

ADHESIVE JOINT STRENGTH OF DISSIMILAR METAL ADHERENDS BY TAGUCHI METHOD

by

NURUL ATIKAH BINTI DATU DERIN (1431411227)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

2019

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Author's Full Name	: N	URUL ATIKAH E	BINTI DATU DERIN
Title	: Al Al	DHESIVE JOINT DHERENDS BY 7	STRENGTH OF DISSIMILAR METAL FAGUCHI METHOD
			ijoht
Date of Birth	: 20) JULY 1989	03
Academic Session	: 20	018/2019	
I hereby declare that thi (UniMAP) and to be pla	s thesi aced at	s becomes the prop the library of Uni	perty of Universiti Malaysia Perlis MAP. This thesis is classified as:
CONFIDENTIAL (Contains confidential information under the Official Secret Act 1997)*			idential information under the Official 7)*
RESTRICTED (Contains a organization		(Contains restri	cted information as specified by the here research was done)*
✓ OPEN ACCESS I agree that my thesis to be published as online open access (Full Text)			
	6		
I, the author, give permission to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during the period of vears if so			
requested above)	U		
			Certified by:
This			
SIGNATURE			SIGNATUKE OF SUPEKVISOK
890720-	12-55	12	DR. MOHD AFENDI BIN ROJAN
(NEW IC NO. /PA	SSPO	RT NO.)	NAME OF SUPERVISOR
Date: 22 February 2019			Date: 22 February 2019

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with the period and reasons for confidentiality or restriction. Replace thesis with dissertation (MSc by Mixed Mode) or with report (coursework)

ACKNOWLEDGMENT

First and foremost, I would like to express my sincere gratitude to my supervisors, Dr. Mohd Afendi Bin Rojan for his guidance, support, invaluable help, encouragement and supervision throughout my graduate study education. My appreciation also extends to my co-supervisor, Assoc. Prof. Dr. Mazlee Bin Mohd Noor for his constructive suggestions and supports. This research work will not be possible without their persistent help, patience and advice at each and every stage of the work.

I am also very grateful to Universiti Malaysia Perlis especially to School of Mechatronic Engineering for exposing me to this post grade study and thesis write up. Special thanks to PLVs and technicians at Solid Mechanic Lab at School of Mechatronic, Pauh and Sustainable Engineering Research Cluster, Seciab for their invaluable assistance. Without their assistance, this study would have not been successful.

Above ground, deepest thanks to my colleagues and friends for their endless moral support that help me to endure some difficult times through all these years. Last but not least, I'm indebted to my family, whose value to me only grows with age. My late father, Datu Derin Bin Datu Anggol whose initiate me to starts this journey, my beloved mother, Bainum Binti Maliasan also to my understanding husband, Zahid Bin Zainom and other family members who have always love and supported me throughout the period. Thank you so much.

TABLE OF CONTENTS

DECLARATION OF THESIS	PAGE i
DECLARATION OF THESIS	i
ACKNOWLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xiii
ABSTRAK	xiv
ABSTRACT	XV
CHAPTER 1 : INTRODUCTION	1
1.1 Mechanical joining and adhesive joint	1
1.2 Research background history	2
1.3 Problem statement	2
1.4 Objective	3
1.5 Scope	4
1.6 Thesis organization	5
CHAPTER 2: LITERATURE REVIEW	7
2.1 Introduction	7
2.2 Dissimilar metal joint (stainless steels and carbon steels)	7
2.3 Influence of welding on steel microstructure	8
2.4 Heat treatment	10

