure 3.12: Algorithm flowchart for ESF extraction. 
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3.4.4 Phase 3: Optimum Part Deposition Orientation (OPDO) Determination 

using MLP Network  

 

In Phase 3, the ANN was used as a tool for determining the OPDO. The neural 

network used in this work is the Multilayer Perceptron (MLP) network. Basically, the 

MLP network consists of number of layers which are an input layer, an output layer and 

one or more hidden layers. Each layer in MLP network has a number of basic processing 

elements called neurons or perceptrons. The layers in MLP network are connected in a 

feed-forward topology by weighted connections through which each neuron receives 

inputs, and after generating an output, broadcasts it to neurons in the next layer.  

 The Levenberg-Marquardt backpropagation algorithm is used to train the MLP 

network. The training algorithm has good convergence rate and suitable for training small 

and medium sized problem (Yu et al., 2011). 

First, all parameters for the Levenberg-Marquardt backpropagation algorithm are 

set to default values in the MATLAB neural network toolbox. Next, the hyperbolic 

tangent and linear which considered as the activation function will be selected for hidden 

and output layers, respectively. Then, the MLP network will be run for 5 times for each 

number of hidden nodes ranging from 1 to 50 nodes to avoid the network stuck in local 

minima and good generalization ability. This network is run with different sets of weight 

and bias initializations. Finally, the highest testing accuracy will be recorded. 

The Optimum Part Deposition Orientation (OPDO) is determined by least total 

support structure volume which has least amount of support structure. Two stages of MLP 

networks (MLP 1 network and MLP 2 network) are developed in order to decide the 

OPDO. In this work, the correlation between input and output of MLP network will be 

designed to provide high classification accuracy and optimum network structure.  
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The network in Stage 1 involve the use of total volume of support structure as the 

inputs for MLP 1 network. The network in Stage 2 (MLP 2 network) consists of 

combination of outputs (from Stage 1, i.e. MLP 1 network) with the new features of 

amount of support structure.  

Three structures of MLP 1 network and one structure of MLP 2 network are 

proposed in Stages 1 and 2, respectively are summarized in Table 3.2. These structures 

are analysed to find the best MLP 1 network structure that will be used with MLP 2 

network. 

 

Table 3.2: Structures of MLP 1 and 2 networks. 

Stage MLP  Structure 

1 
Structure 1: MLP 1 (6 Input nodes, 6 Output nodes) 

Structure 2: MLP 1 (7 Input nodes, 6 Output nodes) 

Structure 3: MLP 1-6  : Parallel (7 Input nodes, 6 Output nodes) 

2 
Structure 4: MLP 2  (12 Input nodes, 6 Output nodes) 

Structure 5: MLP 1-6  : Parallel (7 Input nodes, 6 Output nodes) combined  

 with MLP 2  (12 Input nodes, 6 Output nodes) 

 

 

3.4.4.1 Structure 1 

 

In Stage 1, the MLP network is used to identify the minimum support volume.  

This network has six inputs, Vpq and six outputs, Orq (Structure 1). V and O are the volumes 

of input and output of support structures, respectively. p is the model used in this 

optimization, q is the pre-defined orientation of part deposition direction and r is the stage 

of network. For example, the input volumes of support structure for Model 1 in six pre-

determined directions are given by V11 to V16 and the outputs in Stage 1 of MLP network 

are given by O11 to O16. The output in Stage 1 indicates “1” for the minimum volume of 
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support structure and “0” for the other given values. The inputs and outputs of MLP 1 

network (Structure 1) are shown in Fig. 3.13. 

 

 

 

 

 

Figure 3.13: Six inputs nodes and six outputs nodes of MLP 1 network (Structure 1). 

 

3.4.4.2 Structure 2  

 

In order to increase the performance of MLP 1 network, a new feature, known as 

Min(V11 -V16) will be added.  The Min(V11 -V16) will be selected as a minimum value 

among the previous six inputs, V11 to V16 .  As a result, the new network consists of 7 

inputs (V11 to V16 and Min(V11 -V16)) with the same number of outputs (as previous 

network) are shown in Fig. 3.14.  

 

    

 

 

 

 

 

 

Figure 3.14: Seven inputs nodes and six outputs nodes of MLP 1 network (Structure 2). 

V11 

V12 

V13 

V14 

V15 

V16 

O11 

O12 

O13 

O14 

O15 

O16 

MLP 1 

V11 

V12 

V13 

V14 

V15 

V16 

O11 

O12 

O13 

O14 

O15 

O16 

MLP 1 

Min (V11-V16) 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



54 

 

3.4.4.3 Structure 3 

 

To further improve the performance of the network and reduce the complexity of 

classification problems, a new design of a parallel MLP 1 structure will be proposed as 

depicted in Fig. 3.15 (Structure 3). In Structures 1 and 2, a single MLP network is used 

to classify 6 minimum volumes of support structure. The network requires to thoroughly 

learn all the output classes from a given set of input features. This problem can be reduced 

by assigning each output to an independent MLP 1 network. The same feature (as in       

Fig. 4.6) is used as an input (seventh input) to six MLP parallel networks (MLP 1-1 to          

MLP 1-6) in order to produce six different types of outputs (O11 to O16), respectively. For 

this MLP 1 parallel network, the number of hidden nodes are set to be the same values in 

order to ease the experimental analysis and to make it comparable with other structures. 

The outputs of MLP 1-1 to MLP 1-6 indicate “1” for the minimum volume of 

support structure and “0” for the other given values. The inputs and outputs of MLP 1-1 

to MLP 1-6 networks are shown in Fig. 3.15.  

The three structures are analysed to determine the best performing network with 

the highest accuracy is selected and combined with the MLP 2 network (Structure 5) in     

Stage 2. 
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Figure 3.15: Parallel MLP structure (Structure 3). 

 

3.4.4.4 Structure 4 

 

In Stage 2, there are 12 inputs and 6 outputs for MLP 2 network (Structure 4) as 

shown in Fig. 3.16. The 6 outputs (O11 to O16) from Stage 1 (desired outputs/design 

outputs) and another new six inputs (number of support structure in 6 pre-defined 
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orientations) will be taken as inputs for MLP 2 network. These number of support 

structures in six pre-determined directions are given by Spq. The outputs of MLP 2 

network are given by Orq. The m is the model used in this optimization, q is the pre-

defined orientation of part deposition direction and r is the stage of network. The output 

of MLP 2 indicates “1” for the optimum part deposition orientation and “0” for the other 

given values.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: 12 input nodes and 6 output nodes of MLP 2 (Structure 4). 

 

3.4.4.5 Structure 5 

 

Combination of MLP 1 network (Structure 3) and MLP 2 network (Structure 4) 

forms Structure 5 as shown in Fig. 3.17. The 6 outputs (O11 to O16) from Stage 1 (actual 

outputs/real outputs) and another new 6 inputs (number of support structure in 6 pre-

defined orientations) for Structure 4 will be taken as inputs for Structure 5. 
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Figure 3.17: Combination of MLP 1 and MLP 2 networks (Structure 5). 
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If there is only one MLP 2 network outputs (in order from O21 – O26) which has 

number “1”, then assign it as the OPDO. This rule is simplified in Table 3.3. 

