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MODEL PEMBERSIHAN XML UNTUK PENAMBAHBAIKAN KUALITI 

DATA MENGGUNAKAN KEKANGAN KONDISI INTEGRITI  

ABSTRAK 

Extensible Markup Language (XML) muncul sebagai piawaian utama dalam mewakili 

dan bertukar data,iaitu dengan lebih daripada 60% daripada jumlah, XML dianggap 

sebagai jenis dokumen yang paling dominan di laman sesawang. Namun, kualiti XML 

tidak seperti yang dijangkakan. Maka, semakin penting untuk menyediakan model penuh 

bagi mengesan, dan membetulkan sifat tidak konsisten yang diakui sebagai pelanggaran 

terhadap kebergantungan data yang menyebabkan kualiti data XML berkurangan. 

Kekangan integriti XML memainkan peranan penting bagi memastikan set data XML 

berfungsi secara konsisten. Walau bagaimanapun, kemampuannya untuk menyelesaikan 

isu-isu kualiti data masih kurang berkesan. Sebab utama masalah ini adalah berpunca 

daripada kebergantungan terhadap data model lama yang secara asasnya hanya 

memastikan keberkesanan skema dan bukannya data itu sendiri. Tujuan kajian ini untuk 

meningkatkan kualiti dokumen XML dengan memperkenalkan model pembersihan yang 

dipertingkatkan berdasarkan model kekangan integriti XML baru yang dipanggil 

kebergantungan sandaran penyertaan XML (XCIND) dan kebergantungan sandaran 

fungsion XML (XCFD). Notasi peraturan baru direka terutamanya bagi meningkatkan 

contoh data dan meluaskan kebergantungan model lama XML dengan menguatkuasakan 

jadual corak konstan berkaitan semantik. Seterusnya, satu set kebergantungan bersyarat 

anggaran minima (XCFD, XCIND) ditemui dan dipelajari dari pokok XML 

menggunakan satu set algoritma perlombongan. Akhirnya, data tidak konsisten akan 

dikesan menggunakan pertanyaan penolakan untuk peraturan perlombongan dan dibaiki 

menggunakan set pernyataan kemas kini yang berbeza sebagai penyelesaian untuk nilai 

data yang tidak konsisten. Melalui penilaian eksperimen yang meluas pada set data XML 

yang sebenar, algoritma perlombongan yang dicadangkan menunjukkan keberkesanan 

dan prestasi tinggi dalam menemui semua kebergantungan bersyarat yang berbeza nilai 

ambang sokongan dan keyakinan. Keputusan menunjukkan bahawa model baru boleh 

meningkatkan kualiti XML dengan mengesan nilai sebenar data yang palsu daripada 

model sebelumnya yang bergantung kepada kebergantungan tradisional. Tambahan pula, 

XML Cleaner dapat merasakan sifat tidak konsisten antara pokok tupel sama atau antara 

pokok tupel pelbagai tahap di dalam pokok XML menggunakan kebergantungan 

bersyarat yang dinyatakan. Selanjutnya, kualiti dokumen dinilai menggunakan dua 

ukuran (Ketepatan dan Ingat Semula) dan, ketepatan dokumen XML bertambah baik 

untuk ukuran tersebut masing-masing melebihi 94% dan 83%. Akhirnya, kekangan XML 

integriti bersyarat sama seperti hubungan yang lain, membuktikan keupayaannya untuk 

menghasilkan piawai baru aplikasi pembersihan untuk model data XML yang lebih baik, 

terutamanya dalam era data raya. 
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XML Cleaning Model for Data Quality Improvement Using Conditional Integrity 

Constraints 

ABSTRACT 

Extensible Markup Language (XML) is emerging as the primary standard for 

representing and exchanging data, with more than 60% of the total, XML considered the 

most dominant document type over the web; nevertheless, their quality is not as expected. 

Consequently, it has become increasingly important to provide a full model which is able 

to detect, and correct inconsistencies recognized as violations of data dependencies 

causing the decrease of XML data quality. XML integrity constraint plays an important 

role in keeping XML dataset as consistent as possible, but their ability to solve data 

quality issues is still intangible. The main reason is that old-fashioned data dependencies 

were basically introduced to maintain the consistency of schema rather than that of data. 

