

BOTTOM ASH EFFECT IN PORTLAND CEMENT COMPOSITE PERFORMANCE

by

NG HOOI JUN (1540411723)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS 2018

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS				
Author's Full Name	:	Ng Hooi Jun		
Title	:	Bottom Ash Effect In Portland Cement Composite Performance		
Date of Birth	:	24 November 1988		
Academic Session	:	2017/2018		
		sis becomes the property of Universiti Malaysia Perlis at the library of UniMAP. This thesis is classified as:		
CONFIDENTI	AL	(Contains confidential information under the Official Secret Act 1997)*		
RESTRICTED)	(Contains restricted information as specified by the organization where research was done)*		
✓ OPEN ACCES	s	I agree that my thesis to be published as online open access (Full Text)		
I, the author, give permis research or academic exc		n to reproduce this thesis in whole or in part for the purpose of age only.		
othis		Certified by:		
SIGNATURE		SIGNATURE OF SUPERVISOR		
881124265434		PROF. MADYA. DR. MOHD MUSTAFA AL BAKRI		
(NEW IC NO. /PA	SS	PORT NO.) NAME OF SUPERVISOR		
Date:		Date:		

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with the period and reasons for confidentiality or restriction. Replace thesis with dissertation (MSc by Mixed Mode) or with report (coursework)

ACKNOWLEDGMENT

The work presented in this thesis was carried out under the supervision of Assoc. Prof. Mohd. Mustafa Al Bakri. I extend my deepest sense of gratitude for his perseverance, constructive advice and continual encouragement throughout the studies. My humblest thanks go to Dr. Tan Soo Jin for her constant attention and technical assistance by sharing her expertise and valuable suggestions.

Further acknowledgements to Center of Excellent Geopolymer & Green Technology (CEGeoGTech) for allowing me to access the laboratories and facilities with deep gratefulness to all colleagues in this center whose involve in various ways. My sincerest thanks to School of Materials Engineering, Dr. Khairel Rarezi as school dean and all other management staffs, thank you for helping me get established in this project, and the entire laboratory teams for helping me out with experimental works.

Immense appreciation is expressed to MyBrain 15 by providing me scholarship to pursue my studies. Last but not least, thank you to my family for their continuing support and encouragement throughout my entire study. Their endless love and moral support gave me strength and power to be success in study.

TABLE OF CONTENTS

DEC	LARAI	TION OF THESIS	i
ACK	NOWL	EDGMENT	ii
TAB	LE OF	CONTENTS	iii
LIST	OF TA	BLES	ix
LIST	OF FI	GURES	X
LIST	OF AB	BREVIATIONS	xiv
ABS	ГRAK	ight	XV
ABS	ГRАСТ	CONTENTS BLES GURES BREVIATIONS I: INTRODUCTION	xvi
СНА	PTER 1	I: INTRODUCTION	1
1.1	Resea	rch Background	1
1.2	Proble	em Statement	3
1.3	Resea	rch Aim and Objectives	5
1.4	Resea	rch Scopes	6
1.5	Thesis	Outline	7
сна	PTER 2	2: LITERATURE REVIEW	9
2.1	Introd	uction	9
2.2	Portla	nd Cement	9
	2.2.1	Hydration Process of Portland Cement	12
	2.2.2	Factors Affecting Rate of Hydration Process	15
		2.2.2.1 Fineness of Cement	15
		2.2.2.2 Chemical Composition of Cement	15

		2.2.2.3 Age of the Cement Paste	16
	2.2.3	Environmental Impact of Portland Cement	17
2.3	Ash F	ormation	19
	2.3.1	Fly Ash	21
	2.3.2	Bottom Ash	22
2.4	Utiliza	ation of Bottom Ash	24
	2.4.1	Supplementary Cementitious Materials (SCM)	26
2.5	Chara	cteristics of Bottom Ash	27
	2.5.1	Physical Properties	28
		2.5.1.1 Particle Morphology	28
		Supplementary Cementitious Materials (SCM) cteristics of Bottom Ash Physical Properties 2.5.1.1 Particle Morphology 2.5.1.2 Fineness Pozzolanic Activity Chemical Properties	29
	2.5.2	Pozzolanic Activity	30
	2.5.3	Chemical Properties	31
	2.5.4	Mineralogical Characteristics	33
2.6	Bottor	n Ash Cement Composite (BACC)	35
	2.6.1	Effects of different particle sizes and percentage of bottom ash in	
		Portland cement mortar	37
	.9	2.6.1.1 Density	37
G	(n)	2.6.1.2 Compressive strength	37
C	,	2.6.1.3 Pozzolanic Activity Index	40
		2.6.1.4 Morphology Properties	40
		2.6.1.5 Mineralogical Properties	42
	2.6.2	The long term performance of curing time in bottom ash cement	
		composite	43
		2.6.2.1 Compressive strength	43

