

Enhance Routing Metric Based Optimized Link State Routing (OLSR) Protocol for VANET

by

Azhar Tareq Ali (1630212178)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Computer Engineering

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

2018

UNIVERSITI MALAYSIA PERLIS

DI	ECLARATION OF THESIS		
Author's Full Name : A	AZHAR TAREQ ALI		
Title : E S V	ENHANCE ROUTING METRIC BASED OPTIMIZED LINK STATE ROUTING PROTOCOL (OLSR) PROTOCOL FOR /ANET		
Date of Birth : 1	1 JANUARY 1980		
Academic Session : 2	2017/2018		
I hereby declare that this thesis (UniMAP) and to be placed at t	becomes the property of Universiti Malaysia Perlis the library of UniMAP. This thesis is classified as:		
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1997)*		
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*		
✓ OPEN ACCESS	I agree that my thesis to be published as online open access (Full Text)		
I, the author, give permission to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during the period of _two years, if so requested above)			
THIS	Certified by:		
SIGNATURE	SIGNATURE OF SUPERVISOR		
A4087832	IR. TS. DR. MOHD NAZRI BIN MOHD WARIP		
(NEW IC NO. /PASSPO	ORT NO.) NAME OF SUPERVISOR		
Date: 04 September 2018	Date: 04 September 2018		

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with the period and reasons for confidentiality or restriction.

Author's Full Name	:	AZHAR TAREQ ALI
Title	:	ENHANCE ROUTING METRIC BASED OPTIMIZED LINK STATE ROUTING PROTOCOL (OLSR) PROTOCOL FOR VANET
Date of Birth	:	11 JANUARY 1980
Academic Session	:	2017/2018

ACKNOWLEDGMENT

In the Name of Allah, The Most Beneficent, The Most Merciful: "My Lord, enable me to be grateful for Your favor which You have bestowed upon me and upon my parents and to do righteousness of which You approve. And admit me by Your mercy into [the ranks of] Your righteous servants. (An-Naml:19)".

First and foremost, I would like to express my gratitude to my father for the support they had given to me throughout my study.

Secondly, I would like to thank and to express my gratitude to my supervisor Dr. Mohd Nazri Bin Mohd Warip and Co-supervisor Dr. Naimah yaakob for the support and trust they had given to me throughout this journey.

Thank you, brothers and friends, for all the joy we had together. Especially to whom always beside me giving me support and coloring my days.

Last and not least, I would like to say thank you for those who no words can describe him love and support. My husband, Assoc. Dr. Waleed Khalid Abduljabbar and my children.

TABLE OF CONTENTS

		PAGE
DEC	LARATION OF THESIS	i
ACK	NOWLEDGMENT	ii
TAB	LE OF CONTENTS	iii
LIST	OF TABLES	ix
LIST	OF FIGURES	x
LIST	OF ABBREVIATIONS	xiv
ABST	rrak of 19	xviii
ABS	TRACT	XX
1.	CHAPTER 1: INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statements	5
1.3	Research Objectives	7
1.4	Contributions	8
1.5	Scope of Research	8
1.6	Thesis Outline	9
2.	CHAPTER 2: LITERATURE REVIEW	11
2.1	Introduction	11
2.2	Evolution of VANET Architecture	11
2.3	VANET's Routing Protocols Classification	15
2.4	Applications in VANET	18
2.5	Bio-inspired Routing in VANET	19

2.6	Geogr	aphical R	Routing in VANET	20
	2.6.1	Greedy J	perimeter stateless routing (GPSR)	22
	2.6.2	Greedy a	and stateless routing protocols (GSR)	26
		2.6.2.1	Contention-Based Forwarding (CBF)	26
		2.6.2.2	Greedy Perimeter Coordinator Routing (GPCR)	27
		2.6.2.3	Advanced Greedy Forwarding (AGF)	28
		2.6.2.4	Greedy Routing with Abstract Neighbor Table (GRANT)	29
	2.6.3	Street av	vare protocols (SAP)	29
		2.6.3.1	Geographic Source Routing (GSR)	30
		2.6.3.2	Spatially Aware Routing (SAR)	31
		2.6.3.3	GpsrJ+	32
		2.6.3.4	Topology-assisted Geographical Routing (TO-GO)	33
	2.6.4	Infrastru	cture assisted protocols (IAP)	34
		2.6.4.1 VANET	Intelligent Routing using real-time Traffic Information in (IRTIV)	34
	٠	2.6.4.2 (UVAR	An Intersection UAV-Assisted VANET Routing Protocol	
	is	2.6.4.3	Intersection-Based Geographical Routing (IGRP)	36
C		2.6.4.4 Networl	Static-node Assisted Data-Dissemination Protocol for Vehicuss (SADV)	ılar 37
	2.6.5	Connect	ivity Aware Protocols (CAP)	39
		2.6.5.1	Traffic-aware routing protocol (TARCO)	39
		2.6.5.2	Anchor based Street and Traffic-Aware Routing (A-STAR)	39
		2.6.5.3	Improved Greedy Traffic Aware Routing (GyTAR)	40
		2.6.5.4	Vehicle Assisted Data Delivery (VADD)	41