 

Table 3.3: One MLP 2 network outputs has number “1”. 

MLP 2 Network Outputs Value OPDO 

O21 0  

O22 0  

O23 0  

O24 1  

O25 0  

O26 0  

 





6

1

2

i

iOsumOutput = 1 
 

 

 

In some cases, there will be more than one MLP 2 network outputs (O21 – O26) 

which has the same value of “1”. To overcome this problem, the study proposes the 

following rules; 

i. Find sum of MLP 2 network (Structure 5) outputs according to: 

 



6

1

2

i

iOsumOutput                                                                                       (3.18) 

ii. If sumOutput > 1, choose the first MLP 2 network output (in order from O21 to 

O26) which has number “1” and then assign it as the OPDO. The rule is simplified 

in Table 3.4. 
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Table 3.4: More than one MLP 2 network outputs have number “1”. 

MLP 2 Network Outputs Value OPDO 

   

 
O21 1 (the first MLP 2 Network 

  Outputs has number “1”) 

O22 0  

O23 1  

O24 1  

O25 0  

O26 0  

 





6

1

2

i

iOsumOutput = 3  
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3.5 Part 3 – Surface Improvement 

 

3.5.1 Methodology 

  

The methodology of this work involves two main steps; 1) the detection of ESF 

and 2) the developing of ESS considering the offset of SSF. In general, the process flow 

of the system for surface improvement is illustrated in Fig. 3.18. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.18: Flowchart for Feature-based Support Generation Data Extraction and 

formation of new support volume. 
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3.5.1.1 Step 1: Detection of ESF 

 

The Cross-Sectional slice Region Area (CSRA) method (described in Section 

3.4.3.1) was used to detect the ESF (RA’= CSRAk+1 – CSRA'k > 0) in each layer of part 

model.  

  

3.5.1.2 Step 2: Development of ESS  

 

Formation of new support volume at layer k-th is defined as: 

'

k k
Formationof NewSupport Volume Volumeof CSRA                                         (3.19) 

 

where, ∆ = Volume of CSRAk  Volume of CSRAk+1 Support Volumek+1, CSRA' is 

offset CSRA and  1,2,...,( 1)k N   and N is the total number of layers for part model 

(i.e. the upper most layer of part model). The support volume at layer k=N is equal to zero. 

 

The steps of detection of ESF and the development of ESS were used when 

comparing between two layers (upper (k+1) and lower (k) layers).  A new part model was 

selected in explaining the development of ESS from the Upper_most layer to the 

Lower_most layer is shown in Fig. 3.19. The part model to be developed consists of all 

characteristics as in Case Studies 1 to 4 described in Chapter 3. The method used to 

develop support volume is described based on their case study. 
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i) External-Supported Features using Support Material (A, B and C) 

 

Resultant Area, RA' between layers at level of layer k=4 (A) and k=3 (offset B and 

offset C) shows the existing of ESF, hence the support volume is required at layer k=3 to 

support this feature. The support volume required at level of layer k=3 was then developed 

using Boolean operation of Equation (3.13). The union operation between CSRAs at level 

of layer k=3 (B and C), k=4 (A) and support volume at level of layer k=4 was performed. 

The support volume at level of layer k=3 was then obtained by subtraction of volume of 

union operation and volume of CSRAs (offset B and offset C) at level of layer k=3          

(Fig. 5.4(b)(iii)). 

    

ii) Non-Supported Features (B and D) and Non-adjacency External-Supported 

Features using Support Material (C and D) 

 

The RA' between layers at level of layer k=3 (B and C) and k=2 (offset D) shows 

the non-supported features (B and D) and the non-adjacency ESF using support material 

(C and D). Hence the support volumes are required at level of layer k=2 to support 

overhang of previous support volume and layer C at level of layer k=3. The support 

volume required at level of layer k=2 was then developed using Boolean operation of 

Equation (3.13). The union operation between CSRAs at level of layer k=3 (B and C), k=2 

(D) and support volume at level of layer k=3 was performed. The support volume at layer 

k=2 was then obtained by subtracting volume of union operation and volume of offset D 

at level of layer k=2 (Fig. 3.19(c)(iii)). 
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Figure 3.19: Model used to evaluate various of features using Feature-based Support 

Generation. 
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iii) Self-Supported Features require no Support Material (D and E) 

 

The RA' between layers at level of layer k=2 (D) and k=1 (offset E) shows the self-

supported features that require no support material. Hence the support volume is required 

at level of layer k=1 to support overhang of previous support volume at level of layer k=2. 

The support volume required at level of layer k=1 was then developed using Boolean 

operation of Equation (3.13). The union operation between CSRAs at level of layer k=2 

(D), k=1 (E) and support volume at level of layer k=2 was done. The support volume at 

level of layer k=1 was then obtained by subtraction of volume of union operation and 

volume of offset E at level of layer k=1 (Fig. 3.19(d)(iii)). 

The part model after surface improvement shown in Fig. 3.19(d)(iii) is discussed 

in details. Two ESSs, ESS 1 and ESS 2 (hatched) are required to support the ESF detected 

on the part model (Fig. 3.20). The ESS 1 has three parts, top, middle and bottom. The 

ESS 2 has two parts, top and bottom. It can be seen that there is no surface contact area 

between part model, ESS 1 and ESS 2. For ESS 1 and ESS 2, the top part is required to 

support the overhang ESF, while the middle or bottom parts are then used to support the 

overhang of previous support volume (the top part). 

 

 

 

 

 

 

Figure 3.20: Development of ESS for part model. 
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3.6 Summary 

 

POA is used to distinguish between the support and non-support features.  Four 

Case Studies are introduced. The approach in Case Studies 3 and 4 (External Support 

Feature using support material) are selected in calculating the total volume of support 

structure and the amount of support structure. The details are described in next chapter. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1 Introduction 

 

This chapter reports the results of determining the OPDO using the ANN and the 

improvement of surface finish of the contact area between part and support structure. The 

results of this work are displayed and discussed in this chapter. A detail extraction process 

of ESF in order to compute the ESS volume and amount of group used as inputs for ANN 

is explained.  

 

4.2 Optimum Part Deposition Orientation 

 

4.2.1 Extraction of ESF in Determining Volume and Number of Support Group  

 

Sample of part model in pre-defined direction of x, y and z axes was constructed 

and the uniform slicing technique was applied to explain the algorithm of the system. This 

system has two parts: ESF identification process and support generation data extraction. 

The part model used in this work is shown in Fig. 3.10.  

Two out of the six directions analysed that correspond to the ±x, ±y and ±z axes 

were taken as samples and illustrated in Figs. 4.1 (Direction 1) and 4.2 (Direction 2).  
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Directions 1 and 2 were selected for a better understanding to clarify the theory of 

volume formation and number of support structure for the Part Model 1 (to explain 

Equations (3.14) and (3.15)). 

Directions 3 and 4 can also be used to explain this theory. The similar technique 

to calculate the volume and number of support structure was implemented (as explained 

in Directions 1 and 2). 

Directions 5 and 6 were unable to explain the theory volume formation and 

number of support structure due to the absent of external support structure.    

The volume of support structure to support detected ESF and the process for 

determining the amount of support structures based on Situations 1 and 2 (as described in 

Section 3.4.3.1) are also shown in these figures.   