		2.6.2.2 Morphology	45
		2.6.2.3 Mineralogical Properties	46
		2.6.2.4 Fourier Transform Infrared Spectroscopy (FTIR)	47
		2.6.2.5 Ternary Phase Diagram	48
	2.6.3	Performance of bottom ash cement composite towards acid and	
		fire resistance	49
		2.6.3.1 Acid Resistance	50
		2.6.3.2 Fire Resistance	51
2.7	Streng	gth and Application of Cement Composite Based on ASTM C270	52
2.8	Gap o	f Knowledge	53
СНА	PTER 3	3: METHODOLOGY	55
3.1	Introd	of Knowledge 3: METHODOLOGY luction timental Programme tials	55
3.2	Exper	rimental Programme	56
3.3	Mater	ials	58
	3.3.1	Portland Cement	58
	3.3.2	Bottom Ash	58
3.4	Param	neters Used for Bottom Ash in Portland Cement	59
	3.4.1	Mix Detail for Bottom Ash To Portland Cement Percentage	59
C	3.4.2	Particle Analysis	60
3.5	Specin	men Preparation	61
	3.5.1	Mixing Process	61
	3.5.2	Water/ Cement Ratio (w/c)	63
	3.5.3	Curing Process	64
3.6	Testin	ng Programme	65
	3.6.1	Density	65

	3.6.2	Compressive Strength Test	66
	3.6.3	Pozzolanic Activity Index	67
	3.6.4	Strength Gain (%)	68
	3.6.5	Microstructure Charaterization with Energy Dispersive Spectrum	
		(EDS)	68
	3.6.6	Mineralogical Charaterization	69
	3.6.7	Chemical Charaterization	69
	3.6.8	Fourier Transform Infrared Spectroscopy (FTIR)	70
	3.6.9	Acid Resistance	70
	3.6.10	Chemical Charaterization Fourier Transform Infrared Spectroscopy (FTIR) Acid Resistance Fire Resistance ary : RESULT & DISCUSSION	71
3.7	Summ	ary	72
CHA	PTER 4	: RESULT & DISCUSSION	73
4.1	Introdu	uction	73
4.2	Charac	cterization of Portland Cement & Bottom Ash	73
	4.2.1	Morphology	73
	4.2.2	Particle Size Distribution	74
	4.2.3	Mineralogical Analysis	75
	4.2.4 •	Chemical Composition Analysis	76
4.3	Effects	s of different particle sizes and percentage of bottom ash in Portland	
Ć	cemen	t composite	78
	4.3.1	Density	78
	4.3.2	Compressive Strength	80
	4.3.3	Pozzolanic Activity Index (PAI)	86
	4.3.4	Morphology	88
	4.3.5	Mineralogical Analysis	92
4.4	The lo	ng term performance of curing time in bottom ash cement composite	94

4.4.1	Compressive Strength	94
4.4.2	Morphology	97
4.4.3	Mineralogical Analysis	101
4.4.4	FTIR Analysis	102
4.4.5	Ternary Phase Diagram	104

4.5 Performance of bottom ash cement composite towards acid and fire resistance

		108
4.5.1	Acid Resistance	108
	4.5.1.1 Density	108
	4.5.1.2 Compressive strength	109
	 4.5.1.1 Density 4.5.1.2 Compressive strength 4.5.1.3 Morphology 	110
	4.5.1.4 Mineralogical Analysis	112
	4.5.1.5 Ternary Phase Diagram	113
4.5.2	Fire Resistance	115
	4.5.2.1 Density	115
	4.5.2.2 Compressive strength	116
	4.5.2.3 Morphology	118
This	4.5.2.4 Mineralogical Analysis	119
(\bigcirc)	4.5.2.5 Ternary Phase Diagram	121