The purpose of this study is to improve the quality of XML documents by introducing an 

enhanced cleaning model based on a new type of XML integrity constraints called XML 

Conditional Inclusion Dependencies (XCIND) and XML Conditional Functional 

dependencies (XCFD). The notations of the new rules are designed mainly for improving 

data instance and extended traditional XML dependencies by enforcing pattern tableaus 

of semantically related constants. Subsequent to this, a set of minimal approximate 

conditional dependencies (XCFD, XCIND) is discovered and learned from the XML tree 

using a set of mining algorithms. Finally, data inconsistencies are detected using denial 

queries for mined rules and repaired using a different set of update statements as solutions 

for inconsistent data values. Through the extensive experimental evaluation of real XML 

datasets, proposed mining algorithms demonstrated their efficacy and high performance 

in discovering all conditional dependencies with different support and confidence 

thresholds. The results showed that the new model could increase XML quality by 

detecting more real spurious data values than previous models based on traditional 

dependencies. Furthermore, the XML Cleaner can sense inconsistencies between same 

tree tuples or even between multilevel tree tuples insides the XML tree using the 

mentioned conditional dependencies. Moreover, the quality of the documents was 

assessed using two measures (Precision and Recall), and the accuracy of XML documents 

was improved over 94%, 83% respectively for these measures. To this end, XML 

conditional integrity constraints, just as their relational counterpart, prove their ability to 

pave the way toward new standards of cleaning applications for XML data model, 

especially in the big data era. 
 

Keywords: XML, Integrity Constraints, Conditional Dependencies, Data Quality, Data 

Cleaning.  
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CHAPTER 1  

INTRODUCTION 

1.1 Overview     

Today, data become the lifeblood of businesses, as different database applications, 

such as Decision Support Systems, Customer Relationship Management, Data 

Warehouses, Web Services, and eLearning Systems are being used; beneficial 

information and knowledge can be gained from considerable amounts of data. However, 

investigations demonstrate that heaps of such applications fail to run successfully and 

efficiently due to many issues, such as poor system design or weak query performance, 

yet nothing is sure to cause applications failure than the carelessness of data quality issues 

(Juddoo, 2016; Li, 2012). 

According to studies and reports presented by V12-Data in 2015, the expenses of 

bad data might be considerably higher than 12% lost revenue. About 28% of individuals 

who had issues related to the delivery of emails said that customer service has endured 

accordingly, while 21% experienced reputation damage. The vast majority of the 

organizations (86%) admitted that their data might be inaccurate somehow. About 44% 

of businesses and organizations reported that missing or imperfect data are the most 

frequent problems alongside obsolete information (Bedgood, 2015) 

Therefore, organizations that seek to extract valuable or high-quality information 

from raw or low-quality data must engage in the process of data cleaning as an essential 

process as shown in Figure 1.1. Many raw datasets typically contain erroneous 

information such as misspellings and missing values. Although cleaning of data has been 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



  

2 

 

a long-established issue, it becomes critical again due to the increased interest in web data 

and big data (Saha & Srivastava, 2014). 

The close relationship between big data and data cleaning has gained much 

attention in the last decade (Caldarola & Rinaldi, 2015; Chen et al., 2013; Fan, 2015; 

Jagadish et al., 2014; Saha & Srivastava, 2014). That is because nothing meaningful can 

be obtained from a significant amount of corrupted information.  

Nowadays, the need to effectively manage business information, which is filled 

with inconsistencies and incompleteness, is more important than ever before to help 

business making right decisions, deriving accurate reports, and improving the overall 

trustworthiness of available data sources. Numerous investigations conducted by the 

Computing Research Association (2012), have highlighted the value of effective and 

efficient techniques for handling " erroneous data" at scale. Despite the fact that this issue 

has gotten critical consideration over time in the relational database literature (Fan & 

Geerts, 2012), XML cleaning approaches fall short in providing a practical solution for 

big data and web data (Chen et al., 2013). 

Extensible Markup Language (XML) stands out rapidly amongst essential data file 

formats; It has been used for scientific data such as DNA sequences (Roberts, Vincze, 

Posfai, & Macelis, 2015), to annotate extensive documents such as DrugBank database 

(Knox et al., 2011), or for exchanging data over the Web for e-commerce benefits (Chan, 

Lee, & Heng, 2014). Furthermore, giant software vendors, including Oracle, Microsoft, 

IBM, as well as new startup companies such Altova, Oxygen are developing tools to 

Data with Low 

Quality 
Data Cleaning 

Data with High 

Quality 

Figure 1.1: The Relationship between Data Quality and Data Cleaning. 
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manage XML data and applications like XML Spy and XML editor (Altova, 2017; 

Oxygen, 2017). 