2.5	Mecha	nism of adhesion	12
	2.5.1	Mechanical interlocking theory	13
	2.5.2	Diffusion theory	13
	2.5.3	Adsorption theory	14
	2.5.4	Electrostatic theory	14
2.6	Failure	e criteria in adhesively bonded joint	14
2.7	Releva	ant factors influencing adhesive bonding strength between metal	16
	2.7.1	Bonding surface treatment	16
	2.7.2	Joint geometry	18
	2.7.3	Mechanical properties of adhesive and adherend	20
2.8	Appro	ach to experiment design and analysis	21
2.9	Summ	ary	23
CHAP	PTER 3	: METHODOLOGY	25
3.1	Introdu	action	25
3.2	Desigr	n of experiment (Taguchi method)	27
	3.2.1	Control factors and level	27
	3.2.2	Orthogonal array	28
	3.2.3	Experiment matrix	29
3.3	Materi	als and fixtures	30
\bigcirc	3.3.1	Adhesive	30
	3.3.2	Adherend	31
	3.3.3	Alignment jig	33
3.4	Specin	nen preparation	35
	3.4.1	Grinding	37
	3.4.2	Heat treatment	38

3.5	Testin	g and measurement	42
	3.5.1	Holding jig	42
	3.5.2	Experiment setup for tensile test	43
3.6	Charae	cterizations of adherend	44
	3.6.1	Surface roughness by surface profilometer.	44
	3.6.2	Surface visual examination by stereo microscope	45
3.7	Statist	ical analysis and optimization	46
	3.7.1	Analysis of variance (ANOVA)	46
	3.7.2	Signal-to-noise ratio (SNR)	48
CHAI	PTER 4	: RESULTS AND DISCUSSION	50
4.1	Introd	uction	50
4.2	Joint s	trength for AR specimens	50
4.3	Joint s	trength for heat treated specimens	51
4.4	Statist	ical analysis and optimization by SNR	53
	4.4.1	SNR for AR group	54
	4.4.2	SNR for SQT group	55
	4.4.3	SNR for SQ2 group	57
4.5	Statist	ical analysis and optimization by ANOVA	59
	4.5.1	ANOVA for AR group	59
\bigcirc	4.5.2	ANOVA for SQ1 group	60
	4.5.3	ANOVA for SQ2 group	61
	4.5.4	Main effects of ANOVA	61
4.6	Effect	of adhesive thickness	62
4.7	Effect	of surface roughness	63
	4.7.1	Surface roughness and joint strength relationship for AR and	
	SQ2 g	roup	66

	4.7.2 Surface roughness and joint strength relationship for SQ1	69
4.8	Effect of heat treatment	70
4.9	Confirmation test	75
4.10	Result summarization	77
CHAI	PTER 5 : CONCLUSION	79
5.1	Conclusion	79
5.2	Recommendation and Future Work	80
REFE	RENCES	82
APPE	INDIX A	87
APPE	NDIX B	89
APPE	NDIX C	91
(C)	this item is protected by	

vi

LIST OF TABLES

NO.

Table 3.1:	Factors and levels for heat treated specimens	27
Table 3.2:	Orthogonal array (OA) L9	28
Table 3.3:	Experiment matrix layout for SQ1 and SQ2 group	29
Table 3.4:	Experiment matrix layout for AR group	30
Table 3.5:	Araldite Standard properties	31
Table 3.6:	Mechanical properties of adherends	33
Table 3.7:	Chemical composition for carbon steel (AISI 1045)	33
Table 3.8:	Chemical composition for stainless steel (AISI 304)	33
Table 4.1:	Experimental results for AR group	51
Table 4.2:	Experimental results for SQ1	52
Table 4.3:	Experimental results for SQ2	52
Table 4.4:	SNR response for joint strength	53
Table 4.5:	Main effect table for SNR (AR)	54
Table 4.6:	Main effect table for SNR (SQ1)	56
Table 4.7:	Main effect table for SNR (SQ2)	58
Table 4.8:	Contribution of factors (AR)	59
Table 4.9:	Contribution of factors (SQ1)	60
Table 4.10:	Contribution of factors (SQ2)	61
Table 4.11:	Level average for main effects of AR, SQ1 and SQ2 group	62
Table 4.12:	Surface roughness for AISI 304	64

- Table 4.13:Surface roughness for AISI 1045
- Table 4.14:Confirmation test results

76

orthis item is protected by original copyright

LIST OF FIGURES

NO.