CHAPTER 5: CONCLUSION

5.1	Introd	uction	123
	5.1.1	Compressive strength due to different particle sizes and	
		percentage of bottom ash cement composite	124
	5.1.2	Best size and percentage for long term performance of curing	
		time	124

123

REFERENCES APPENDIX A LIST OF PUBLICATIONS		145	
		128	
5.2	Recommendations		126
		fire resistance application	125
	5.1.3	Performance of bottom ash cement composite towards acid and	

146

ornis tern is protected by original copyright

NO.	PAGE
Table 2.1: Portland cement clinker compounds	11
Table 2.2: Cement chemist notation for common oxides	12
Table 2.3: Chemical composition of bottom ash from different plant	32
Table 2.4: Mineralogical characteristic of bottom ash	33
Table 2.5: Physical and Characteristic requirement of Mortar cement	52
Table 2.6: Recommended guides for selection of mortar type	53
Table 3.1: Mix ratio of Portland cement and bottom ash	61
Table 4.1: Chemical composition of Portland cement and bottom ash	77
othis temperator of total dense and bottom asi	

LIST OF FIGURES

NO.	PAGE
Figure 2.1: Manufacturing flow diagram of Portland cement production	10
Figure 2.2: The hydration process of cement	13
Figure 2.3: Degree of hydration against age of cement paste	17
Figure 2.4: Historical and future atmosphere CO ₂ emission	18
Figure 2.5: Location of fly ash and bottom ash collection of typical power pl	ant
layout	20
Figure 2.6: Average composition of bottom ash	23
Figure 2.7: Total world productions 1950-2008. Prior to 1985, the coal product	ion
to 2008, these countries together accounted for nearly 90 % of to	otal
world production	25
Figure 2.8: Morphology of bottom ash which shows spherical and rounded partic	eles
and irregular grains shape	29
Figure 2.9: Microstructure of the Portland cement mortar	41
Figure 2.10: Microstructure with EDX analysis of bottom ash with Portland cem	ent
	42
Figure 2.11: Mineralogical analysis of bottom ash with Portland cement	43
Figure 2.12: Morphology of reference cement paste and bottom ash cem	ent
composite	45
Figure 2.13: Mineralogical properties of mortar containing bottom ash a	and
dewatered sludge that cured for 365 days	47
Figure 2.14: FTIR wave number of ashes in Portland cement	48

Figure 2.15: Chemical composition of bottom ash with Portland cement	and
Portland cement alone	49
Figure 3.1: Phases of research	56
Figure 3.2: Flow chart of the research	57
Figure 3.3: Sample of Portland cement	58
Figure 3.4: Raw bottom ash sample	59
Figure 3.5: Flow of the mixing and moulding of BA	62
Figure 3.6: Conceptual diagrams of bottom ash cement composite	63
Figure 3.7: Relation between water cement ratio and compressive strength	h of
cement paste	64
Figure 4.1: Morphology of Ordinary Portland cement paste and bottom ash	74
Figure 4.2: Particle size distribution curves of BA and Portland cement	75
Figure 4.3: XRD analysis of raw materials Portland cement and bottom ash	76
Figure 4.4: Density of bottom ash cement composite with various sizes	and
percentage of BA after 28 days	78
Figure 4.5: Compressive strength of the mortar samples after 28 days	80
Figure 4.6: The phenomena on effect of particle size	82
Figure 4.7: Compressive strength of different sizes and percentage of BA	83
Figure 4.8 : Pozzolanic Activity Index of BACC	86
Figure 4.9: Microstructure of OPC and different sizes of BACC after 28 days	89
Figure 4.10: Microstructure of 63 μ m with different percentage of BA after	r 28
days	90

- Figure 4.11: Microstructure of 75 µm with different percentage of BA after 28 days 91
- Figure 4.12: Microstructure of 150 µm with different percentage of BA after 28 days 91

Figure 4.13: XRD pattern of sizes and percentage of bottom ash cement composite 92

Figure 4.14: Compressive strength with various curing ages of 63 µm and 10 % of BACC 95

Figure 4.15: Strength gain BACC at 1, 7, 14, 28, 60, 90 and 360 days of curing 97