		2.6.5.5	Geographic Stateless VANET Routing (GeoSVR)	42
	2.6.6	Real-Time	e Connectivity Awareness (RTCP)	43
		2.6.6.1	Multi-Hop Routing for Urban VANETs (MURU)	43
		2.6.6.2	Spatial and Traffic-Aware Routing (STAR)	44
		2.6.6.3	Connectivity-Aware Routing (CAR)	45
		2.6.6.4	Adaptive Connectivity-Aware Routing (ACAR)	46
		2.6.6.5 I	Road Based Routing using Vehicular Traffic (RBVT)	47
		2.6.6.6 I (LOUVR)	Landmark Overlays for Urban Vehicular Routing Environme E)	nts 48
		2.6.6.7 I	Back-Bone Assisted Hop Greedy (BAHG) Routing Protocol	49
2.7	Topolo	gical Rou	ting in VANET	50
	2.7.1	Proactive	Routing Protocols (PRP)	50
	2.7.2	Optimized	Link State Routing Protocol (OLSR)	51
	2.7.3	Main featu	ares of OLSR protocol	54
	2.7.4	OLSR pro	tocol operation:	55
		2.7.4.1	HELLO messages:	55
	۰.	2.7.4.2	TC messages	59
	nis	2.7.4.3	MID messages:	63
\bigcirc	2.7.5	Destinatio	n-Sequenced Distance-Vector Routing Protocols (DSDV)	63
	2.7.6	Reactive R	Routing Protocol (RRP)	64
	2.7.7	Ad-Hoc O	on Demand Distance-Vector (AODV)	64
	2.7.8	Dynamic S	Source Routing (DSR)	65
	2.7.9	Hybrid Ro	outing Protocols	66
	2.7.10	Summary	of reviewed works	67
	2.7.11	Summary		73

3.	CHAPTER 3: METHODOLOGY	74
3.1	Introduction	74
3.2	Optimized link state routing (OLSR)	75
3.3	Routing Metrics for VANETs	77
3.4	Expected Transmission Count (ETX)	78
3.5	Expected Transmission Time for VANET (VETT)	79
3.6	Network Performances Evaluation	80
	3.6.1 Throughput	80
	3.6.2 Delay	80
	3.6.3 Packet Delivery Ratio (PDR)	81
	3.6.4 Traffic Generation	82
	3.6.5 Packet Size	83
	3.6.6 Number of Cars	83
3.7	Network Test-bed Design and Implementation	83
	3.7.1 VANET Simulation Scenarios	84
	3.7.2 Network Protocol Stack	86
	3.7.3 Mobility Modules	89
3.8	Results Validation and Verification Method	92
	3.8.1 Validation Comparison	93
G	3.8.2 Simulation Model Validation	93
3.9	Summary	94
4.	CHAPTER 4: RESULTS & DISCUSSION	96
4.1	Introduction	96
4.2	Evaluation of VETT in VANETs Performances	98
	4.2.1 Traffic Generation (TG)	98
	4.2.1.1 Throughput Comparison between OLSR, ETX, and VETT	99