Grijzenhout & Marx (2013), provide in-depth analysis to answer the question          

“Is the quality of XML documents found on the web sufficient to apply XML 

technologies like XQuery, XPath, and XSLT?” The results show that on the web, 58% of 

the existing documents are of the XML file format, nevertheless, one-third of these 

documents accompanying with valid XML Schema Definition (XSD) or Document Type 

Definition (DTD). Moreover, about 14% of the documents lack well-formedness. A 

simple error of mismatching or missing tags will render the entire XML technologies 

useless over these documents. 

The growing interest of  XML as the dominant way of exchanging data over the 

Web, encourages researchers to address XML data cleaning as an open research problem 

(Fan, Geerts, & Jia, 2008a), and to start searching for data cleaning approaches for XML 

(Tang, Shao, Ba, Senellart, & Bressan, 2015; Weis, Monod, & Cedex, 2007) especially 

approaches based on integrity constraints (Hamrouni, Brahmia, & Bouaziz, 2015; Švirec 

& Mlýnková, 2012). 

Data cleaning approaches for XML dataset are as old as XML itself, from 1997 

until now, most of them have focused on schema matching to identify and repair data 

inconsistencies (Algergawy, Nayak, & Saake, 2010; Rusu, Rahayu, & Taniar, 2005; 

Weis, Naumann, & Brosy, 2006). However, there has been little discussion about data 

cleaning perspectives used in terms of integrity constraints (Fan, 2005; Flesca, Furfaro, 

Greco, & Zumpano, 2003; Lima, Rezende, & Oliveira, 2013; Shahriar & Anam, 2008; 

Tan & Zhang, 2011a; Yu & Jagadish, 2008), which open doors for researchers to address 

this problem (Almeida, Maio, Oliveira, & Barroso, 2016).   
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The study of Integrity Constraints (IC) stands out amongst the most critical yet 

challenging research topics in database theory for schema optimization. For relational 

databases, constraints are essential to schema design, query optimization, efficient 

storage, and access methods, for all reasons, relational integrity constraints are important 

(Elmasri & Navathe, 2016). XML data model, much the same as a relational model, can 

identify by type constraints (int, string, date) and integrity constraints (Function, 

Inclusion). Integrity constraints are essential for the semantics of XML data 

specifications, moreover, they are beneficial for query optimization, update anomaly 

prevention, and for information preservation during the process of data integration (Fan 

& Simeon, 2003). 

Integrity constraint cleaning approaches focused on two directions (Bertossi, 2011): 

repairing to find a new dataset that is valid with a minimum difference from the original 

database (Flesca, Furfaro, & Parisi, 2010; Molinaro, Chomicki, & Marcinkowski, 2009), 

and consistent query answering to provide a result for a given query in every repair of the 

original database without editing the data (Lian, Chen, & Song, 2010; Staworko & 

Chomicki, 2006). 

Recently, an improved type of Data Dependencies (Integrity Constraints) have been 

developed to detect data inconsistencies in relational databases called Conditional 

Dependencies. Conditional Functional Dependencies (CFD) (Bohannon, Fan, Geerts, Jia, 

& Kementsietsidis, 2007) and Conditional Inclusion Dependencies (CIND) (Fan, Bravo, 

& Ma, 2007) are an extension of traditional Functional Dependencies (FD) and Inclusion 

Dependencies (IND) respectively (Elmasri & Navathe, 2016; Fan & Geerts, 2012), with 

more accurate, expressive and increased capability in terms of quality issues. 

Furthermore, these types of dependencies provided relational databases with semantics, 
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and meaningful rules based on a subset of tuples, that matches a specific condition rather 

than entire relation like FDs or even INDs (Caruccio, Deufemia, & Polese, 2016). 

Over time, conditional dependencies have proven their strength in error detection, 

data cleansing, and data auditing. At the same time, the demonstrations show that CFD 

cleaning approaches provide the user with a better understanding of the quality of the 

data, thereby assisting the user to improve data quality in an interactive way (Fan, 2012). 

The important of  CFD in the field of data cleaning encouraged researchers to 

develop many algorithms to discover and mine these dependencies from relational 

databases (Aqel, Shilbay, & Hakawati, 2012; Chiang & Miller, 2008; Golab, Karloff, 

Korn, Srivastava, & Yu, 2008), and proposing  data cleaning approaches based on them 

(Beskales, Ilyas, Golab, & Galiullin, 2013; Fan, Geerts, Jia, & Kementsietsidis, 2008). 