- Figure 4.16: Microstructure of 63 µm at different curing time 98
- Figure 4.17: Microstructure of OPC and BACC at 360 curing days 100
- Figure 4.18: XRD pattern of different curing time for OPC, 63, 75, and 150 µm BA in Portland cement mortar 101
- Figure 4.19: FTIR spectra of control OPC and BACC after 28, 60, 90, 360 days 103
- Figure 4.20: Ternary phase diagram of OPC-BA combinations at various curing time 105

Figure 4.21 Ternary phase diagram of OPC-BA combinations by 63 µm after 28 days 107

Figure 4.22: Density of samples exposed to acid solution 108

- Figure 4.23: Compressive strength of samples in acid solution 109
- Figure 4.24: Scanning Electron Microscopy with EDX spectrum in acid solution 111
- Figure 4.25: The XRD pattern of OPC and BACC in acid condition 112
- Figure 4.26: Ternary phase diagram of acid OPC and BACC 114

- Figure 4.27: Density of samples at different firing temperature 115
- Figure 4.28: Compressive strength of samples with temperature 117
- Figure 4.29: Microstructure of OPC and BACC at 600 °C and 1200 °C 119
- Figure 4.30: XRD pattern of 600 °C and 1200 °C of Portland cement and BACC 120
- Figure 4.31: Ternary phase diagram of OPC and BACC at 600 °C and 1200 121

Can othis terms protected by original copyright

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
ASR	Alkali Silica Reactivity
BA	Bottom Ash
BACC	Bottom Ash Cement Composite
CASH	Calcium Aluminate Silicate Hydrates
CO_2	Carbon Dioxide Calcium Silicate Hydrate Delayed Ettringite Formation
CSH	Calcium Silicate Hydrate
DEF	Delayed Ettringite Formation
EDX	Energy Dispersive X-ray Spectroscopy
FTIR	Fourier Transform Infrared Spectroscopy
Κ	Potassium
OPC	Ordinary Portland Cement
PAI	Pozzolanic Activity Index
SCM	Supplementary Cementitious Material
SEM	Scanning Electron Microscope
UniMAP	University Malaysia Perlis
USA	United States of America
CXRD	X-ray Diffraction
XRF	X-ray Fluorescence

KESAN ABU BAWAHAN DALAM PRESTASI KOMPOSIT SIMEN PORTLAND

ABSTRAK

Matlamat utama kajian ini adalah untuk mengkaji keberkesanan abu bawahan dalam simen Portland untuk meningkatkan sifat simen. Kesusasteraan yang terhad berhubung dengan penggantian abu bawahan ke dalam simen Portland menyebabkan siasatan yang teliti agar dapat digunakan dengan meluas untuk mencapai prestasi simen yang ada dalam industri pembinaan. Tiga jenis zarah saiz partikel (63, 75, 150 µm) dan kesan penggunaan pelbagai peratusan abu bawahan juga disiasat untuk kajian ini. Simen komposit abu bawahan disediakan dengan kepada nisbah simen dan air yang sama (0.5) di mana penggantian simen ke abu bawahan adalah 10, 20, 30, dan 40 %. Keputusan kekuatan mampatan simen komposit abu bawahan adalah menggalakkan selepas pengawetan dalam air selama 1, 7, 14, 28, 60, 90 dan 360 hari (20.44 hingga 36.79 MPa). Hasil analisis mekanikal menunjukkan bahawa sampel yang mengandungi abu bawahan boleh mencapai kekuatan mampatan yang sangat dekat dengan prestasi yang diperolehi dari simen Portland yang digunakan dalam aplikasi pembinaan. Tambahan pula, gabungan abu bawahan yang paling sesuai ialah penggantian 10%. Penggantian abu bawahan tidak menjejaskan sifat kekuatan kerana masih kekal dalam had ASTM C270. Hasil indeks pozzolanic aktiviti (63 µm dengan penggantian BA 10%) menunjukkan prestasi cemerlang yang hampir sama dengan 0.94 pada hari ke-28 dan mencapai 0.96 pada hari ke 90 yang menunjukkan bahawa abu bawahan adalah bahan pozzolanic dengan pozzolanic aktiviti vang tinggi. Ciri-ciri bahan seperti morfologi, mineralogi, sebatian kimia, dan ternary fasa dieksplorasi dapat memberikan keterangan yang kuat dan penjelasan asas untuk penyelidikan ini. Nisbah penggantian optimum abu bawahan (63 µm dengan penggantian BA 10%) digunakan untuk menentukan penggunaannya dalam rintangan asid dan kebakaran. Faktor utama yang menyebabkan serangan kimia dan fizikal adalah mekanisme pengangkutan kimia dan suhu. Penilaian rintangan asid dan kebakaran simen komposit abu bawahan adalah sama pentingnya dengan ujian mekanikal di mana asid hidroklorik dan sifat-sifat haba boleh diperiksa dengan menjalankan ujian makmal. Hasik rintangan asid menunjukkan bahawa simen komposit abu bawahan mempunyai rintangan yang lebih baik terhadap asid hidroklorik dibandingkan dengan simen Portland. Prestasi rintangan kebakaran simen komposit abu bawahan di bawah 600 ° C mempunyai hasil hampir sama seperti kawalan simen Portland manakala hasil 1200 ° Comenunjukkan pengurangan kekuatan mampatan. Penggunaan abu bawahan dengan produktif adalah cara yang terbaik untuk menyelesaikan masalah yang berkaitan dengan pelupusan dan menyelesaikan masalah tanah yang terhad.