The area for new lower layer as a result of offsetting generation was replicated for 

each pair of layers, in a sequence starting from the Upper_most layer to the Lower_most 

layer and will be discussed in the following section. 

 

4.2.1.1 Analysis of Orientation of Part Deposition in Direction 1 

 

For the ESF identification, the subtraction process between upper (CSRAUpper_layer) 

and offset lower (CSRA'Lower_layer ) layers was used and presented in top and front views    

(Fig. 4.1). The offset lower layer is represented by a dashed line. This process involves 

the calculation of RA' from the Upper_most layer (Layer 4) to the Lower_most layer   

(Layer 1). The ESF is identified when RA' > 0. The ESF between Layer 4 and offsetting 

of Layer 3 is not identified as shown in Figs. 4.1(b)(i) and (ii). This situation can also be 

identified between Layer 3 and offsetting generating of Layer 2 (Fig. 4.1(b)(ii)). 

The ESF are discovered for RA' between Layer 2 and offsetting generation of 
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Layer 1. By using Equation (3.9), the support volume at Layer 1 is produced instantly 

under ESF of Layer 2. This process obtains the adjacency of Layer 2 in its building 

direction, and is thus easy to manufacture. Next, the support generation data extraction is 

done. Two parameters, the volume of support structure represented by hatched region and 

the amount of support group for identified ESF (Fig. 4.1(b)(iii)) are calculated. 

The support volumes at the current layer were checked for the intersection with 

the developed support volumes of previous layer before calculating the overall amount of 

support group.    

The number of ESS (Layer 1) has two groups of support volume. The intersection 

of these groups is not investigated. As a consequence, the structures of support volume 

are discovered to be two different structures. In this case, the amount of support group is 

2. 

In this study, the BSS is required for part model to support the overhang area of 

part and external support volume at level k=1 is 1 unit, represented by hatched region in          

Fig. 4.1(b)(iv).  Determining the amount of base support structure depends on part model 

area or ESS area which progressed at Layer 1. By using Equation (3.16), the volume for 

BSS was generated (Fig. 4.1(b)(iv)) to support any areas progressed at this level. The 

intersection between the volume of BSS generated and support volume instantly above it 

is not considered as a member of volume of ESS (since {1,2,..., ( 1)}k N  ). 

Finally, the total support structures in Direction 1 for the entire manufacturing 

process of this part model are 3 units.  Next, the volumes for the support structures are 

calculated. 
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(a) Slice Part Model 1 in Direction 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) ESF identification process and support generation data extraction in Direction 1. 

Figure 4.1: Illustrative example of Part Model 1 in Direction 1. 
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4.2.1.2 Analysis of Orientation of Part Deposition in Direction 2 

 

The same part model as used in Section 4.2.1.1 was taken for the analysis of the 

orientation of part deposition in Direction 2.  The formation of support structure and 

amount of group are illustrated in Fig. 4.2. The ESF between Layer 4 and offsetting of 

Layer 3 is not identified (Fig. 4.2(b)(i)), then the support volume is not required at this 

level of layer. However, two groups of support volume are required to support the 

detected ESS at Layer 2. This condition occurs between Layer 3 and offsetting generation 

of Layer 2 (Fig. 4.2(b)(ii)).  
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(b) ESF identification process and support generation data extraction in Direction 2. 

Figure 4.2: Illustrative example of Part Model 1 in Direction 2.  

(a) Slice part model 1 in Direction 2. 
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Next, the new support volume is required at Layer 1 (Fig. 4.2 (b)(iii)). The ESF is 

found for RA between Layer 2 and the generation of offsetting of Layer 1. The detail 

process of support generation at this stage is illustrated in Fig. 4.3. Firstly, the support 

volume at Layer 1 is produced instantly under ESF of Layer 2 (Fig. 4.3(b)).  At the same 

time, the two overhang support volumes generated at Layer 2 (i.e. at the left and right 

hand side) also require new support volumes to increase the adjacency in their building 

direction as shown in Fig. 4.3(a). Therefore, both ESF and the overhang support volumes 

can be manufactured (Fig. 4.3(c)). 

 

 

 

 

  

 

Figure 4.3: Process of support generation. 

 

This work found that the Layer 2 has two non-intersection structures of support 

volume (Fig. 4.3(c)). The system recognizes these structures of support volume as two 

distinct structures. However, the intersection between the support volumes at layers 1 and 

2 was referred as a similar member. Thus, these volumes develop a unit of support volume 

structure.  

There are two groups of ESS at Layer 2 (Fig. 4.3(a)). The overall amount of 

external support group at Layer 1 (Fig. 4.3(c)) is 1 due to intersection between the support 

volumes created at Layers 1 and 2.  

For orientation of part deposition in Direction 2, the total support structures in the 

entire manufacturing process are 2 units (one unit of ESS and BSS each) (Fig. 4.2(b)(iv)). 
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The technique of base support volume generation in Direction 2 is similar to the 

considerations that have been made in Direction 1, (since {1,2,..., ( 1)}k N  ), as described 

in Section 4.2.1.1. 

By considering the amount of support structure and BSS, hence, the total support 

structures in Direction 2 for entire manufacturing process of this part model are 2 units. 

Then, the volumes for these support structures were calculated. 

In general, the Feature-based Support Generation for Part Model 1 considering the 

support volume and amount of support structure (Situations 1 and 2 as in Section 3.4.3.1) 

can be clearly explained in Directions 1 and 2. 

 

4.2.2 Results for Orientation of Part Deposition in All Pre-defined Directions 

 

In this work, the persistent slice height, t of 0.01 mm and the base support layer, 

m of 5 was selected for the whole part orientations involved. For the new model, Part 

Model 1, was manufactured with geometries as shown in Fig. 4.4. The same model was 

used for all directions (1 to 6) in determining the optimum deposition part orientation 

using MLP network.  

 

 

 

 

 

 

L1= L2= L4= L5=10 mm, L3=5 mm, w1=20 mm, h1=h2=h3=h4=10 mm. 

Figure 4.4: Dimensions of Part Model 1. 
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The outcome of overall support volume and amount of support structure (Part 

Model 1) for orientation of part deposition in pre-defined Directions 1 to 6 are shown in 

Table 4.1.  From the table, the least support volumes (57.5 mm3) were observed in 

Directions 5 and 6. Meanwhile, both directions also show the same amount of support 

structure which is 1 unit. Hence, the best orientation of the part is in Directions 5 or 6. In 

this case, the least support volume are detected due to similar Feature-based Support 

Generation for both directions. 

 

Table 4.1: Support volume and amount of support structure in pre-defined directions. 

Pre-defined 

Direction 

Total Support 

Volume (mm3) 

Amount of Support 

Structures 

1 4045 3 

2 9045 2 

3 13040 4 

4 13040 4 

5 57.5 1 

6 57.5 1 

 

 

4.3 Artificial Neural Network 

 

The results of the computational analysis for total support volume and amount of 

support structure are presented in this section. The determination of the OPDO for 

different selected models using MLP network is also described.  
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4.3.1 Training and Testing Data 

 

The training process was conducted by varying the number of hidden nodes from 

1 to 50 by trial and error in order to identify the optimum value of accuracy. For each 

hidden node, the classification accuracy was recorded. The accuracy of MLP output 

testing and training is given by Equation (4.1), 

100
Number of correctlyclassify data

Accuracy
Total number of data

 
  
 

                                        (4.1) 

 

For the classification performance in current work, the minimum acceptable 

accuracy is set as 85%. The accuracies of training and testing processes for all structures 

(Structures 1 to 5) are shown in Figs. 4.5 to 4.10. The selection of optimum output for 

training and testing is based on the highest accuracy during training and testing with the 

minimum number of hidden neurons.  