		4.2.1.2	PDR Comparison between OLSR, ETX, and VETT	101
		4.2.1.3	Delay Comparison between OLSR, ETX, and VETT	103
		4.2.1.4	Packet Loss Comparison between OLSR, ETX, and VETT	105
	4.2.2	Packet S	ize (PS)	107
		4.2.2.1	Throughput Comparison between OLSR, ETX, and VETT	107
		4.2.2.2	PDR Comparison between OLSR, ETX, and VETT	109
		4.2.2.3	Delay comparison between OLSR, ETX, and VETT	111
		4.2.2.4	Packet Loss Comparison between OLSR, ETX, and VETT	113
	4.2.3	Number	of Cars (NC)	115
		4.2.3.1	Throughput Comparison between OLSR, ETX, and VETT	115
		4.2.3.2	PDR Comparison between OLSR, ETX, and VETT	117
		4.2.3.3	Delay comparison between OLSR, ETX, and VETT	119
		4.2.3.4	Packet Loss Comparison between OLSR, ETX, and VETT	121
4.3	Evalua	ation of C	DLSR, ETX, and VETT Optimization Methods in VANET	123
	4.3.1	Through	put Evaluation of OLSR, ETX, and VETT in VANET	
	•	Scenario	S	125
	4.3.2	Delay Ev	valuation of OLSR, ETX, and VETT in VANET Scenarios	127
	4.3.3	PDR Eva	aluation of OLSR, ETX, and VETT in VANET Scenarios	128
\bigcirc	4.3.4	Packet L	oss Evaluation of OLSR, ETX, and VETT in VANET	
		Scenario	S	130
4.4	Summ	ary		132
5.	CHAI	PTER 5:	CONCLUSION	135
5.1	Conclu	usion		135
5.2	Future	Works		138
REFE	FERENCES 139			139

APPENDIX A ETX-OLSR	151
APPENDIX B VETT-OLSR	157
APPENDIX C CITY SCENARIO CONFIGURATION	160
APPENDIX D HIGHWAY SCENARIO CONFIGURATION	162
APPENDIX E HYBRID SCENARIO CONFIGURATION	164
LIST OF PUBLICATIONS	166

LIST OF TABLES

Table 2.1: Layered Architecture for DSRC.	13
Table 2.2: Comparison between Three VANET Scenarios.	15
Table 2.3: Neighbour Table of Nodes in OLSR Protocol	57
Table 2.4: TC Message	61
Table 2.5: TC Message after MPR Selection	61
Table 2.6: Routing Table of Nodes after MPR Selection	62
Table 2.7: Comparison of the Reviewed VANET Routing Protocols.	69
Table 3.1: Default and modified parameter of OLSR.	77
Table 3.2: VANET Scenarios Key Simulation Parameters.	85
Table 3.3: Burst Application Parameters.	87
Table 4.1: The Simulation Parameters of VANET Scenarios.	97
Table 4.2: Routing OLSR Protocol Parameters (profile parameters) ranges.	98
Table 4.3: Traffic Generation values in Time interval and data per node in a second.	99
Table 4.4: Profiles configuration percentage values of the evaluated routing metrics.	124
Table 4.5: Summary of the observed performances improvements of VETT	
as an averaged percentage against OLSR and ETX (for City).	133
Table 4.6: Performances improvement of OLSR, ETX, and VETT profiles of	
OLSR as an averaged in city (C) and highway (H) against different measurments.	134

LIST OF FIGURES

	PAGE
Figure 1.1: VANET Architecture.	3
Figure 2.1: Communication Categories in VANET (Olariu & Weigle, 2009)	12
Figure 2.2: Taxonomy of VANET Routing Protocols Classification.	17
Figure 2.3: VANET Applications	18
Figure 2.4: Geographical Protocols Taxonomy and Relation Diagram.	21
Figure 2.5: Greedy forwarding algorithm.	23
Figure 2.6: Greedy forwarding failure case.	23
Figure 2.7: Perimeter forwarding.	24
Figure 2.8: The right-hand rule.	25
Figure 2.9: Packet Forwarding in GPCR.	28
Figure 2.10: The concept of SAR.	32
Figure 2.11: GpsrJ+ example; Node A will forward to Node C directly.	33
Figure 2.12: Message routing in VANETs using IGRP.	37
Figure 2.13: State Transition Diagram of the Intersection Mode.	38
Figure 2.14: Selecting junctions in GyTAR.	41
Figure 2.15: The transition modes in VADD.	42
Figure 2.16: Example Scenario for Disconnected Optimal Path.	43
Figure 2.17: Functional architecture for the STAR algorithm.	45
Figure 2.18: Find path examples.	46