Nevertheless,  a single work addresses the discovery of these dependencies (XCFD) from 

XML dataset (Vo, Cao, & Rahayu, 2011). 

1.2 Issues in XML Integrity Constraints   

Semi-structured data model, besides the relational data model, is considered the 

most data model commonly used for storing, retrieving, and querying valuable data. XML 

is one of the most common document types over the web which follows semi-structured 

model (Grijzenhout & Marx, 2013). Because of the growing popularity of XML; the 

problem of clean XML data accurately and efficiently is revived recently especially with 

big data era (Abiteboul, Buneman, & Suciu, 2000; Liu, Vincent, & Liu, 2006; Saha & 

Srivastava, 2014; Tan & Zhang, 2011a, 2011b).  

XML integrity constraints are the main criteria used in the classification of data as 

clean or not in terms of the consistency attribute (Ahmad & Ibrahim, 2008; Arenas & 
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Libkin, 2004; Arenas, 2006; Deutsch & Tannen, 2005; Fajt, Mlýnková, & Nečaský, 2011; 

Fan, 2005; Fan & Simeon, 2003; Hakawati et al., 2017; Hartmann, Köhler, Link, Trinh, 

& Wang, 2008; Karlinger, Vincent, & Schrefl, 2009; Liu, Li, Liu, & Chen, 2012; Shahriar 

& Liu, 2009; Vincent, Liu, & Liu, 2004; Vo et al., 2011). 

Contrariwise relational databases; XML data model has more than a single schema, 

this fact interprets the multi-data dependencies notations taken into consideration. Some 

of these notations extend relational tuples concept (Arenas, 2006; Arenas & Libkin, 2004; 

Fan & Simeon, 2003; Yu & Jagadish, 2008, 2006), whereas the others deal with XML as 

a tree containing a set of paths (Ahmad & Ibrahim, 2008; Karlinger et al., 2009; Shahriar 

& Liu, 2009; Vincent & Liu, 2003; Vincent, Liu, et al., 2004; Vincent, Liu, & Mohania, 

2007; Vincent, Schrefl, Liu, Liu, & Dogen, 2004).   

Furthermore, XML Functional Dependencies (XFD) are the most notable IC used 

in the enhancement of data instance (Flesca, Furfaro, Greco, & Zumpano, 2005; Flesca 

et al., 2003; Hamrouni et al., 2015; Švirec & Mlýnková, 2012; Tan & Zhang, 2011a, 

2011b; Yu & Jagadish, 2008). On the other side, matching dependencies, inclusion 

dependencies, approximate dependencies, conditional dependencies, and association 

rules have also played important roles in the improvement of relational databases 

(Adhikari & Rao, 2008; Ebaid et al., 2013; Fan, Geerts, & Jia, 2008a; Gardezi & Bertossi, 

2011; Geerts, Mecca, Papotti, & Santoro, 2013; Mayfield, Neville, & Prabhakar, 2010). 

Functional Dependencies for XML (XFD), as an extension of relational ones 

(Vincent et al., 2007), are designed for semantic expressiveness to prevent schema 

problems (Normalization and Redundancies Detection), in spite of the fact that these 

dependencies are widely used in improving XML schema (Arenas, 2006; Fan & Simeon, 

2003; Vincent et al., 2007; Yu & Jagadish, 2008), they cannot express a proper type of 
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constraints that hold on a subset of XML data (Vo et al., 2011). The main reason is this 

kind of dependencies covers the whole XML tree and lack of flexibility to accept domain 

values (Pattern Tableaus) within the rule that matched a subset of the tree conditionally 

(Bohannon, et al., 2007; Liu et al., 2012). As a result, their ability to detect inconsistencies 

under a subset of the tree and  inside path leaves within the tree tuples that matched pattern 

tableaus is limited, consequently, any cleaning approach utilize these kinds of 

dependencies (Bloodgood & Strauss, 2016; Hamrouni et al., 2015; Hartmann et al., 2008; 

Švirec & Mlýnková, 2012; Tan & Zhang, 2011b; Tan, Zhang, Wang, & Shi, 2013; Yan, 

Lv, & He, 2014) may not yield maximum benefit and utilization, especially when looking 

for data inconsistencies.  