From Fig. 4.5, the accuracy of optimum classification is obtained when the 

number of hidden node is 23. The selection of 50 hidden nodes is sufficient for the 

analysis. The method of selection of hidden nodes is by trial and error. The same method 

was used by previous researchers (Dreiseitl et al., 2002; Feng et al., 2009). The training 

for MLP 1 network using larger number of hidden nodes (>23) does not improve the 

classification accuracy. The accuracies of MLP 1 network (Structure 1) for training and 

testing processes are 67.00% and 62.50%, respectively.  
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Figure 4.5: Accuracy of MLP 1 network for training and testing processes of 

Structure 1. 

 

The accuracy of MLP 1 network as a function of the number of hidden nodes 

between training and testing processes is displayed in Fig. 4.6. Both training and testing 

processes of MLP 1 output are have higher accuracy compared to Structure 1 when the 

MLP 1 network have 7 inputs including Min(V11 to V16). From the plots, the accuracies 

for training and testing processes of Structure 2 are 77.25% and 75.00%, respectively. 

This occurs when the number of hidden node is 28. The classification accuracies for both 

training and testing processes do not improve when the number of hidden node is greater 

than 28.  
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Figure 4.6: Accuracy of MLP 1 network for training and testing processes of 

Structure 2. 

 

The accuracy of testing for Structure 2 is verified by the same inputs of V11 to V16 

and the replacement of Min(V11 to V16) by Max(V11 to V16). The result shows that the 

Structure 2 has a lower testing accuracy when the Max(V11 to V16) is used as the seventh 

input for MLP 1 network. The comparison between the accuracy of testing for Structures 

1 and 2 (Min(V11 to V16) and Max(V11 to V16)) are plotted in Fig. 4.7.  
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Figure 4.7: Comparison of testing accuracy between Structures 1 and 2 (for minimum 

and maximum input values). 

 

The accuracies of training and testing processes for Structure 3 against the number 

of hidden nodes are presented in Fig. 4.8.  

 

 

Figure 4.8: Accuracy of MLP 1 network for training and testing processes of 

Structure 3. 
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It can be seen that the accuracies for training and testing are 91.75% and 89.50%, 

respectively. Both accuracies achieved when the number of hidden node is 25. The 

classification accuracy does not improve when the number of hidden node is greater than 

25 

The accuracies of training and testing processes for Structure 4 (MLP 2 network 

which consists of 12 inputs and 6 outputs nodes network) is displayed in Fig. 4.9. The 

accuracies for training and testing processes are 99.25% and 97.50%, respectively when 

the hidden number of node is 15. These accuracies do not show any improvement beyond 

this node. 

 

 

Figure 4.9: Accuracy of MLP 2 network training and testing processes of Structure 4. 

 

The accuracies of training and testing for Structure 5 (combination between     

MLP 1 network designed for Structure 3 and MLP 2 network (12 Inputs and 6 Outputs)) 

are displayed in Fig. 4.10. The accuracies for training and testing processes are 88.25% 
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and 86.50%, respectively when the hidden number of node is 17. The greater number of 

hidden node (>17) does not change the classification accuracy. 

 

Figure 4.10: Accuracy of combination of MLP 1 and MLP 2 networks for training and 

testing processes (Structure 5). 

 

Data of training and testing processes for all structures of MLP 1 and 2 are 

attached in Appendices A to E. 

 

4.3.2 Summary 

 

The accuracy of the network is determined through five MLP structures 

(Structures 1 to 5). The accuracies of MLP structures at specific hidden nodes are given 

in Table 4.2.  

It can be seen that the performance (testing accuracy) of Structure 2 is improved 

from 62.50% to 75.00% when a new feature of Min(V1 to V6) is proposed. This work also 

proposed new parallel MLP networks (Structure 3) in which each network is used to 

classify different outputs. The Structure 3 has the highest testing accuracy of 89.50% 

compared with other structures. The MLP 2 network (Structure 4) contains 12 inputs and 
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6 output nodes. The accuracy for this structure is 97.50%. Structure 5 has two types of 

inputs of total volume of support structure (output from MLP 1 of Structure 3) and number 

of support structure. The outputs of Structure 5 are trained to have a minimum total 

volume of support structure which also to have a minimum number of support structure. 

Structures 3 and 4 are selected and combined in order to produce Structure 5 which has 

the testing accuracy of 86.50%. From now onward, the Structure 5 will be chosen in this 

study.  

 

Table 4.2: Training and testing accuracies for MLP structures. 

 

 

 

MLP  

Structure 

Number of 

Hidden Node 

Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Selected 

Structure 

Structure 1 23 67.00 62.50 - 

Structure 2 28 77.25 75.00 - 

Structure 3 25 91.75 89.50 MLP 1 

Structure 4 15 99.25 97.50 MLP 2 

Structure 5 17 88.25 86.50  

Note:  Structure 5 is a combination of MLP 1 and MLP 2  
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4.4 Computation Analysis using Multilayer Perceptron Network 

 

The results of computational analysis using MLP network in selecting the OPDO 

for all part models (Models 1 to 3) are discussed. For every part orientation, the overall 

volume and the amount of support structure were decided to be an input.  

 

4.4.1 Model 1: New Model 

 

 For Model 1, the OPDO in six pre-defined direction is determined by using MLP 

networks (Structure 5). The input and output for these networks is presented in Table 4.3. 

This table displays the total support volume as inputs for MLP 1 network. The least total 

support volume (57.5 mm3) is identified as a seventh input for MLP 1 network. The 

combination of six outputs of MLP 1 and amount of support structure (S21–S26) become 

as inputs for MLP 2.  Based on the result, the least total support volume and least amount 

of support structure are given by the MLP 2 network when the output indicates “1” (O25 

and O26). Based on the rule defined in Equation (3.18), O25 in direction 5 is chosen as an 

OPDO.  

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



83 

 

Table 4.3: Input and output of MLP network (Structure 5) for Part Model 1. 

Direction 

Total Support 

Volume (mm3) 

Amount of Support 

Structures 

MLP 2 Output Rule 

1 4045 S21 3 O21 0 0 

2 9045 S22 2 O22 0 0 

3 13040 S23 4 O23 0 0 

4 13040 S24 4 O24 0 0 

5 57.5 S25 1 O25 1 1 

6 57.5 S26 1 O26 1 0 

 

 

The actual part models produced in Directions 5 and 6 using FDM machine are 

displayed in Figs. 4.11 and 4.12, respectively. 

 

 

 

Figure 4.11: Part Model 1 orientated in Direction 5. 
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Figure 4.12: Part Model 1 orientated in Direction 6. 