Figure 2.19: Illustration of network for OLSR protocol.	52
Figure 2.20: Broad cast message of Node A.	52
Figure 2.21: Link state routing of node A.	52
Figure 2.22: Link state routing of node C.	53
Figure 2.23: Network topology information of each node after LSR.	53
Figure 2.24: Scenario of node A.	54
Figure 2.25: Illustration of network for determination of neighbours	56
Figure 2.26: Evaluation of neighbour nodes.	57
Figure 2.27: Illustration of network for MPR algorithm	58
Figure 2.28: Format of TC message.	60
Figure 2.29: Illustration of network for topology table.	60
Figure 2.30: Illustration of network for routing table.	62
Figure 3.1: Two stages optimization of the OLSR-Routing Protocol.	75
Figure 3.2: OLSR flow chart.	77
Figure 3.3: Changlun City Map (2016google, 2016).	85
Figure 3.4: Extraction for the City Scenario of Changlun map.	86
Figure 3.5: Internal Structure of running Wireless Node of OLSR protocol.	87
Figure 3.6: Snapshot of the Wireless Module Internal Structure.	89
Figure 3.7: Linear Mobility Configurations in Running Simulation.	90
Figure 3.8: Demonstration of Linear Mobility of Running Simulation.	91
Figure 3.9: Rectangular Mobility Configurations in Running Simulation.	91

Figure 3.10: Changlun Map with mobility trails, blue lines represents linear	
mobility and red lines represents rectangular mobility. Circle	
represents static mobility node placements.	92
Figure 4.1: Changlun City Map Extraction; Blue lines and red lines represents	
internal city roads, Green line represents the highway road.	97
Figure 4.2: Throughput comparison between OLSR, ETX, and VETT for	
different traffic generations.	100
Figure 4.3: PDR comparison between OLSR, ETX, and VETT for different	
traffic generations.	102
Figure 4.4: Delay comparison between OLSR, ETX, and VETT for different	
traffic generations.	104
Figure 4.5: Packet Loss comparison between OLSR, ETX, and VETT for	
different traffic generations.	106
Figure 4.6: Throughput comparison between OLSR, ETX, and VETT for	
different Packet Sizes.	108
Figure 4.7: PDR comparison between OLSR, ETX, and VETT for different	
Packet Sizes.	110
Figure 4.8: Delay comparison between OLSR, ETX, and VETT for different	
Packet Sizes.	112
Figure 4.9: PS comparison between OLSR, ETX, and VETT for different	
Packet Sizes.	114
Figure 4.10: Throughput comparison between OLSR, ETX, and VETT for	
different NC.	116
Figure 4.11: PDR comparison between OLSR, ETX, and VETT for different	
NC.	118
Figure 4.12: Delay comparison between OLSR, ETX, and VETT for different	
NC.	120

NC. 12 Figure 4.14: Throughput comparison between TG, PS, and Nc in City scenario. 12 Figure 4.15: Throughput comparison between TG, PS, and Nc in Highway scenario. 12 Figure 4.16: Delay comparison between TG, PS, and Nc in City scenario. 12 Figure 4.17: Delay comparison between TG, PS, and Nc in Highway scenario. 12 Figure 4.18: PDR comparison between TG, PS, and Nc in City scenario. 12 Figure 4.19: PDR comparison between TG, PS, and Nc in City scenario. 13 Figure 4.20: Packet Loss comparison between TG, PS, and Nc in City scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13	Figure 4.13: PS comparison between OLSR, ETX, and VETT for different	
Figure 4.14: Throughput comparison between TG, PS, and Nc in City scenario. 12 Figure 4.15: Throughput comparison between TG, PS, and Nc in Highway scenario. 12 Figure 4.16: Delay comparison between TG, PS, and Nc in City scenario. 12 Figure 4.16: Delay comparison between TG, PS, and Nc in City scenario. 12 Figure 4.17: Delay comparison between TG, PS, and Nc in Highway scenario. 12 Figure 4.18: PDR comparison between TG, PS, and Nc in City scenario. 12 Figure 4.19: PDR comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.20: Packet Loss comparison between TG, PS, and Nc in City scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13	NC.	122
Figure 4.15: Throughput comparison between TG, PS, and Nc in Highway scenario. 12 Figure 4.16: Delay comparison between TG, PS, and Nc in City scenario. 12 Figure 4.17: Delay comparison between TG, PS, and Nc in Highway scenario. 12 Figure 4.18: PDR comparison between TG, PS, and Nc in City scenario. 12 Figure 4.19: PDR comparison between TG, PS, and Nc in City scenario. 13 Figure 4.20: Packet Loss comparison between TG, PS, and Nc in City scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13	Figure 4.14: Throughput comparison between TG, PS, and Nc in City scenario.	126
Figure 4.16: Delay comparison between TG, PS, and Nc in City scenario. 12 Figure 4.17: Delay comparison between TG, PS, and Nc in Highway scenario. 12 Figure 4.18: PDR comparison between TG, PS, and Nc in City scenario. 12 Figure 4.19: PDR comparison between TG, PS, and Nc in City scenario. 13 Figure 4.20: Packet Loss comparison between TG, PS, and Nc in City scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13	Figure 4.15: Throughput comparison between TG, PS, and Nc in Highway scenario.	126
Figure 4.17: Delay comparison between TG, PS, and Nc in Highway scenario. 12 Figure 4.18: PDR comparison between TG, PS, and Nc in City scenario. 12 Figure 4.19: PDR comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.20: Packet Loss comparison between TG, PS, and Nc in City scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13	Figure 4.16: Delay comparison between TG, PS, and Nc in City scenario.	127
 Figure 4.18: PDR comparison between TG, PS, and Nc in City scenario. Figure 4.19: PDR comparison between TG, PS, and Nc in Highway scenario. Figure 4.20: Packet Loss comparison between TG, PS, and Nc in City scenario. Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 	Figure 4.17: Delay comparison between TG, PS, and Nc in Highway scenario.	128
 Figure 4.19: PDR comparison between TG, PS, and Nc in Highway scenario. Figure 4.20: Packet Loss comparison between TG, PS, and Nc in City scenario. Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13 	Figure 4.18: PDR comparison between TG, PS, and Nc in City scenario.	129
Figure 4.20: Packet Loss comparison between TG, PS, and Nc in City scenario. 13 Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario. 13	Figure 4.19: PDR comparison between TG, PS, and Nc in Highway scenario.	130
Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway scenario, 13	Figure 4.20: Packet Loss comparison between TG, PS, and Nc in City scenario.	131
	Figure 4.21: Packet Loss comparison between TG, PS, and Nc in Highway	120
This	scenarios	132

