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n  Shear Sensitivity/ Flow Index/ Power Law Index 

  Shear Stress 

aT  Softening Temperature 

spE  Specific Energy 
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feedc  Specific Heat 

s  Speed 

  Surface Area per Volume Ratio 

ohT  Temperature Overheat 

  Viscosity 

V  Volume  

w  Weight 

tE  Work Energy 

  Yield Strength 

 
 

 
 

 
 

 
 

 
©This

 ite
m

 is
 p

ro
te

cte
d 

by
 o

rig
ina

l c
op

yr
igh

t 



 

xx 
 

Siasatan Terhadap Sifat-Sifat Fizikal Bahan Mentah Magnesium untuk Suntikan 
Logam Beracuan 

 
 

ABSTRAK 
 
 

Magnesium dan aloinya didapati amat bioserasi dan mempunyia sifat-sifat yang serupa 
dengan tulang semulajadi. Ini menjadikan mereka sebagai bahan yang menarik untuk 
bahagian-bahagian yang terbiodegredasi seperti implan bioperubatan. Memandangkan 
implan-implan bioperubatan adalah kecil dan berbentuk rumit, teknik pengacuanan 
suntikan logam (MIM) dilihat sebagai amat sesuai untuk bahagian-bahagian yang 
mempunyai bentuk hampir dengan produk akhir. Kajian ini mengkaji tentang sifat-sifat 
fizikal bahan mentah magnesium untuk proses penyuntikan acuan logam. Kajian 
terperinci bagi kelakuan bahan mentah yang telah dijalankan adalah termasuk penentuan 
muatan kritikal, kinetik pencampuran, pembelajaran reologi, sifat-sifat magnesium 
teracuan, penyahikatan larutan, dan pensinteran. Pengikat yang digunakan dalam kajian 
ini adalah lilin parafin (PW), sterin sawit (PS), asid sterik (SA), stearate zink (ZS), 
polietilena berketumpatan tinggi (HDPE), sisa getah (WR), dan sisa plastik (WP). 
Kepekatan kritikal isipadu serbuk (CPVC) ditentukan melalui ujian serapan minyak pada 
suhu bilik. Dalam kajian ini, sifat-sifat dan kelakuan reologi bagi bahan mentah 
magnesium untuk penyuntikan acuan disiasat dengan menggunakan reometer kapilari. 
Selepas suntikan pengacuanan,  ketumpatan, kekuatan hijau dan morfologi bahagian yang 
diacuankan telah dinilai menggunakan konsep ketumpatan Archimedes, ujian 
pembengkokak 3 titik, dan mikrograf pengimbasan elektron (SEM).  Kesan masa dan 
suhu larut lesap terhadap proses penyahikatan larutan bagi bahagian yang telah diacuan 
disiasat. Dalam proses ini, molekul-molekul bagi lilin parafin dan asid sterik disingkirkan 
daripada magnesium teracuan dengan kaedah merendam ke dalam larutan heptana. 
Kemudian, kadar penyahikatan larutan disiasat di bawah keadaan yang berbeza seperti 
masa, suhu, dan nisbah luas permukaan terhadap isipadu. Peratusan kadar kehilangan 
jisim bagi lilin parafin dan asid sterik dikira dan struktur pori-pori dianalisa menggunakan 
SEM. Proses pensinteran telah dijalankan dalam 2 kitaran iaitu kitaran penyahikatan dan 
kitaran pensinteran. Untuk kitaran penyahikatan, suhu yang digunakan adalah 450 ºC 
dengan kadar pemanasan 1K/min dan masa rendaman adalah 1 jam. Manakala bagi 
kitaran pensinteran suhu yang ditetapkan adalah 640 ºC dengan kadar pemanasan 5K/min 
selama 8 jam. Keputusan CPVC yang diperolehi adalah 69 vol.% dan muatan serbuk 
optimum adalah 65 vol.%. Keputusan reologi menunjukkan bahawa bahan mentah 
magnesium berkelakuan pseudoplastik dan mencadangkan bahawa bahan mentah yang 
mengandungi PWPEWPSA dalam sistem pengikatnya sebagai bahan mentah yang 
terbaik. Suhu yang optimum adalah 60 °C dengan masa rendaman 360 minit. 
Kemeresapan efektif adalah tinggi bagi peringkat pembubaran berbanding peringkat 
penyebaran. Tenaga pengaktifan pembubaran adalah sekitar 3-5 kali lebih tinggi 
berbanding tenaga pengaktifan penyebaran. Ketumpatan bahagian tersinter yang 
diperolehi adalah 1.134 g/cm3.  
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Investigation on the Physical Properties of Magnesium Feedstocks for Metal 
Injection Moulding 