 

4.4.2 Models 2 and 3: Existing Models 

  

The method for Feature-based Support Generation used in selecting the OPDO 

was validated by constructing two part models as shown in Fig. 4.13. Previous work by 

Cheng et al. (1995) and Thrimurthulu et al. (2004) used the same Part Model 2                  

(Fig. 4.13(a)) to validate their different technique in selecting the OPDO in SLA and FDM, 

respectively. Another attempt in FDM was done by Masood et al. (2000) by using Part 

Model 3 (Fig. 4.13(b)). 

In validating the OPDO, Cheng et al. (1995) used a multiple objective-function as 

a formulation to derive the optimal orientation for Stereolithography process. This 

algorithm is enable for simple surfaces (flat and cylindrical) and complex surfaces. 

Meanwhile Thrimurthulu et al. (2004) determined the OPDO by minimizing the support 

structure and using the adaptive slicing for similar model used by Cheng and his workers 

(1995). This approach can be used for complex surface (completely freeform). Masood 

et al. (2000) validated the OPDO for his model by developing a mathematical technique 
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based on minimum volumetric error values using the primitive volume approach (simple 

parts made from the primitives such as cylinders, cubes, spheres and pyramids. This 

approach also promise the computation of volumetric error for more complex part. 

 

 

 

 

 

 

 

 

 

 

(a) Part Model 2 (Cheng et al., 1995). 

 

 

 

 

 

 

 

 

 

(b) Part Model 3 (Masood et al., 2000). 

 

Figure 4.13: Part models for validation using Feature-based Support Generation. 

 

Input and output of MLP network analysis for validation of the OPDO using part 

model 2 are displayed in Table 4.4. For Model 2, the least total support volume (44018.47 

mm3) and least amount of support structure (3) are given by the MLP 2 network when the 

output indicates “1” (O21 and O22). Using a similar rule defined in Equation (3.18), O21 in 
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direction 1 is selected as an OPDO. This finding is consistent with the build direction 

reported by Cheng et al. (1995) and Thrimurthulu et al. (2004). 

 

Table 4.4: Input and output of MLP network (Structure 5) for Part Model 2. 

Direction 

Total Support 

Volume (mm3) 

Amount of Support 

Structures 

MLP 2 Output Rule 

1 44018.47 S21 3 O21 1 1 

2 44018.47 S22 3 O22 1 0 

3 58191.38 S23 4 O23 0 0 

4 137691.38 S24 4 O24 0 0 

5 152373.41 S25 2 O25 0 0 

6 106998.41 S26 2 O26 0 0 

 

 

The results of overall support volume and amount of support structure for Part 

Model 3 are shown in Table 4.5. For Model 3, the least total support volume (48.55 mm3) 

and least amount of support structure (1) are given by the MLP 2 network when the output 

indicates “1” and, this only occurs in one direction (O21). The rule defined in Equation 

(3.18), O21 in direction 1 is taken as an OPDO. This finding supports the work done by 

Masood et al. (2000), in which the selection of build direction is the same with this work. 
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Table 4.5: Input and output of MLP network (Structure 5) for Part Model 3. 

Direction 

Total Support 

Volume (mm3) 

Amount of Support 

Structures 

MLP 2 Output Rule 

1 48.55 S21 1 O21 1 1 

2 14950.10 S22 2 O22 0 0 

3 2359.07 S23 2 O23 0 0 

4 21109.07 S24 2 O24 0 0 

5 2361.57 S25 2 O25 0 0 

6 2361.57 S26 2 O26 0 0 

 

 

4.5 General Discussion 

 

The concept of Feature-based Support Generation is used to automate the 

selection of the OPDO. This work promises some extension of work done by Yang et al. 

(2003). Their work discussed on Feature-based Process Planning without mentions the 

OPDO while manufacturing the selected part model (Fig. 4.14) using the Orthogonal 

Deposition Manufacturing System (two-direction LM system, i.e. two nozzles). Based on 

the selected model, the support volume required in their work is considered higher than 

that of the support volume for the OPDO determined in this work. By comparing the 

support volume, the current method can offer lower build times and materials’ cost. In 

conclusion, the selection of the OPDO is important in LM process planning either in FDM 

or orthogonal deposition manufacturing system. 
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Figure 4.14: Comparison on the concept of feature-based extraction used in support 

generation; (a) without consideration of the OPDO (Yang et al., 2003) and (b) with 

consideration of the OPDO.          

  

The finding of the current work proves that the OPDO can be determined using 

the Feature-based Support Generation. In this generation, the volume and amount of 

support structure were used as criteria for orientation due to the involvement of external 

and base support structures. The direction for optimum part deposition in this work is 

found to be the same as direction suggested by Cheng et al. (1995) and Thrimurthulu et 

al. (2004) when the different criteria was used. This can be explained that the selection 

of the OPDO is subjected to many factors (Kulkarni et al., 2000; Thrimurthulu et al., 

2004). This finding is consistent with the statement reported by Kulkarni et al. (2000) in 

which the total volume of support structure related to build time and cost of materials, 

can be used in determining the orientation for some LM technologies such as SLA and 

FDM. This work are also supported by Dutta et al. (2001) and Marsan et al. (1998) that 

emphasized the support generation as a key in these technologies.  
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There is an increase in both build time and cost of materials when increasing in 

volume and amount of support structure. The build time is influenced by both acceleration 

and deceleration of nozzle tips during material deposition of part or support material 

(Thrimurthulu et al., 2004). The elapsed time occurs when the part material nozzle shifted 

to the support material nozzle and vice versa. Hence, by selecting the part orientation with 

least volume of support structure in the process of fabrication of part model allow to 

improve the build time. The smallest amount of support structure will be chosen for the 

case in which a few least volume of support structures are identified.  

 

4.5.1 Advantages and Limitations 

 

Some advantages of this work include: the process is not repeating since the best 

orientation is first identified; the choice of the orientation of part deposition has been 

automated using ANN, thus reduce human errors; the Feature-based Support Generation 

is a unique characteristic in FDM which can be performed theoretically and practically. 

Previously, the workers need to produce all products in all pre-defined directions. The 

product with a good quality will be selected as a final product regardless the orientation 

direction of the built. This work proposes the technique in which the operators require to 

choose the best direction that proposed by the MLP network (least overall support volume 

and the least amount of support structure).   

The technique of Feature-based Support Generation has a limitation to be used in 

SLA and FDM.  The main reason is that of the ESS and BSS are considered as apart of 

manufacturing process when producing the final product. Other limitations include the 

number of orientation to build the part, which is analysed only in six distinct directions 

that correspond to ±x, ±y and ±z axes (Table 3.1) with one build direction (single nozzle). 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



90 

 

These directions are based on standard construction axis/plane in CAD system and 

working axis/plane in Insight software.   

 

4.6 Summary 

 

The activities in CAD and CAM can be integrated using the concept of Feature-

based Support Generation. By using this approach, the LM cycle can be minimized due 

to the OPDO which has been decided before transferring data to the FDM machine. This 

concept offers less human error because the selection of orientation of part deposition 

(dependent on support volume and amount of support structure) has been automated using 

MLP networks. 