LIST OF ABBREVIATIONS

	ACAR	Adaptive CAR
	ACO	Ant Colony Optimization
	ACO-ER	Efficient Routing Algorithm based-on ACO
	AGF	Advanced Greedy Forwarding
	AMR	Adaptive Message Routing
	AODV	Ad Hoc On-demand Distance Vector
	A-STAR	Anchor-Based Structure and Traffic-aware Routing
	AWCP	Adaptive Weighted Clustering Protocol
	BAHG	Back-bone assisted Hop Greedy
	BEA-OLSR	Best Energy-aware OLSR
	BER	Bit Error Rate
	BLA	Bee Life Algorithm
	BOA-VRP	Bio-inspired Optimization Algorithm for Vehicle Routing Problem
	C2C-CC	Car to Car Communication Consortium
	CAP	Connectivity-aware Routing Protocols
	CAR	Connectivity-aware Routing
	CBF	Contention-based Forwarding
	CF	Control Factor
	C-GPSR	Chameleon Method GPSR
	СМ	Chameleon Method
	CM-AODV	Chameleon Method AODV
	CR	Crossover Factor
	DCF	Distributed Coordination Function
	DE	Differential Evolution
(DREAM	Distance Routing Effective Algorithm for Mobility
	DSDV	Distance-Sequence Distance Vector Routing Protocol
	DSR	Dynamic Source Routing
	DSRC	Dedicate Short Range Communication
	DTN	Delay Tolerant Network
	DV	Distance Vector
	DYMO	Dynamic MANET On-demand
	ETX	Expected Transmission Time
	FCC	Federal Communication Commission

	FL	Fuzzy Logic
	GA	Genetic Algorithm
	GeoSVR	Geographical Stateless VANET Routing
	GG	Gabril Graph
	GLS	Grid Location Service
	GPCR	Greedy Perimeter Forwarding Routing
	GPS	Global Position System
	GPSR	Greedy Perimeter Stateless Routing
	GRANT	Greedy Routing with Abstract Neighbor Table
	GRP	Geographical Routing Protocol
	GSR	Greedy and Stateless Routing
	GySTAR	Improved Greedy TAR
	I2I	Inter Infrastructure
	IAP	Infrastructure Assisted Protocol
	IETF	International Engineering Task Force
	IGRP	Intersection-based Geographical Routing
	IOLSR	Intelligent Optimized Link State Routing
	IP	Internet Protocol
	IRTIV	Intelligent Routing Using Real-time Traffic Information in VANET
	IZRP	Intra Zone Routing Protocol
	LF	Loss Function
	LHS	Left Hand Side
	LL	Lower Limit
	LOUVRE	Landmark Overlays for URBAN Vehicular Routing Environments
	LS	Link State
Ć	MAC	Medium Access Control
0	MANET	Mobile Ad-Hoc network
	MAODV	Multi-cast AODV
	MAV-AODV	Multi-cast with ACO Based-on MAODV
	MO PSO	Multi-Objective PSO
	MODE	Multi-Objective Optimization Differential Evolution
	MPR	Multi point relay
	MURU	Multi-hop Routing for Urban VANET
	NVTime	Neighbor Validity Time