 
 

ABSTRACT 
 
 

Magnesium and its alloy are found to be extremely biocompatible and have similar 
properties to natural bone. This makes them an attractive material for the manufacture of 
biodegradable parts such as biomedical implant. As biomedical implants are rather small 
and complex in shape, the metal injection moulding (MIM) technique seems to be well 
suited for the near net shape mass production of such parts. This research investigated the 
physical properties of the magnesium feedstocks for metal injection moulding process. 
The detail study on the feedstocks behavior was conducted including critical loading 
determination, mixing kinetics, rheology study, green molded properties, solvent 
debinding process, and sintering. The binder used in this study were paraffin wax (PW), 
palm stearin (PS), stearic acid (SA), zinc stearate (ZS), high density polyethylene 
(HDPE), waste rubber (WR), and waste plastic (WP). The critical powder volume 
concentration (CPVC) of Mg powder was conducted using oil absorption test at room 
temperature. In this study, the rheological properties and behaviors of magnesium metal 
injection moulding feedstock was investigated using capillary rheometry. After injection 
moulding, the density, strength, and morphology of the green molded part was 
investigated using Archimedes density concept, 3 point bending test, and scanning 
electron micrograph, respectively. The effect of the leaching time and temperature on the 
solvent debinding process of Mg metal injection moulding (MIM) green part has been 
investigated. In this study, both soluble binder, paraffin wax and stearic acid molecules 
were removed from the Mg green part by immersing compact parts in heptane solution. 
Then, the solvent debinding rate has been investigated under the conditions of different 
leaching time, temperature, and surface area to volume ratio. The weight loss percentages 
of paraffin wax and stearic acid were calculated and the pores structure was analyzed by 
scanning electron micrograph. The effective diffusivity and activation energy of the 
soluble binder have also been studied. Sintering process has been carried out in 2 cycles 
which are debinding cycle and sintering cycle. For debinding cycle, the temperature was 
450 °C with heating rate 1K/min and soaked for 1 hour. While the sintering cycle was set 
at 640 °C with heating rate of 5K/min and sintered for 8 hours. The result obtained for 
CPVC was 69 vol.% and the optimum powder loading was at 65 vol.%. The rheological 
results exhibited the pseudoplatic behavior and suggested feedstocks containing 
PWPEWPSA in the binder system as the best feedstocks. The optimum temperature was 
60 ºC with immersion time of 360 minutes. Effective diffusivity was higher at dissolution 
stage as compared to diffusion stage. The dissolution activation energy (Q) was about 3-
5 times higher than diffusion activation energy. The density of obtained sintered part was 
1.134 g/cm3. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Metal injection moulding 

 

Metal injection moulding (MIM) is a process by which powder is shaped into 

complex components using tooling and injection moulding machines that are very similar 

to those used in plastic injection moulding. MIM combines the versatility and high 

productivity of the injection moulding with the powder metallurgy technique of sintering 

(German and Bose, 1997). Then, since the sintering of a compacted powder is alike for a 

part obtained by injection or press moulding, the key points in MIM turned out to be how 

to make the metal flow into the mold and how to retain the shape of the molded part until 

it begins the sintering. The problem is commonly solved by dispersing the powdered 

metal into a binder to form a paste that flows at high temperature and becomes room 

temperatures. Consequently, the molded part retains its shape after injection moulding 

and may be handled and processed safely.   

