

INVESTIGATION ON THE PHYSICAL PROPERTIES OF MAGNESIUM FEEDSTOCKS FOR METAL INJECTION MOULDING

by

NOORAIZEDFIZA BINTI ZAINON (1240510802)

A dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Material Engineering

UNIVERSITI MALAYSIA PERLIS 2018

DE	DECLARATION OF DISSERTATION			
Author's Full Name	NOORAIZEDFIZA BINTI ZAINON			
Title	INVESTIGATION ON THE PHYSICAL PROPERTIES OF MAGNESIUM FEEDSTOCKS FOR METAL INJECTION MOULDING			
Date of Birth	20 JULY 1983			
Academic Session	2017/2018			
I hereby declare that this d (UniMAP) and to be place	issertation becomes the property of Universiti Malaysia Perlis d at the library of UniMAP. This dissertation is classified as:			
CONFIDENTIA	L (Contains confidential information under the Official Secret Act 1997)*			
	Contains restricted information as specified by the organization where research was done)*			
✓ OPEN ACCESS	I agree that my dissertation to be published as online open access (Full Text)			
I, the author, give permissi purpose of research or acad if so requested above)	I, the author, give permission to reproduce this dissertation in whole or in part for the purpose of research or academic exchange only (except during the period of years, if so requested above)			
	Certified by:			
SIGNATURE	SIGNATURE OF SUPERVISOR			

UNIVERSITI MALAYSIA PERLIS

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with the period and reasons for confidentiality or restriction. Replace thesis with dissertation (MSc by Mixed Mode) or with report (coursework)

ACKNOWLEDGEMENT

Alhamdulillah, thanks to God Almighty for His blesses and strength that He has gave me to finish my research. Even though I had faced many challenges during my research that make my research progression becomes low as well as my motivation. However, thanks to Allah S.W.T and Prophet Muhammad S.A.W, finally I got strength to move on and capable to complete my research and thesis.

This thesis was dedicated to my late supervisor, Almarhumah Associated Professor Ir. Dr. Salmah Husseinshah for her supervision over this work. Her encouragements and guidance have always helps me to grow in knowledge and passion for my study. I would like to express my deepest gratitude to my main and co supervisor, Dr. Rozyanty binti Rahman and Dr. Mohd Afian bin Omar for inputs and assistance in helping me to complete this research. I would like to take this opportunity to express my appreciation to the Dean of School of Materials Engineering, PM Dr. Khairel Rafizi Ahmad and Dean of School of Manufacturing Engineering, PM Dr, Khairul Azwan Ismail for their support in this study. My sincere thanks go to my friends and colleagues in School of Manufacturing Engineering and SIRIM AMREC for their supports and constructive discussions that aided me throughout the research. To Universiti Malaysia Perlis, I extend my gratitude for providing all the facilities and opportunity for me to pursue my doctoral degree.

Last but not least, I would like to thank my family members for their unfailing love and moral supports. They have never ceased to encourage me and motivate me all the time. Finally, I want to express my appreciations to my beloved family for their love and encouragement. Thanks you very much for supporting me every step of the way.

TABLE OF CONTENTS

		IAGE
THES	SIS DECLARATION	i
ACK	NOWLEDGEMENT	ii
TABI	LE OF CONTENTS	iii
LIST	OF FIGURES	ix
LIST	OF TABLES	xiv
LIST	OF ABBREVIATIONS	xvi
LIST	OF SYMBOLS	xviii
ABST	'RAK	XX
ABST	TRACT	xxi
CHAI	PTER 1: INTRODUCTION	
1.1	Metal injection molding	1
1.2	Magnesium development	2
1.3	Problem statement	3
1.4	Objectives	5
1.5	Novelty and Significant of the study	6
1.6	Scope of work	6
1.7	Structure of Dissertation	7

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction to Magnesium		9
	2.1.1 Magnesium is Biomaterials	12