Orthogonal Array
Optimization Broadcasting scheme for VANET with GA
Onboard Unit
Optimization Control Message
Objective Function
Optimized Link State Routing
Option
Optimization Target
Packet Delivery Ratio
Parallel PSO
Proactive Routing Protocols
Particle Swarm Optimization
Quality of Service
Road-based routing Using Vehicular Traffic
Reply
Route Reply
Route Request
Route Error
Request for comment
Right Hand Side
Relative neighborhood Graph
Reactive Routing Protocols
Road Side Unit
Real-time connectivity Awareness
Round Trip Time
Static node Assisted Dissemination Protocol for VANET
Street-aware Routing Protocols
Spatially-aware Routing
Smart Forwarding
Swarm Intelligent
Simple Forwarding Trajectory
Statistical Location-Assisted Broadcast
Signal-to-Noise Ratio
Spatial and Traffic-aware Routing

TARCO	Traffic-aware Routing Protocol
TC	Topology Control
TO-GO	Topology Assisted Geographical Routing
TOM	Taguchi Optimization Method
UL	Upper Limit
USDOT	United State Department of Transportation
UVAR	UAV-Assisted VANET Routing Protocol
V2I	Vehicle to Infrastructure
V2V	Vehicle to Vehicle
VADD	Vehicle Assisted Data Delivery
VANET	Vehicular Ad Hoc Network
VETT	VANETs Expected Transmission Time
VT	Trial Vector
WAVE	Wireless Access in Vehicle Environments
ZRP	Zone Routing Protocol
othisitem	protected

Memantapkan Matrik Penghalaan Berdasarkan Pautan Optimum Penghalaan Bagi VANET

ABSTRAK

Rangkaian Ad Hoc Kenderaan (VANETs) menggapai minat penyelidik-penyelidik dan agensi kerajaan sebagai penyelesaian teknologi bagi sistem pengangkutan manusia. VANETs bertujuan menyediakan sambungan antara kenderaan di rangkaian jalan dan infrastruktur dalam skim komunikasi ad hoc. Dalam VANETs, setiap kenderaan menggunakan mekanisme penghalaan untuk mencari laluan bagi menghantar mesejnya ke destinasi terakhir, di mana mesej-mesej tersebut dihantar dalam fesyen pelbagai hop. Tingkah laku tersebut menekankan kesan mekanisme protokol penghalaan dalam prestasi VANETs. Dalam tahun-tahun kebelakangan ini, analisis protokol penghalaan VANETs dan impaknya terhadap prestasi rangkaian dengan senario rangkaian yang berbeza telah membangunkan pemahaman yang tepat terhadap keperluan dan matlamat untuk merancang protokol penghalaan VANETs. Tambahan pula, dalam kajian literatur, banyak mekanisme protokol penghalaan dicadangkan untuk menangani keperluan VANETs. Walau bagaimanapun, mekanisme penghalaan yang dicadangkan dalam kajian literatur tersebut hanya mempertimbangkan senario rangkaian tunggal dalam VANETs. Walau bagaimanapun, kenderaan atau nod bergerak di dalam VANETs cenderung untuk bergerak jarak jauh, yang memberikan implikasi mengenai penglibatan mereka dalam pelbagai rangkaian senario dan topologi. Tingkah laku yang dipatuhi oleh nodus VANETs menghasilkan keperluan untuk mekanisme penghalaan yang memenuhi kriteria lebih daripada satu senario rangkaian dan topologi. Masalah ini kurang dipertimbangkan dalam kajian literatur. Oleh itu, tesis ini mencadangkan metrik penghalaan Jangkaan Penghantaran Masa VANETs (VETT) untuk menangani perubahan topologi dinamik dalam VANETs. Metrik yang dicadangkan mentakrifkan prestasi Pautan Optimum Penghalaan Stat (OLSR) dalam senario rangkaian yang berbeza sebagai masalah pengoptimuman objektif. Mekanisme yang dicadangkan ini disepadukan dengan protokol OLSR sebagai protokol penghalaan geografi. Hasil simulasi yang meluas ditunjukkan dengan membandingkan antara mekanisme penghalaan yang dioptimumkan dan vang tidak dioptimumkan. Mekanisme tersebut dinilai untuk pelbagai rangkaian metrik termasuk kepadatan lalu lintas, saiz paket dan jumlah kereta untuk dua topologi rangkaian iaitu bandar dan lebuh raya. Keputusan menunjukkan bahawa metrik penghalaan (VETT) yang dicadangkan meningkatkan prestasi OLSR untuk pelbagai senario VANETs dalam keadaan penangguhan, nisbah penghantaran paket (PDR), kehilangan paket serta penghantaran. Mekanisme pengoptimuman objektif (VETT) mengurangkan kelewatan lebih daripada 30% dan meningkatkan PDR dan keluaran melebihi 15%. Selain itu, analisis prestasi protokol penghalaan untuk senario VANETs yang berbeza menunjukkan perbezaan di dalam prestasi protokol penghalaan tunggal dalam senario yang berbeza. Ini menyokong hipotesis bahawa topologi rangkaian mempunyai impak yang besar terhadap prestasi protokol penghalaan. Tesis ini menyimpulkan bahawa pengoptimuman protokol penghalaan adalah penting bagi meningkatkan prestasi VANETs. Pengoptimuman satu objektif menghasilkan penambahbaikan prestasi penghalaan yang hebat. Walau bagaimanapun, ia tidak dapat menambahbaik lebih daripada satu prestasi secara serentak