In MIM process, the metallic powders are injected into a mold. Plasticity and 

fluidity of the powder is essential for this to take place and this is achieved by the use of 

binder material. All binder systems are based on two important major groups of 

ingredients, polymers and waxes with minor additions of lubricants, surfactants or 

coupling agents. After injection moulding, the binders are then removed in a process 

known as debinding and the remaining “brown” part is then sintered at elevated 

temperatures to achieve a densified parts (Sidambe et al., 2012).  
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Homogeneous feedstock is produced from an appropriate mixture of metal 

powder and an ideal binder system. Up to now, there are various binder systems have 

been developed for use in practice of the MIM such as wax (Weich, 1983) thermoplastic 

(Lin et al., 1990), thermosetting-based binder (Strivens, 1960), solid polymer solution 

(SPS), and water based system (Anwar et al., 1995; German and Bose, 1997). 

Development of a new binder system is not an easy task, therefore, a good understanding 

of binder attributes and the associated powder characteristics are very critical. Since MIM 

is still new in Malaysia, the opportunity to further develop this method is very promising 

(Subuki, 2010).  

This process begins by mixing selected powders and binders. The mixture is then 

granulated and injection molded into the desired shape. The polymer imparts viscous flow 

characteristics to the mixture to aid forming, die filling and uniformity of packing. After 

moulding, the binder is removed and the remaining powder structure was sintered. The 

product may then be further densified, heat treated, or machined to complete the 

fabrication process. The sintered products has the desirable complex shape and high 

precision as plastic injection moulding but is made of materials capable of performance 

levels unattainable with pure or filled polymers.  

 

1.2 Magnesium development 

 

Magnesium has high potential as a biomedical part. The critical advantage of Mg 

is its biodegradability. After a patient’s injuries have healed, additional surgery for the 

removal of an implant could be avoided. Thus, both inconvenience and risk for the patient, 

as well as costs, can be reduced significantly. Standard implant materials such as titanium 

or stainless steel still suffer from stress shielding problems, causing bone desorption and 
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implant loosening. On the other hand, degradable polymers, such as polyglycolic acid 

(PGA) or polylactide acid (PLA), are less suitable for load bearing applications due to 

their inferior mechanical properties. In contrast, novel Mg-Ca alloys show material 

properties matching those of cortical bone and are able to degrade fully into nontoxic 

elements essential for the human body (Wolff et al., 2012). Nevertheless, biomedical 

magnesium alloy require appropriate mechanical properties, suitable degradation rate in 

physiological environment, and what is most important, biosafety to human body (Li & 

Zheng, 2013).  Metal Injection Moulding (MIM) possesses a high potential for the 

economic production of such implants. Moreover, the MIM processing route enables the 

establishment of both nearly dense as well as porous structures, helpful for tissue in-

growth into the degrading implant (Osseo integration).  

Interestingly, the density of Mg is slightly less than natural bone which ranges 

from 1.8 to 2.1 g/cm3, while the elastic modulus of pure magnesium is 45 GPa and human 

bone varies between 40 and 57 GPa (Razavi et al., 2010; Feng & Han, 2010; Li et al., 

2004). However, the conventional processing of magnesium is limited by multi 

manufacturing steps and their complexity contributes to significantly higher cost of the 

final product. The economy factor represents the downside of many non-conventional 

manufacturing techniques such as powder metallurgy. Thus, there is a continuous quest 

for a technology that would allow reducing cost and at the same time improving the 

properties application (Czerwinski, 2008). 

 

1.3 Problem statement  

 

 In recent day, magnesium and its alloy are found to be extremely biocompatible 

and have similar properties to natural bone. This makes them an attractive material for 
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