On the other side, up to date, none has attempted to utilize XML Inclusion 

Dependencies (XIND) in cleaning XML data, because these dependencies required 

mainly for generating XML foreign keys rather than consistency issues (Fajt, Mlýnková, 

et al., 2011; Karlinger et al., 2009; S. Shahriar, Liu, 2009; Vincent, Schrefl, et al., 2004). 

However, many authors advise that using IND as a collaborative constraint with 

functional dependency will help in detecting more inconsistencies and reducing database 

faults, thereby totally improving the database quality (Bohannon, Fan, Flaster, & Rastogi, 

2005). Furthermore, a modified version of IND with Conditions (CIND) presents an 

important role for enhancing relational database consistency, in addition to schema 

optimization (Fan et al., 2007; Ma, Fan, & Bravo, 2014). 

1.3 Problem Statement 

Increasing the quality of the XML document is crucial for the continued 

competitiveness of data to help business in making right decisions, deriving accurate 

reports, and improving the overall trustworthiness of available data sources. More 
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precisely, better data quality leads to less financial costs, less time consumed, and less 

repairing efforts wasted on poor campaigns (Fan, 2015). However, Data Consistency as 

one of the five attributes besides Data Accuracy, Data Completeness, Data Currency, and 

Data Deduplication, used for improving data quality, especially in terms of data validity 

and integrity using a set of dependency rules known as integrity constraints (Fan & 

Geerts, 2012). 

Inspiration from the relational database; conditional dependencies (CFD, CIND) 

were presented to overcome relational traditional dependencies (FD, IND) limitations, 

especially data quality issues (Bohannon et al., 2007; Fan et al., 2007). The conditional 

dependencies own more quality characteristics make them directed toward data cleaning 

such as covering a subset of the dataset (Fan & Geerts, 2012). Furthermore, these 

dependencies proved their efficiency in eliminating inconsistencies from relational 

databases and detecting more inaccurate tuples and fields within tuples over traditional 

dependencies. Furthermore, cleaning approaches that adopted these dependencies are 

considered the most used techniques in the last ten years, besides crowdsourcing and 

knowledge base cleaning approaches (Ganti & Sarma, 2013). 

On the other hand, Fassetti and Fazzinga (2007), highlighted the importance of 

XML Approximate dependencies in the area of data cleaning over Full dependencies, 

which is caring more about data integration and schema enhancement. However, this type 

of dependencies allows the discovery of erroneous or exceptional elements in the data, 

besides identifying constraints very frequently in the database that are meaningful for 

data cleaning and analysis issue, even if they are not valid in the whole database.  

Furthermore, to develop a constraint-based cleaning model, numerous methods 

were used to combine data dependencies with databases, for instance, domain experts, 
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crowdsourcing, and rules mining are the main techniques used in creating integrity 

constraints and business rules (Chu et al., 2015; Chu, Ilyas, Krishnan, & Wang, 2016; 

Debattista, Lange, & Auer, 2014). In practice, it is necessary to have in place a technique 

that can automatically discover or learn required dependencies from the excited XML 

data to be used as data cleaning rules (Fan, Geerts, Jianzhong, & Xiong, 2011).  

Previous XML cleaning techniques disregarded the problem of rules discovering    

(dependencies mining) and used a set of assigned dependencies instead (Flesca et al., 

2005; Švirec & Mlýnková, 2012; Tan & Zhang, 2011a). Indeed, it is often unrealistic to 

solely count on human experts to design data dependencies by an expensive and long 

manual process. As indicated by Gratner (2007), cleaning rules discovery is critical to 

commercial data quality tools. Furthermore, assigning a set of dependencies required 

checking their satisfiability using a long-standing process known as chasing  (Karlinger 

et al., 2009; Meier, 2010). 

Discovering approximate conditional dependencies from an XML dataset (XCFD, 

XCIND) using previous mining techniques is not an easy step for many reasons; Firstly, 

traditional dependencies expressing an XML tree do not own patterns tableaus like 

conditional dependencies, and cover the whole dataset (have support threshold equal to 

1) instead of the required XML subset (Yu & Jagadish, 2008). Moreover, these 

dependencies have no exceptions as an error ratio (have confidence threshold equal to 1) 

to be flexible for data accuracy (Vo et al., 2011). Secondly, each dependency type uses 

different mining technique as each has a particular role; for instance, functional 

dependencies are based on the association  between elements amongst both sides of the 

rules, whereas, the role of inclusion dependencies care about the existence of elements 

from left side of the dependency to the right side (Elmasri & Navathe, 2016; Liu et al., 

2012). 
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