Figure 1.1:	Illustration of adhesive bonding	1
Figure 2.1:	SEM photographs taken from the weld zone	9
Figure 2.2:	Iron-Carbon phase diagram	10
Figure 2.3:	Phase transformation for medium carbon steel.	12
Figure 2.4:	Illustration of mechanical interlocking theory	13
Figure 2.5:	Illustration of diffusion theory	13
Figure 2.6:	Failure criteria in adhesively bonded joint	16
Figure 2.7:	Contact angle of a liquid on a surface	17
Figure 2.8:	Five basic types of adhesive joint stress	19
Figure 2.9:	Example Taguchi Array of four variables with three levels each	22
Figure 2.10:	F table	23
Figure 3.1:	Research project flow chart	26
Figure 3.2:	Araldite Standard packaging	31
Figure 3.3:	Carbon steel AISI 1045 and stainless steel AISI 304	32
Figure 3.4:	Adherend dimension	32
Figure 3.5:	Dimension of teflon channel	34
Figure 3.6:	Alignment jig with built-in micrometer head and teflon channel	34
Figure 3.7:	Experiment process flow	36
Figure 3.8:	Metco grinding and polishing machine	37
Figure 3.9:	Manually hold steel on abrasive disc	38

Figure 3.10:	Heat treatment profile for AISI 1045 and AISI 304	39
Figure 3.11:	Heat treatment process flow for AISI 1045	40
Figure 3.12:	Heat treatment process flow for AISI 304	40
Figure 3.13:	Adhesive bonding process flow	41
Figure 3.14:	Holding jig	42
Figure 3.15:	Tensile test experimental set-up	44
Figure 3.16:	Surface profilmeter set-up	45
Figure 4.1:	Main effect plot for SNR (AR)	55
Figure 4.2:	Main effect plot for SNR (SQ1)	57
Figure 4.3:	Main effect plot for SNR (SQ2)	58
Figure 4.4:	Joint strength against adhesive thickness level	63
Figure 4.5:	Bonding surface for AR and SQ2 group	65
Figure 4.6:	Oxide scale on bonding surface for SQ1 (a) Annealed AISI 1045	5, (b)
	Normalized AISI 1045 and (c) Quenched AISI 1045 and (d) Anno	ealed
	AISI 304	66
Figure 4.7:	Joint bonding strength response against surface roughness for AF	R and
This	SQ2 group	67
Figure 4.8:	Adhesion failure in AR group	68
Figure 4.9:	Joint bonding strength response against surface roughness for	SQ1
	group	69
Figure 4.10:	Failure of SQ1 specimen at (a) 0.5 mm, (b) 1.0 mm and (c) 1.5	mm
-	adhesive thickness	70
Figure 4.11:	Surface roughness of AISI 304 for SQ1	71

- . SQ2 . 1 1045 for SQ2 . or (a) As-received AISI 304 and (b) Annealor . .crostructure state for (a) As-received AISI 1045, (b) Annea . AISI 1045, (c) Normalized AISI 1045 and (d) Quenched AISI 1045 . group 7. AISI 1045, (c) Normalized AISI 1045 and (d) Quenched AISI 1045 75

LIST OF ABBREVIATIONS

- AISI American Iron and Steel Institute
- Analysis of variance ANOVA
- AR As received
- orthis item is protected by original copyright ASTM American Society for Testing and Materials

LIST OF SYMBOLS

A	Bonding surface area
DOF	Degree of freedom allied with the factors
DOF_{TM}	Degree of freedom for Taguchi Method
F	Maximum force in tensile bonding test
т	Average joint strength
m_A	Average joint strength for factor A
m_{B}	Average joint strength for factor B
m_{c}	Average joint strength for factor C
MS	Mean squares
n	Total number of response
n _F	Number of factor
n _i	Number of response in factor
n _L	Number of variable
n_s	Number of responses in the factor level combination
R_a	Adherends' surface roughness
SSA _i	Sum of square for <i>i</i> th factor
SSE	Noise sum of square
SST	Total sum of square
T	Sum of all <i>n</i> responses
T_{i}	Sum of all n_i responses
y_{ij}	Responses j^{th} in i^{th} factor
У	Responses for the given factor level combination
Y_{opt}	Estimated optimum joint strength
$\sigma^{\scriptscriptstyle U}_{\scriptscriptstyle st}$	Tensile joint strength