 

4.7 Results and Discussion – Surface Improvement 

 

The entire geometry of part models produced by FDM 3000 machine before and 

after surface improvement are displayed in Figs. 4.15(a) and (b), respectively. The part 

model and support structures of ESS 1 and ESS 2 can be clearly seen due to different 

colour of materials used in the process. The contact between part model and ESS is 

observed (Fig. 4.15(a)) before improvement using Feature-based Support Generation is 

made. In contrast, the gap is seen between part model and ESS after improvement as 

shown in Fig. 4.15(b). The CAD and STL files for this part model are attached in 

Appendices F and G, respectively. 

The surface contact areas of ESS are observed from the top to the bottom section 

before surface improvement are shown Figs. 4.16(a) to (c). The surface improvement 
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(gap) results in producing the part model with uniform non-surface contact area 

containing the ESS 1 for both sides (Figs. 4.16(d) to (f)).  

 

 

(a) 

 

(b) 

Figure 4.15: Actual part models produced by FDM machine; (a) Before improvement 

and (b) After improvement using Feature-based Support Generation. 
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Before improvement (contact) 

 

After improvement (non-contact) 

 

  
 

 

(a) 

 

 

(d) 

 

   
 

(b) 

 

 

(e) 

  
 

(c) 

 

 

(f) 

 

Figure 4.16: Actual part models produced by FDM machine; (a) to (c) Contact surface 

area and (d) to (f) Non-contact surface area. 
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Next, the same part model as in Fig. 4.15 was successfully produced using the 

Zortrax 3D Printer machine. The whole size of the part model before and after surface 

improvement are depicted in Figs. 4.17(a) and (b). The part model and support structures 

are made of similar materials due to single nozzle of the machine and hard to differentiate 

between them. From Fig. 4.17(a), it can be seen that the amount of material required to 

develop the supports (ESS 1 and ESS 2) is higher than the material used in FDM machine. 

Spacing between part model and support structure before and after surface 

improvement produced by Zortrax 3D Printer are shown in Figs. 4.18(a) and (b). The      

non-contact surface at unnecessary area between part model and ESS are clearly observed 

in Fig. 4.18(b).  The surface improvement results in producing the part model with 

uniform non-surface contact using Zortrax 3D Printer machine and consistent with the 

results produced by FDM machine (Figs. 4.18(a) to (f)).   

In the present work, the surface roughness on the part model at the contact surface 

area before and after improvement was measured using a Mitutoyo SURFTEST Model 

SV-400. The average surface roughness for the part model with uniform non-surface 

contact area using FDM and Zortrax 3D Printer machines are 5.43 and 5.7 µm, 

respectively. The surface quality are improved approximately 38% (FDM) and 39% 

(Zortrax 3D Printer). 
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(a) 

 

(b) 

Figure 4.17: Actual part model produced by Zortrax 3D Printer machine; (a) Before 

improvement and (b) After improvement using Feature-based Support Generation. 
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Before improvement (contact) 

 

 

After improvement (non-contact) 

  
 

(a) 

 

 

(d) 

   
 

(b) 

 

 

(e) 

  
 

(c) 

 

 

(f) 

 

Figure 4.18: Actual part model produced by Zortrax 3D Printer machine;                       

(a) to (c) Contact surface area and (d) to (f) Non-contact surface area. 
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k=3 

k=2 

Level of layer 

t 

The overhang area that exceed POA 

t 

POA 45o 

ESF 

SSF 

45o 

SSF 

t 

k=1 

4.7.1 Introduction 

 

The objective of this section is to develop the non-contact surface between part 

model and ESS using Feature-based Support Generation by considering all four case 

studies which are previously described in Sections 3.3.1 to 3.3.4. This work leads to a 

higher quality product by eliminating the marks left at unnecessary area on the part 

surfaces.   

The ESF has two overhang areas; 1) the area in the range of POA (i.e. SSF) and 

2) the area that exceed POA. The construction of ESF is shown in Fig. 4.19.  

 

 

  

    

 

  

 

 

Figure 4.19: Construction of ESF. 

  

In developing the part model, the support volume is not required to support the 

SSF (k=2 in Fig.5.1). At Layer 3 (k=3) in the same figure, the SSF is considered to be 

apart of ESF. Then, it can be avoided during fabricating the support volume to support 

ESF. The support volume of ESS developed in the system is used to support the ESF in 

horizontal direction. This support volume seems to have a contact with unnecessary part 

surface in vertical direction (Fig. 4.20(a)). The improvement by using the Feature-based 
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Support Generation reveal that there is no contact area at unnecessary part surface 

(vertical direction) and the support volume to support SSF (horizontal direction) as shown 

in Fig. 4.20(b). Finally, the surface quality of final part model can be improved.  

 

 

 

 

 

 

(a) Contact surface between part model and ESS. 

 

  

 

 

 

 

(b) Non-contact surface between part model and ESS. 

Figure 4.20: Construction of ESS of part model. The part model and ESS interface;  

(a) contact surface (before improvement) and (b) Non-contact surface (after 

improvement) using Feature-based Support Generation. 

 

4.7.2 Discussion  

  

This section provides the information of Feature-based Support Generation 

concept used for part model which requires a good surface finish. This concept is applied 

to give 'non-contact area' between the part model and ESS at unwanted regions. However 

the support structure is still required to support the detected ESF. This result increases the 

Contact surface area 

Part model 

ESF 

ESS 

Non-contact 

surface area 

ESF 

SSF Part model 

ESS 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



98 

 

efficiency of fabrication and quality of part model by minimizing the marks left on the 

surface. 

In additional, the post-processes that required for cutting, trimming, and polishing 

of parts can be eliminated. This results in reducing the production time and possible errors 

that might be occurred in post-processing stages. 

The non-contact between these two areas can produce a higher dimensional 

accuracy and excellent surface finish part known as a near-net shape product. This type 

of product require less post-processing to turn into final shape before it can be used. 

In term of mechanical properties, the smooth surface finish gives a higher strength 

compared to product with non-uniform surface finish.  Crack due to stress concentration 

on non-uniform surface can be avoided. 

 

4.7.3 Summary 

 

The finding in this chapter shows that the surface quality of the part model can be 

enhanced by allowing gaps between the part model and ESS at unwanted contact area. 

The surface improvement using the features-based support generation technique can be 

applied in the other machines (e.g. Zortrax 3D Printer) when ESS becomes as apart of 

their manufacturing activity. The similar results are produced when different machines 

are used. This experiment shows that the Feature-Based Support Generation technique 

has a capability to produce a part with a good surface finish. The consistent result has 

been proven by using FDM and Zortrax 3D Printer. It can be concluded the Feature-Based 

Support Generation technique can be applied when the surface finish become as a key 

parameter in the work. 
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION FOR FUTURE WORK 

 

 

5.1 Conclusion 

 

This research work involves the use of Feature-based Support Generation for 

determining the OPDO in the main work and next, improving surface finish of part model 

in fabrication. These two sections of work have been successfully carried out. The 

integration between CAD and CAM implies that the process planning in FDM can be 

automated with less human errors. The Optimum Part Deposition Orientation (OPDO) 

determination involving MLP Networks (considering build cost and time) can provide 

the best orientation of part during manufacturing processes. 