BOTTOM ASH EFFECT IN PORTLAND CEMENT COMPOSITE PERFORMANCE

ABSTRACT

The main goal of this study was to investigate the effectiveness of bottom ash in Portland cement in improving the cement properties. The insufficient of published literature regarding to replacement of bottom ash into Portland cement create meticulous investigations in order to use widely through technically viable for highly performance of cement in construction industry. Three types of particle sizes (63, 75, 150 µm) and effect of using various weight percentage of bottom ash were investigated. The bottom ash cement composite were prepared with the same water to cement ratio (0.5) where the replacement of cement to bottom ash was 10, 20, 30, and 40 wt%. The compressive strength result of bottom ash cement composite was encouraging after 1, 7, 14, 28, 60, 90, and 360 days of curing (20.44 to 36.79 MPa). The mechanical analysis result shows that samples containing bottom ash may achieve the compressive strength that are very close to the performance presented by Portland cement. Furthermore, it was observed that the greatest combination of bottom ash was 10 % replacement. The replacement of bottom ash does not affect the strength properties as the strength still remains within the ASTM C270 limit. The optimum pozzolanic activity index result (63 µm with 10 % BA replacement) shows excellent performance that close to 0.94 on the 28th day and reaching 0.96 at 90th day which indicated that bottom ash is a pozzolanic material with high pozzolanic activity. Material properties such as morphology, mineralogical, chemical compound, and ternary phase diagram are explored which provide strong evidence and fundamental explanation to this research findings. The optimum replacement ratio of bottom ash (63 µm with 10 % BA replacement) was used to determine its application in acid and fire resistance. The major factors that causing chemical and physical attack are mechanism of chemical transport and temperature. Evaluation of acid and fire resistance of bottom ash cement composite was as important as mechanical testing where external hydrochloric acid and thermal fire properties were examined by performing the laboratory test. The results of acid resistance indicated that bottom ash cement composite have better resistance towards hydrochloric acid as compared to Portland cement. The performance of fire resistance of bottom ash cement composite under 600 °C have almost identical result as control Portland cement whereas result of 1200 °C shows reduction in compressive strength. The productive use of bottom ash is the best way to solve the problems associated with its disposal by solving landfill problem.

CHAPTER 1: INTRODUCTION

1.1 Research Background

Portland cement is the material that most important and essential manufactured material that contains major chemical active ingredient in concrete and produced around 4 billion tonnes per year for construction purpose worldwide (Gartner et al., 2017). The popularity of ordinary Portland cement as construction material in construction industry field has been increased due to growth and continuous progress of economies (Zhao et al., 2016). However, production of Portland cement generated large emission of global greenhouse gas carbon dioxide (CO₂) to the atmosphere that approximately 5-7 % and contributed a threat to global warming (Simbolott & Tosato, 2010; Hamidi et al., 2013).

There also appeared some concerns pertaining to the sustainable use of natural resources and the effects of improper waste disposal that become environmental threat (Paris et al., 2016; Kannan et al., 2017). In this situation, there is growing interest on beneficial use of alternative materials with pozzolanic activity for comparable physical and mechanical properties to Portland cement in order to produce value added products from a technical and economical point of view for the profitability of the recycling process (Angulo-Ramirez et al., 2017). The driving force of using the alternatives and renewable material for Portland cement is increasing due to the global awareness towards the environmental issues (Garcia & Sousa-Coutinho, 2013).