Kekuatan Ikatan Perekat Bagi Merekat Logam Tak Sama menggunakan Kaedah Taguchi

ABSTRAK

Penyambungan dua jenis logam yang berbeza digunakan secara meluas dalam banyak aplikasi. Banyak usaha telah dilakukan untuk mengkaji teknik penyambungan untuk mencapai kekuatan yang dikehendaki bagi dua logam berbeza termasuklah kimpalan. Walau bagaimanapun, banyak kaedah kimpalan menghadapi kegagalan kritikal kerana perbezaan dalam pengembangan haba antara logam yang berbeza. terdapat Penyelidikan ini berkaitan dengan penyiasatan untuk menyatukan logam yang berbeza iaitu antara keluli tahan karat dan keluli karbon dengan menggunakan teknik sambungan perekat. Ikatan perekat mempunyai kelebihan dan keupayaan untuk menyatukan pelbagai jenis bahan. Tujuan utama kajian ini adalah untuk mengkaji kesan rawatan haba ke atas keluli karbon sederhana (AISI 1045) dan keluli tahan karat (AISI 304) juga kesannya kepada kekuatan ikatan perekat. Pendekatan eksperimen telah dibuat untuk mencapai tujuan penyelidikan dengan mengambil kira faktor-faktor ini; sifat-sifat mekanik bahan yang mahu direkat, rawatan permukaan dan ketebalan perekat. Sifat-sifat mekanik dikawal dengan menggunakan beberapa proses rawatan haba, penyepuhlindapan untuk keluli tahan karat sementara penyepuhlindapan, penormalan, dan pelindapan dilakukan ke atas keluli karbon. Rawatan permukaan dikawal dengan menggunakan kertas las dengan kersik 180, 500, dan 1000. Akhirnya, jig penjajaran digunakan untuk mengawal geometri dan ketebalan perekat iaitu 0.5mm, 1.0mm, dan 1.5mm. Perekat yang digunakan dalam penyiasatan ini adalah Araldite iaitu perekat epoksi yang lambat awet; ia terdiri daripada dua komponen iaitu damar dan pengeras yang dihasilkan oleh Huntsman Corporation dan spesimen dibahagikan kepada tiga kumpulan yang dinamakan sebagai as sepertimana terima (AR), urutan 1 (SO1) dan urutan 2 (SO2). Setiap kumpulan mempunyai sembilan keadaan eksperimen yang dijalankan menggunakan kaedah Taguchi. Tiga spesimen disediakan untuk setiap keadaan eksperimen. Sejumlah 81 ujian tegangan pada suhu bilik telah dijalankan di bawah ujian tegangan paksi oleh Mesin Ujian Semesta (UTM). Nisbah isyarat-hingar (SNR) dan varians analisis (ANOVA) digunakan untuk mencari penetapan parameter optimum yang menghasilkan spesimen ikatan perekat sambungan temu dengan kekuatan tegangan tertinggi. Ujian-ujian lain juga turut dilakukan ke atas bahan yang mahu direkatkan iaitu ujian kekasaran permukaan dan pemeriksaan visual untuk mencari hubungan atau sebab yang menyokong keputusan analisis. Berdasarkan keputusan ANOVA bagi kumpulan AR, didapati bahawa sumbangan ketebalan perekat adalah 59.38%, iaitu lebih tinggi berbanding kertas las, 28.76%. Bagi kumpulan SQ1, faktor yang mempengaruhi kekuatan tegangan dalam urutan menurun adalah kertas las, 26.09% diikuti oleh ketebalan perekat dan rawatan haba masing-masing dengan 24.12% dan 12.71%. Sementara itu, faktor utama yang mempengaruhi kekuatan tegangan dalam kumpulan SQ2 ialah ketebalan perekat 67.51%, diikuti dengan kertas las dengan 12.80% dan rawatan haba 11.00%. Hasil analisis membuktikan bahawa rawatan haba mempunyai pengaruh yang sangat kecil ke atas kekuatan sambungan temu perekat antara AISI 1045 dan AISI 304.