othis item is protected by original copyright

Enhance Routing Metric Based Optimized Link State Routing protocol (OLSR) Protocol for VANET

ABSTRACT

Vehicular Ad Hoc Networks (VANETs) grasp the interest of researchers and many governmental agencies as technological solution for human's transportation systems. VANETs aims at providing connectivity among vehicles on the road and infrastructure network in ad hoc communications scheme. In VANETs each vehicle uses a routing mechanism to find a path for sending its messages to the last destination, where messages are sent in a multi hop fashion. The behavior emphasis the impact of the routing protocol mechanism in the performances of VANETs. In recent years, the analysis of VANETs routing protocols and their impact on the performances of network with different network scenarios has significantly developed a precise understanding of the requirements and goals for designing a VANETs routing protocol. Further, in the literature many routing protocol mechanisms are proposed to deal with VANET's requirements. Nonetheless, proposed routing mechanisms in the literature considered a single network scenario in VANETs. However, Vehicles or moving nodes in VANETs are tending to travel in long distances, which implies their engagement in multiple network scenarios and topologies. The adhered behavior of VANET's nodes results in a need for a routing mechanism that addresses the requirement of more than one network scenarios and topologies. This problem is less considered in the literature. Hence, this thesis proposes VANETs Expected Transmission Time (VETT) routing metric to tackle the dynamic topology changes in VANETs. The proposed metric defines the performances of Optimized link stat routing protocol (OLSR) in different network scenarios as an objective optimization problem. The proposed mechanism is integrated with OLSR protocol as geographical routing protocol. Extensive simulation results are presented by comparing between the performances of optimized and non-optimized routing mechanisms. The mechanisms are evaluated for varying network metrics including traffic density, packet size, and number of cars for two network topologies; city and highway. The results show that the proposed routing metric (VETT) improves the performance of OLSR for multiple VANET scenarios in-terms of delay, packet delivery ratio (PDR), packet loss, and throughput. The objective optimization mechanism (VETT) reduces the delay by more than 30% and increases the PDR and throughput by more than 15%. Furthermore, the performance analysis of routing protocols for different VANET scenarios shows divergences in the performances of a single routing protocol in different scenarios. This supports the hypothesis that network topology has a major impact on the routing protocol performances. This thesis concludes that the optimization of routing protocol is necessary to improve the performances of VANET. A single objective optimization results in a great routing performances improvement. However, it is not capable of improving more than one performances simultaneously.

CHAPTER 1: INTRODUCTION

1.1 Research Background

Nowadays, the rapid evolution and cost reduction of wireless communication technologies have made them suitable for a wide spectrum of mobile and wireless applications. There are huge number of vehicles travelling along highways and streets around the world which produce millions of data being transmitted daily throughout the entire world. According to (Money, 2012), today there are approximately 6.8 billion people in the world and by 2044 that number will grow to about 9 billion (this would result in many problems, one of which is in the transportation system). As the total number of vehicles is growing from 800 million cars today to 2-4 billion by 2050, global gridlocks and traffic jams will occur in many different places. Therefore, Vehicular Ad-Hoc Networks (VANET) appears as a technology solution for the adhered issue, and grasps the attention of both government's agencies, industries and researchers (Englund, Chen, Vinel, & Lin, 2015; Shankar & Singh, 2015).