Coal is the primary sources of energy that contributed to the generation of electricity worldwide which approximately 36 % of the world electricity production

(Ehsan et al., 2014; Araujo et al., 2016). This rate is likely to remain and last over the next 30 years. According to the World Coal Association, there are around 7.6 billion tons of coal used worldwide (Tiwari et al., 2014). Coal also plays an important role for centuries as it is the faster growing energy source that faster than gas, oil, nuclear, and renewable energy. The main drawback of the increment of coal utilization leads to a very large amount of ashes, a total 3 million tons/year which consists of fly ashes (65 to 85 %) and bottom ashes (15 to 35 %) which create a significant management problem and poses alarming issue.

Fly ash has been widely used as cement replacement material and effectively for production of structural concrete with desirable strength (Naganathan et al., 2012). However, bottom ash as the replacement material for Portland cement is still a premature statement and hence research towards bottom ash has been carried on to investigate its suitability and implemented waste material as a partial cement replacement construction material. Basically the applications of bottom ash are in cement and concrete industries, aggregates, backfill and embankment materials for highroad construction (James et al., 2012). Utilization of ashes helps to save natural resources and reduce energy demand where recycling of ashes is needed either landfilling or used in construction purposes (Lam et al., 2010; Bajare et al., 2013).

Cement composite is a waste management option that against the release of CO_2 , particular toxic and hazardous industrial waste (Zamorani, 1992). Adding filler or admixture into Portland cement can improve the properties of Portland cement, thus it was putting high attention towards the development of cement composite (Chung, 2000). The potential of cement composite to replace OPC was supported by the fact that there were abundant industrial wastes from industries which are suitable to be used as source material for replacement in cement composite.

In today environmental friendly situation and modern concept of green buildings, attentions on materials used in Portland cement have been increased and research towards possible modifications of Portland cement has also increasing the demands for sustainability in construction sector due to their technical advantages in term of strength and durability. Hence, partial or full replacement of cement is considered a sustainable solution towards decreasing the environmental impact of cement production. This research elaborates the effects of bottom ash as replacement material in Portland cement mortar and also its performance as bottom ash cement composite (BACC) since there is no similar research study about the replacement of bottom ash in Portland cement that based on particle sizes and weight percentage of bottom ash.

1.2 Problem Statement

Portland cement is the most common and widely used in construction field due to its availability of the raw materials over the world and ease of preparing. However, there are also some restrictions of the manufacturing process and the raw materials where about 1.5 tons of raw materials is needed in the production of every ton of Portland cement, and at the same time about one ton of CO_2 is released into environment during the production. Hence, the production of Portland cement is extensively used of resources and energy process. The necessarily of finding new cementitious materials to replace Portland cement is needed for sustainable development and also decrease the consumption of natural resources. There have been growing trend on using waste materials worldwide. Fly ash has been used in manufacturing of cement and concrete from last century. However, use of coal bottom ash in production of cement or concrete is not common throughout the world. It is therefore necessary to examine the physical and mechanical properties of bottom ash for it possible uses in construction field. The published literature is insufficient to bring bottom ash in practical use. Research towards bottom ash is still scarce but there were many investigations found that bottom ash have the cementitious properties which may increase the strength and long term strength properties than concrete itself.

Bottom ash residue needs proper disposal which is not always an effective or simple process. If bottom ash is dumped into a municipal solid waste landfill, it will creates operation problems and pollution (Li et al., 2016). The possibility of using bottom ash is used as cement replacement material which brings several benefits such as possibility of decreasing the natural resources exploration, adequate disposal to the environment, reduce environment burdens of waste accumulation, and lastly recycle to generate usable material (Anjos dos et al., 2017). Bottom ash has the possibility to achieve satisfactory mechanical performance by enhance the compatibility of Portland cement which also possible to obtain new economic and potential environmental low cost materials with a considerable reduction of cement content.

One important factor hindering the accepted use of bottom ash as a construction material is its variability in physical and chemical properties. Therefore, varying of the properties of bottom ash in engineering application might influence the recycle and reuse of bottom ash. In order to achieve the goal of bottom ash to be reused as replacement material, ensuring a consistent and uniform production of bottom ash by controlling the plant processes and the material which goes into the process of combustion is needed.