Adhesive Joint Strength of Dissimilar Metal Adherends by Taguchi Method

ABSTRACT

The dissimilar metal joints are widely used in many applications. A lot of efforts have been made to study the joining techniques in order to achieve a reliable dissimilar joint for unlike metals including welding. However, dissimilar welding methods is facing critical failure because of the differences in thermal expansion between the different metals. This research is concerned with the investigation of joining dissimilar metal between stainless steel and carbon steel by adhesive joining technique. Adhesive bonding has the advantage and ability to joint different types of material. The main purpose of this study is to investigate the effect of heat treatment on medium carbon steel (AISI 1045) and stainless steel (AISI 304) and its effect on adhesive bonding strength. An experimental approach has been made to attain the research purpose with respects to these factors; adherend mechanical properties, surface treatment and adhesive thickness. The mechanical properties were controlled by using several heat treatment processes, annealing for stainless steel whilst annealing, normalizing, and quenching was done on carbon steel. Surface treatment was controlled by using sandpaper at 180, 500, and 1000 grit. Lastly, an alignment jig was used to control the joint geometry to have an aligned butt-joint specimen and to have a 0.5mm, 1.0mm, and 1.5mm adhesive thickness. The adhesive used in this investigation is Araldite, a slowsetting epoxy adhesive; it consists of two components which are resin and hardener manufactured by Huntsman Corporation and the specimens were divided into three groups which were named as as-received (AR), sequence 1 (SQ1) and sequence 2 (SQ2). Each group has nine numbers of experiments which were carried out by using Taguchi Method. Three specimens were prepared for each experimental condition. A total of 81 tensile tests at room temperature have been carried out under axial tensile test by Universal Testing Machine (UTM). Signal-to-noise ratio (SNR) and analysis of variance (ANOVA) analysis was used to find the optimal parameter setting resulting the highest tensile strength of adhesive bonded butt-joint specimen. Other tests were also done on adherend which are surface roughness and visual examination to find the relation or underlying reason for the analysis results. Based on ANOVA results, it was found that the contribution of adhesive thickness is 59.38%, which is higher than abrasive paper, 28.76% for AR group. For SQ1 group, the factors influencing the tensile strength in descending order are abrasive paper, 26.09% followed by adhesive thickness and heat treatment with 24.12% and 12.71% respectively. While the main factors influencing the tensile strength in SQ2 are adhesive thickness 67.51%, followed by the abrasive paper with 12.80% and then heat treatment 11.00%. This result shows that the heat treatment process have insignificant influence on adhesive butt-joint strength of AISI 1045 and AISI 304.

CHAPTER 1: INTRODUCTION

1.1 Mechanical joining and adhesive joint

Mechanical joining/bonding is the methods to assemble material to be a mechanical structure where it offers a series of choices for researchers to consider. To obtain a desirable outcome, a trade off exist between cost, performance and impression on the finish product's weight. The joining technique is vital to manufacturing decisions. The urge to find the best joining technique, joining knowledge and approaches were explored by many researchers every day which leads to the study of adhesive bonding technique. Adhesive bonding is becoming one of the popular joining approaches in metal industries since it provides a different solution over other conventional practices such as riveting, welding, bolting and soldering (Borsellino, Bella, & Ruisi, 2009). Adhesive-bonding is a joining process whereby materials are held together by the surface attachment of adhesives as illustrate in Figure 1.1.

Figure 1.1: Illustration of adhesive bonding

A material is required to have four characteristics to perform as an adhesive. First, capable of surface wetting, able to adhere, develop strength after it has been applied, and remain stable. Adhesive bonding offers an advantageous alternative to conventional assembly procedures. It can join dissimilar metal with different thermal expansion. It will lessen the corrosion problem, discoloration and weld worms. It enable lightweight and can join complex structure (Bordes et al., 2009; Seo & Lim, 2005).