The support generation is important in FDM. In this work, the features connected 

to this support are extracted according to unique features of additive technique (layer-by-

layer). In this study, the work can be concluded as the following: 

i. Volume and amount of support structure are the most crucial parameters in 

deciding the OPDO. The Feature-based Support Generation data extraction 

technique has been successfully used to seek the information of volume and 

amount of support structure and. This can be achieved through the integration 

between CAD and CAM system.  Part Model 1 (shown in Figure 4.4) can be 

manufactured with the lowest volume of support structure in Direction 5. 
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ii. Feature-based Support Generation concept is used to improve the surface contact 

area between part model and support structure by reducing unnecessary support 

volume. 

 

5.2 Recommendation for Future Work  

 

This research has been completed within the scope of work. Some suggestions for 

future work that related to the field are listed below:   

i. To develop less density support structure by optimizing the material fabrication 

process. 

ii. To minimize the total area of contact with support structure.  

iii. To extend the use of feature-based concept in other LM technology e.g. SLA. 

 

5.3 Contribution to the Knowledge 

 

Feature-based technique has thus been rarely used in the LM technology (Zhang 

et al., 2016). The steps of process planning in LM involve automatic operations except 

part deposition selection.  In this research, the Feature-based Support Generation enables 

the automation of part deposition selection.  

Support generation in manufacturing part is essential in FDM. It contributes to 

unnecessary build time and cost of material. Both parameters affect the efficiency of the 

entire manufacturing processes. In fact, this support is considered as a waste at the end of 

the process. This work found that the Feature-based Support Generation can be used to 

determine the OPDO based on support structure volume and group number of support 

structure.     
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This work has successfully introduced the concept of Feature-based Support 

Generation for additive process in FDM manufacturing. This concept is different 

compared to the feature introduced in conventional manufacturing (Kerbrat et al., 2010). 

The introduced feature is unnecessary to be recognized as in conventional manufacturing 

(machining). This finding is able to resolve the problem related to features in additive 

manufacturing process of FDM. 

In this work, the minimum support volume of ESS is a vital criteria in selecting 

the OPDO. This is due to the relationship between build time and the total cost of the 

material used in the build. The decrease in the support volume results in the decrease of 

the build time and the cost of the material. 

The problem of surface contact between part model and ESS has also been 

improved using feature-based technique. This technique provides gap between these two 

entities thus increased the quality of surface finish without diminishing other structures 

and properties. 

Structure 5 is a combination of MLP 1 (support volume) and MLP 2 (number of 

support structure) designed by ANN helps to select the OPDO with the testing accuracy 

over 85%.  

The automated process planning produced throughout this research benefit the 

LM users in wide applications such as manufacturing, automotive, aerospace and 

biomedical.  
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APPENDIX A 

Data for training and testing processes to determine optimum hidden node (Structure 1). 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

1 155 55 38.75 27.50 

2 161 57 40.25 28.50 

3 165 59 41.25 29.50 

4 176 63 44.00 31.50 

5 176 67 44.00 33.50 

6 182 71 45.50 35.50 

7 200 73 50.00 36.50 

8 210 77 52.50 38.50 

9 218 81 54.50 40.50 

10 227 83 56.75 41.50 

11 228 87 57.00 43.50 

12 230 91 57.50 45.50 

13 233 95 58.25 47.50 

14 235 101 58.75 50.50 

15 239 107 59.75 53.50 

16 241 112 60.25 56.00 

17 245 115 61.25 57.50 

18 247 117 61.75 58.50 

19 249 120 62.25 60.00 

20 254 122 63.50 61.00 

21 259 122 64.75 61.00 

22 268 122 67.00 61.00 

23 268 125 67.00 62.50 

24 268 124 67.00 62.00 

25 267 125 66.75 62.50 

26 266 122 66.50 61.00 

27 267 121 66.75 60.50 

28 268 119 67.00 59.50 

29 265 121 66.25 60.50 

30 266 123 66.50 61.50 
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Continued 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

31 265 121 66.25 60.50 

32 264 122 66.00 61.00 

33 266 123 66.50 61.50 

34 267 124 66.75 62.00 

35 268 122 67.00 61.00 

36 269 123 67.25 61.50 

37 267 120 66.75 60.00 

38 264 118 66.00 59.00 

39 263 122 65.75 61.00 

40 265 121 66.25 60.50 

41 266 122 66.50 61.00 

42 267 123 66.75 61.50 

43 267 119 66.75 59.50 

44 265 122 66.25 61.00 

45 268 123 67.00 61.50 

46 269 124 67.25 62.00 

47 267 122 66.75 61.00 

48 264 119 66.00 59.50 

49 266 123 66.50 61.50 

50 269 122 67.25 61.00 
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APPENDIX B 

Data for training and testing processes to determine optimum hidden node (Structure 2). 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

1 231 100 57.75 50.00 

2 233 103 58.25 51.50 

3 233 106 58.25 53.00 

4 237 111 59.25 55.50 

5 241 112 60.25 56.00 

6 243 110 60.75 55.00 

7 247 109 61.75 54.50 

8 253 113 63.25 56.50 

9 257 117 64.25 58.50 

10 266 114 66.50 57.00 

11 269 117 67.25 58.50 

12 274 120 68.50 60.00 

13 279 122 69.75 61.00 

14 283 129 70.75 64.50 

15 289 127 72.25 63.50 

16 293 130 73.25 65.00 

17 291 133 72.75 66.50 

18 289 135 72.25 67.50 

19 292 133 73.00 66.50 

20 295 136 73.75 68.00 

21 299 139 74.75 69.50 

22 301 141 75.25 70.50 

23 305 143 76.25 71.50 

24 310 143 77.50 71.50 

25 307 145 76.75 72.50 

26 303 144 75.75 72.00 

27 305 147 76.25 73.50 

28 309 150 77.25 75.00 

29 311 149 77.75 74.50 

30 313 147 78.25 73.50 
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Continued 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

31 307 150 76.75 75.00 

32 305 148 76.25 74.00 

33 311 147 77.75 73.50 

34 303 147 75.75 73.50 

35 305 149 76.25 74.50 

36 312 150 78.00 75.00 

37 306 147 76.50 73.50 

38 303 145 75.75 72.50 

39 300 143 75.00 71.50 

40 304 145 76.00 72.50 

41 310 147 77.50 73.50 

42 309 148 77.25 74.00 

43 307 146 76.75 73.00 

44 303 147 75.75 73.50 

45 307 149 76.75 74.50 

46 311 150 77.75 75.00 

47 310 147 77.50 73.50 

48 302 145 75.50 72.50 

49 307 147 76.75 73.50 

50 308 148 77.00 74.00 
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APPENDIX C 

Data for training and testing processes to determine optimum hidden node (Structure 3). 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

1 351 155 87.75 77.50 

2 352 151 88.00 75.50 

3 352 154 88.00 77.00 

4 356 157 89.00 78.50 

5 354 155 88.50 77.50 

6 349 152 87.25 76.00 

7 361 157 90.25 78.50 

8 359 161 89.75 80.50 

9 361 164 90.25 82.00 

10 355 159 88.75 79.50 

11 361 155 90.25 77.50 

12 357 157 89.25 78.50 

13 353 161 88.25 80.50 

14 350 156 87.50 78.00 

15 351 152 87.75 76.00 

16 353 158 88.25 79.00 

17 357 155 89.25 77.50 

18 350 157 87.50 78.50 

19 353 162 88.25 81.00 

20 360 164 90.00 82.00 

21 365 168 91.25 84.00 

22 367 172 91.75 86.00 

23 367 174 91.75 87.00 

24 369 177 92.25 88.50 

25 367 179 91.75 89.50 

26 368 177 92.00 88.50 

27 367 177 91.75 88.50 

28 366 176 91.50 88.00 

29 369 173 92.25 86.50 

30 371 174 92.75 87.00 
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Continued 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