The meticulous investigations of properties of replacement of bottom ash into Portland cement are required before it is widely accepted or used in construction industry. As no much literature been reported that the mechanical and material properties of bottom ash cement composite, it is necessary to investigate this research work to evaluate the properties of bottom ash cement composite. Hence, research is being intensified to produce inexpensive bottom ash cement composite with similar, possibly better with engineering application bases. Converting waste material into reusable materials could reduce the waste volume approximately 90 percent. Hence, bottom ash can used as ingredient and recycle into reusable products.

1.3 Research Aim and Objectives

The basic aim of this research is to evaluate the strength potential of bottom ash when replace into Portland cement, in addition this study is motivated by limited knowledge of bottom ash cement composite. Non uniformity of bottom ash such as particle size and chemical composition are the major concern in this research. Studies on bottom ash cement composite in construction application is a reasonable justification to carry out research in order to improve understanding of bottom ash cement composite.

This research tried to understand the effect of three different particle sizes (63, 75, 150 μ m) with four different percentage (10, 20, 30 and 40 wt%) replacement percentage of bottom ash on various curing time of Portland cement. The physical and mechanical

properties such as density, compressive strength, pozzolanic activity, acid resistance, fire resistance, durability, morphology structure, mineralogical analysis, and ternary phase characterization will thoroughly discuss in this study. Processing for specific properties with variable sizes and addressing recyclability issues need to be addressed.

The objectives of this research are:

To determine the optimum compressive strength due to different particle (i) sizes and percentage of bottom ash.

To analyse the best size and percentage for long term performance in (ii) curing time of bottom ash cement composite.

To evaluate the performance of bottom ash cement composite towards acid (iii) otected by and fire resistance application.

1.4 **Research Scopes**

Scope of this research is to centralize on the investigation of the effect, mechanical behaviour, and performance of bottom ash in Portland cement determine through the density, compressive strength test, pozzolanic activity index, acid resistance, fire resistance, durability. Besides that, materials characteristics also will be evaluated according to the various percentage of bottom ash in Portland cement by morphology, mineralogical, and ternary phase analysis at UniMAP laboratory. For each topic, a literature survey was performed to identify the characteristic of Portland cement and bottom ash cement composite.

A number of samples was prepared in the laboratory to determine the optimum ratio according to the size variation of bottom ash and mechanical behaviour of bottom ash cement composite. There are four series of composite mix design that contain Portland cement with bottom ash and one control mix (pure Portland cement) were casted. Each of the four series divided into three categories sizes (63, 75, 150 μ m) of bottom ash. The percentage of bottom ash was 10, 20, 30 and 40 % from the total weight of mortar with Portland cement which the water cement ratio is 0.5.

The hardened cement composite was taken out from the mould after 24 hours after casting and cured in the curing tank with the curing period of 1, 7, 14, 28, 60, and 90 days for all the samples whereas 360 days were used to determine for long curing performance. The weight measurement and compressive strength test was conducted after the curing period while following with materials characterizations. Collection of data for the proper investigation into the strength characteristics of bottom ash composite cement with literatures that collected from books and journals that based on engineering properties of bottom ash composite cement is obtained and discussed in the following chapter. While for the acid resistance, fire resistance, and durability test will be studied and discussed after the tests are completed by determining the optimum mixing ratio and best combination.

1.5 Thesis Outline

This thesis is divided into five chapters. Introduction is a Chapter 1 which provides the general overview of current research efforts, problem statement, aims, and specific objectives of the study for the replacement of waste material bottom ash and

converting it into used material in construction area with possibly better engineering application base. Chapter 2 describes the literature review of Portland cement, bottom ash, its production, properties, and uses. Besides that, it also discusses the literature and recent achievements in studies of bottom ash composite cement that available and published over the period. Chapter 3 discusses about the research methodology with various technical experiments and materials to investigate the characteristics of bottom ash composite cement. While Chapter 4 discusses the experimental results that obtained with the corresponding sizes, percentage and curing period based on density, compressive strength, acid resistance, fire resistance, durability, morphology, chemical compounds, and chemical components of the bottom ash cement composite. Chapter 5 summarizes prese of this item is protected by the conclusions drawn from the results presented in Chapter 4 and provides recommendations for future work.

8