1.2 **Research background history**

copyrigh The demands to join stainless steels and carbon steels has increased. The joining was attempted for application in power industries, steam generators, hydraulic valves and even in construction industries (Ciupack, Pasternak, Mette, Stammen, & Dilger, 2017; Gaffar, Mudavath, Kumar, & Satyanarayana, 2017; Mishra, Tiwari, & Rajesha, 2014; Saini, Arora, Pandey, & Mehdi, 2014). Growing trend as engineers/researchers across industry lines are always looking to lower production and labor costs and increase quality and consistency of a process. These are when adhesive joint may be the possible alternative for joining the two metals. As of today, the use of adhesive in engineering world is well-established in certain industry.

1.3 **Problem statement**

Dissimilar metal joint can be complicated and extents a wide-ranging of methodologies, materials and procedures. It is often more difficult than joining the same material. Adhesive bonding has a good spot in present industry. There are also a lot of comprehensive study on adhesive bonding available in literature yet not much study

was done on the behaviours of adhesive bonding strength on heat treated metals specifically stainless steel and carbon steel. Consequently, the problem statement for this study is briefly listed below:

- i. Dissimilar metal joint between stainless steel and carbon steel is difficult because of the differences in the mechanical and thermal properties.
- Adhesive joint processes tend to be labour intensive where a systematic ii. approach need to be applied during the whole research progress.
- It is difficult to identify the critical parameter that governs the strength of iii. otected 10 adhesive joint.

1.4 Objective

This study aimed to lessen the problem in joining stainless steels and carbon steels. Hence, the main purpose is to find possible optimum solution of adhesive joint between those two metals despite difference in mechanical properties. To attain the research purpose, the study is divided into several sub objectives and are listed below:

i. To study the effect of heat treatment on stainless steels and carbon steels in regards of material properties and micristructure and it's relation to adhesive joint strength.

- ii. To optimize adhesive joint strength between dissimilar adherends by using systematic approach; Taguchi Method.
- iii. To investigate the significance of parameters; abrasive paper, heat treatment, and adhesive thickness by using signal to noise ratio (SNR) and analysis of variance (ANOVA).

1.5 Scope

copyrigh The scope of this research is to prepare the adhesive bonding specimens with respects to three control factors. Those factors are (i) mechanical properties, (ii) surface treatment, and (iii) joint geometry. The mechanical properties was controlled by using several heat treatment processes, quenching for stainless steel whilst annealing, normalizing, and quenching were done on carbon steel. Surface treatment were controlled by using silicon carbide abrasive paper at 180, 500, and 1000 grit. Lastly, an alignment jig was used to control the joint geometry to have an aligned butt-joint specimen with different adhesive thickness; 0.5mm, 1.0mm, and 1.5mm according to the design of experiments that was carried out by using Taguchi method. The adhesive bonding specimens consisted of adherends that were prepared with accordance to ASTM D2094-00 (ASTM Standard D2094 - 00, 2006).

The adhesive bonding specimens was subjected to tensile test to determine the tensile strength by using universal testing machine (UTM). Results obtained were analysed by using signal-to-noise ratio (SNR) and analysis of variance (ANOVA) method. Characterisation test were carried out in between the specimen preparation up to the completion of tensile test where the surface roughness and visual inspection were done on the adherend. The characterisation results will be incorporated into the further investigation of adhesive bonding strength obtained in the tensile test.

1.6 Thesis organization

This thesis is divided into five chapters. Chapter 1 is the overview of this research where the problem and motivation of the study will be presented. This chapter consisted of several sub-topics that will explain the objective, problem statement, scope of the research, and thesis outline. In the end of this chapter, the reader will be able to briefly understand the general knowledge of the topic and will know what to expect throughout the thesis.