31 367 172 91.75 86.00 

32 365 170 91.25 85.00 

33 363 173 90.75 86.50 

34 367 175 91.75 87.50 

35 364 178 91.00 89.00 

36 365 174 91.25 87.00 

37 366 172 91.50 86.00 

38 363 171 90.75 85.50 

39 361 172 90.25 86.00 

40 363 172 90.75 86.00 

41 359 174 89.75 87.00 

42 364 178 91.00 89.00 

43 361 177 90.25 88.50 

44 362 178 90.50 89.00 

45 359 175 89.75 87.50 

46 363 173 90.75 86.50 

47 361 175 90.25 87.50 

48 358 175 89.50 87.50 

49 360 175 90.00 87.50 

50 365 177 91.25 88.50 
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APPENDIX - D 

Data for training and testing processes to determine optimum hidden node (Structure 4). 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

1 391 190 97.75 95.00 

2 392 190 98.00 95.00 

3 391 191 97.75 95.50 

4 393 191 98.25 95.50 

5 393 192 98.25 96.00 

6 393 191 98.25 95.50 

7 392 191 98.00 95.50 

8 393 192 98.25 96.00 

9 393 192 98.25 96.00 

10 395 193 98.75 96.50 

11 393 192 98.25 96.00 

12 393 193 98.25 96.50 

13 395 194 98.75 97.00 

14 395 194 98.75 97.00 

15 397 195 99.25 97.50 

16 397 195 99.25 97.50 

17 397 192 99.25 96.00 

18 392 193 98.00 96.50 

19 393 192 98.25 96.00 

20 396 194 99.00 97.00 

21 397 192 99.25 96.00 

22 395 193 98.75 96.50 

23 395 192 98.75 96.00 

24 395 195 98.75 97.50 

25 395 192 98.75 96.00 

26 396 193 99.00 96.50 

27 392 192 98.00 96.00 

28 392 192 98.00 96.00 

29 394 193 98.50 96.50 

30 396 192 99.00 96.00 
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Continued 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

31 396 195 99.00 97.50 

32 393 193 98.25 96.50 

33 391 194 97.75 97.00 

34 392 191 98.00 95.50 

35 391 194 97.75 97.00 

36 392 193 98.00 96.50 

37 396 193 99.00 96.50 

38 396 193 99.00 96.50 

39 395 195 98.75 97.50 

40 395 195 98.75 97.50 

41 396 195 99.00 97.50 

42 395 192 98.75 96.00 

43 395 195 98.75 97.50 

44 395 192 98.75 96.00 

45 396 194 99.00 97.00 

46 392 194 98.00 97.00 

47 393 192 98.25 96.00 

48 397 193 99.25 96.50 

49 397 192 99.25 96.00 

50 397 195 99.25 97.50 
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APPENDIX - E 

Data for training and testing processes to determine optimum hidden node (Structure 5). 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

1 351 168 87.75 84.00 

2 352 169 88.00 84.50 

3 352 171 88.00 85.50 

4 350 168 87.50 84.00 

5 354 170 88.50 85.00 

6 353 171 88.25 85.50 

7 351 170 87.75 85.00 

8 350 171 87.50 85.50 

9 352 170 88.00 85.00 

10 351 171 87.75 85.50 

11 354 170 88.50 85.00 

12 355 170 88.75 85.00 

13 353 169 88.25 84.50 

14 350 170 87.50 85.00 

15 351 170 87.75 85.00 

16 353 171 88.25 85.50 

17 353 173 88.25 86.50 

18 350 173 87.50 86.50 

19 353 173 88.25 86.50 

20 358 171 89.50 85.50 

21 355 168 88.75 84.00 

22 353 172 88.25 86.00 

23 352 171 88.00 85.50 

24 354 173 88.50 86.50 

25 355 173 88.75 86.50 

26 351 172 87.75 86.00 

27 354 171 88.50 85.50 

28 350 172 87.50 86.00 

29 356 173 89.00 86.50 

30 351 173 87.75 86.50 
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Continued 

No. of  

Hidden 

Nodes 

No. of Training 

Data 

correctly 

classified 

No. of Testing 

Data 

correctly 

classified 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

31 351 172 87.75 86.00 

32 350 172 87.50 86.00 

33 351 173 87.75 86.50 

34 352 172 88.00 86.00 

35 355 172 88.75 86.00 

36 353 172 88.25 86.00 

37 352 173 88.00 86.50 

38 354 172 88.50 86.00 

39 350 171 87.50 85.50 

40 350 170 87.50 85.00 

41 355 171 88.75 85.50 

42 356 172 89.00 86.00 

43 351 173 87.75 86.50 

44 355 171 88.75 85.50 

45 350 170 87.50 85.00 

46 349 171 87.25 85.50 

47 352 172 88.00 86.00 

48 354 173 88.50 86.50 

49 351 170 87.75 85.00 

50 355 171 88.75 85.50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



123 

 

APPENDIX F 

Construction of part model used to evaluate various of features using Feature-based 

Support Generation using Solid Works software. 
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 APPENDIX G 

Development and simulation of part model using Insight software. 

 

 

(a) Before improvement using Feature-based Support Generation. 

 

 

 

(b) After improvement using Feature-based Support Generation. 
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APPENDIX H 

LIST OF PUBLICATIONS 

 

 

Journals 

1) Karim, K. F., Hazry, D., Zulkifli, A. H., Ahmed, S. F., Razlan, Z. M., Wan, K., & 

Bakar, S. A. (2015). Feature Extraction and Optimum Part Deposition Orientation 

for FDM. In Applied Mechanics and Materials, 793, 642-646. Trans Tech 

Publications. 

 

Conferences 

1) Karim, K. F., Hazry, D., Zulkifli, A. H., Ahmed, S. F., Joyo, M. K., Razlan, Z. 

M., Wan, K., & Bakar, S. A. (2014). Feature-based Support Generation for 

Optimum Part Deposition Orientation in FDM. International conference on 

electronics design 2014 (ICED 2014), Penang, Malaysia, 19-21 August 2014. 

2) Karim, K. F., Hazry, D., Zulkifli, A. H., Ahmed, S. F., Joyo, M. K., Razlan, Z. 

M., Wan, K., & Bakar, S. A. (2014). Feature Extraction and Optimum Part 

Deposition Orientation for FDM. International Conference on Electrical Power 

Engineering and Applications (ICEPEA2014), Langkawi, Malaysia, 14-16 

November 2014. 

. 3) Karim, K. F., Hazry, D., Zulkifli, A. H. (2011). A Feature Recognition System 

using Artificial Neural Network (ANN) to Select the Optimum Part Deposition 

Orientation in Fused Deposition Modeling (FDM) Machine. The first 

International Conference on Advanced Manufacturing (ICAM2011), Terengganu, 

Malaysia, 23-24 May 2011. 
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