VANET is a special case of Mobile Ad hoc Network (MANET) application, having an impact on the wireless communications and Intelligent Transport System (ITS) (Chang, Xiang, Shi, & Lin, 2009). The main goals of VANET is to exchange information between vehicle's driver to avoid unpleasant traffic situations, enhance traffic management and offer infotainment services. These services can help reduce road collision by 82% as stated in the United State Department of Transportation (USDOT) report (Kenney, 2011). VANET can provide road safety in means of intersection collision warning, emergency warning between vehicles, road condition information exchange between vehicles, and post-crash estimation systems (Al-Sultan, Al-Doori, Al-Bayatti, & Zedan, 2014).

VANET is composed of Roadside Units (RSU) and Vehicle "On-Board Units" (OBU). Both RSU and OBU are equipped with embedded systems to provide communication, position information and capable of intelligent computations. Intercommunication between RSUs and OBUs divides VANET architecture into three communication ways: Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), and Inter-infrastructure communication (I2I). Figure 1.1 depicts the three communication infrastructures of VANET. Further, communication between VANET units is defined by two standards: Dedicated Short Range Communication (DSRC) and Wireless Access in Vehicle Environments (WAVE) (Li, 2010). The United States Federal Communications Commission (FCC) assigned the 75 MHz spectrum in the 5.9 GH band for DSRC communication. The physical and Medium Access Control layer are operated with IEEE802.11p protocol standards (Kenney, 2011). IEEE proposed a full protocol stack for VANET in 1906.1 draft which known as WAVE (Li, 2010). WAVE contains six sub layers, and each layer is dedicated for specific network functionalities (Blum, 2015).

Figure 1.1: VANET Architecture.

WAVE is faced with many research challenges. Challenges faced by WAVE standard that addresses the limitations of VANET are reviewed and investigated by many researchers (Al-Sultan et al., 2014; Felipe Cunha et al., 2016; Eze, Zhang, & Liu, 2014; Liang, Li, Zhang, Wang, & Bie, 2015; ur Rehman, Khan, Zia, & Zheng, 2013). Research issues in VANET are a direct result of the unique characteristics in VANET such as the high dynamic nature of VANET topology and the predictable mobility of road vehicles (Liang et al., 2015). Moreover, the similarity between VANET and MANET makes VANET inherits most of MANET research problems such as the instability in wireless connectivity and the multi-hop communication fashion. This work focuses on the problem of the dynamic nature of VANET's topology, and the problem of designing a robust routing protocol for VANET.

The fact that, vehicles are tending to travel in long distances is a major factor for the high dynamic nature in VANET. It's also causes the same node to be attached to different network scenarios. This problem necessitated the need for a robust routing protocol design, which cops with different network requirements. For example, a routing protocol might have a good performance in one network scenario such as a city, however, this performance may have degraded or contrasted for another scenario such as highway network. The contrasts in the protocol performances is due to change in the network topology parameters including number of nodes and mobility trajectory. In the literatures many protocols are designed for a certain topology and scenario requirements (Bitam, Mellouk, & Zeadally, 2015; H. Cheng & Cao, 2008; Eiza, Ni, & Member, 2013; Fazio, Rango, & Sottile, 2015; Hajlaoui, Guyennet, & Moulahi, 2016; In, 2008; Jerbi & Senouci, 2009; Kopp, Member, Tyson, & Pose, 2016). However less literature addresses the multi-scenario issue in VANET. This thesis developed a new routing metric named Expected Transmission Time in VNET (VETT) to improve the performances of Optimized link stat routing protocol (OLSR).

In this thesis VETT will be developed to improve the performance of OLSR. The protocol is firstly optimized on three different VANET scenarios (City, Highway and Hybrid) in-terms of three routing parameters (Traffic generation (TG), Packet Size (PS) and Number of cars (NC)) to define and justify a certain performance metric. Further the selected protocol is modified to automatically change their routing parameters values according to the current network scenario.

The work in this thesis is based-on simulation experiments. The discrete event simulator OMNET++5.1 and the INET3.5 network framework is used for the simulation purpose. OLSR is a standard protocol implementation and based-on the INET 3.5 modules that are an implementation of this protocol draft. Further the VANET topologies