Chapter 2 surveys major outlines of the research. Numbers of previous studies on related topic was collected and summarized in this chapter to bring out the information that will guide the direction of the research. This chapter also helps to characterize the role of a method and tools in its enactment. Besides, it contains comprehensive review that contributes to the design of experiment of the research.

Chapter 3 of the thesis describes the approach undertaken throughout the research. This chapter is strongly affected by the findings in Chapter 2. Every method used was clarified in details including the relevance for the application of particular procedure used thereby, permitting the reader to critically value the validity and dependability for overall study.

Chapter 4 delivers the experimental outcomes including statistical analysis, SNR and ANOVA which were used in this study. The statistical results were then interpreted and its relation to the research problem were discussed. This chapter also presents further discussion on any contradictory results obtained.

Chapter 5 provides the conclusion of the present work by highlighting the research objectives. This chapter also provides general recommendations and implications of the study for future work.

ecomment econyies

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter consists of several sections that comprises about dissimilar material joining application and current joining problem issues. Substantive information of joining technique were included where the basic knowledge of adhesive joint is introduced, as well as theoretical and methodological contributions to a particular procedure. Besides, this chapter also includes the survey of systematic experiment design.

2.2 Dissimilar metal joint (stainless steels and carbon steels)

Various applications exist in engineering that demands joining dissimilar steel. The joining of stainless steel and carbon steels are widely attempted for application in nuclear applications, power industry, steam generators, construction industry, and small products like hydraulic valves. One of the application can be found in thermal power generation industry is where stainless steels need to be used in the heater area that exposed with high temperatures and under more severe corrosion conditions. While carbon steel can perform sufficiently at areas that operates under certain level of temperature and conditions and may save the total cost of structure (Gaffar et al., 2017; Maurya, Pratap, Kumar, & Rana, 2017; Mishra et al., 2014; Poulose, Sanjeev, Prabakaran, & Rajkumar, 2015)

Stainless to carbon steel joints usually formed by using mechanical fasteners and conventional welding and technique. Ciupack et al., (2017) stated that regardless of much development of conventional joining techniques, these problems still exist; residual stresses for welds also failure at cross section for fasteners. Several studies of joining of two metals have been reported and encountered almost the same difficulties. Mishra et al. (2014) stated that it is tough to join stainless steel to carbon steel by welding due to the carbon precipitation and chromium loss during joining process leads to deteriorate the strength. According to Farren, Dupont, & Noecker (2007), dissimilar metal weld (DMW) cannot solve the problem occurs in most industrial applications Come to assumption, joining of stainless to carbon steels is not an easy task.

2.3 Influence of welding on steel microstructure

High temperature imposed during welding caused the microstructure and mechanical properties of the material being welded changed at the interface region. There are several studies to investigate the microstructural of welded joints of stainless to carbon steels. After being imposed to heat, the microstructure changed depends in the type of welding process and how it was cooled. Based on some literature survey, it was found that these are the possible microstructure appeared at the carbon steel after welding; pearlite, bainite and martensite. As for stainless steel, the microstructure remain as austenite or might have small amount of ferrite.

One of the study was done by Kirik, Ozdemir & Caligulu (2012) where they examined the microstructure reaction of welded AISI 304 L and carbon steel AISI 1040. Their results shows that at the central region of the weld, there was a grain

refinement due to the heat input and pressure which lead to the existing of austenite and martensite. The microstructure of AISI 1040 deformed as ferrite+pearlite after welding as shown in Figure 2.1. The microstructure examination was done using Scanning Electron Microscopy (SEM) where AISI 304 L was etched electrolytically in a solution of 50% HNO₃ + 50% of H₂O while AISI1040 was etched in 2ml HNO₃ + 98% ml alcohol solution for the microstructure to appear.

Farren, Dupont, and Noecker (2007) studied on the fabrication on 1085 carbon steel to 316 stainless steel transition joint using direct laser deposition method. The found austenite existed on 316 stainless steel region which is typical. The microstructure was made appear by using 10 % oxalic electrolytic etch. This region was followed by region near the interface between the two steels. The etchant used at this region is 2% nital + sodium metabisulfite. This region is appeared to be