2.2	Powder	r Metallurgy	13
2.3	Backgr	ound and Key Trend of Metal Injection Molding	14
2.4	Detail	Process Outline	16
2.5	Powder	r Characteristics	18
2.6	Binder	s for Metal Injection Molding	20
2.7	Feedsto	ocks Characterization	27
	2.7.1	Critical Volume Powder Concentration and Optimum Loading by Torque Rheometry.	28
	2.7.2	Flow Characteristics: Rheology as a Function of Shear Rate, Temperature, and Particle Attributes	31
2.8	Mixing		34
2.9	Injectio	on Molding	36
	2.9.1	Molding Parameters	38
2.10	Debind	ling Process	40
2.11	Sinteri	ng	43
2.12	Common Defects in Metal Injection Molding 44		
2.13	The Di	fferences of Current Process and Metal Injection Molding	48
2.14	Recent Techno	Development of Metal Injection Molding Material and logy	49
2.15	Curren	t Fabrication Method on Magnesium Parts	57
2.16	Potenti	al Metal Injection Molding in Producing Magnesium Parts	57
2.17	Present Process	Application and Future Opportunities for Magnesium sing	59
2.18	Advant	tages and Limitations of Metal Injection Molding	61
2.19	Summa	ary of literature reviews	64

CHAPTER 3: METHODOLOGY

3.1	Flow o	of the Methodology	67
3.2	Mater	al Characterization	69
	3.2.1	Metal Powder	69
	3.2.2	Binder	69
3.3	Critica Deterr	al Powder Volume Concentration (CPVC) and Optimal Loading nination	71
	3.3.1	Oil Absorption Test	71
	3.3.2	Mathematical Models	72
	3.3.3	Torque Measurement	73
3.4	Feedst	cocks Preparation	75
	3.4.1	Composition and Variation of Formulation	75
3.5	Feedst	cock Characterization	79
	3.5.1	Torque Rheometry	80
	3.5.2	Capillary Rheology	80
	3.5.3	Injection Molding	84
	3.5.4	Properties Characterization of the Green Molded Parts	85
	3.5.5 •	Solvent Debinding	87
	3.5.6	Scanning Electron Microscopy (SEM)	90
3.60	Sinter	ng	91
	3.6.1	Density and porosity analysis	92
	3.6.2	Morphology analysis	93

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1	Material Characterization		94
	4.1.1	Metal Powder	94

	4.1.2	Binder Cor	istituent	97
		4.1.2.1	Paraffin Wax (PW)	98
		4.1.2.2	Palm Stearin (PS)	100
		4.1.2.3	High Density Polyethylene (HDPE)	101
		4.1.2.4	Waste Rubber (WR)	103
		4.1.2.5	Waste Plastic (WP)	104
		4.1.2.6	Stearic Acid (SA)	106
		4.1.2.7	Zinc Stearate (ZS)	107
4.2	Critical	Powder Volu	ume Concentration (CPVC) and Optimal Loading	108
	4.2.1	Oil Absorp	tion Test on the Magnesium Powder	108
	4.2.2	Relative Vi	iscosity	112
	4.2.3	Torque evo	lution curves for different powder loading	113
	4.2.4	Torque Me	asurements on the Magnesium Feedstocks	115
	4.2.5	Feedstocks	Morphology	116
4.3	Rheolog	gy Properties	of the Feedstocks at Different Powder Loading	118
	4.3.1	Effect of sh	ear rate on the Feedstocks Rheology	120
	4.3.2	Yield stress	s of the Feedstocks	125
	4.3.3	Melt Flow	Rate (MFR) of the Feedstocks	127
Ő	4.3.4	Effect of te	mperature on the Feedstocks Rheology	128
Q	4.3.5	Moldability	y index of the Feedstocks	133
4.4	Effect o	f Different V	Vetting Agent in the Binder Systems	134
	4.4.1	Torque evo Different W	lution curves of the Feedstocks Prepared with Vetting Agent	134
	4.4.2	Capillary R Different V	Theometer test for the Feedstocks Prepared with Vetting Agent	137

142
146
148
149
152
160
162
162
162
165
170
172
173
175
176
180
182
183
185
187

	4.9.2	Effect of Temperature and Immersion Time on the Solvent Debinding Rate	189
	4.9.3	Effect of Surface Area to Volume Ratio (ψ) on the Solvent Debinding Rate	193
	4.9.4	Diffusion and Dissolution Stages Evaluation during Debinding	195
	4.9.5	Activation Energy for Diffusion and Dissolution Stages during Debinding	198
	4.9.6	Microstructure of Brown Parts	200
4.10	Sinterin	g of PWPEWPSA Brown Parts	202
	4.10.1	Morphology of the Magnesium Part Sintered at Various Temperature	202
	4.10.2	Density and porosity of PWPEWPSA Sintered Parts	207
4.11	Summar	ry of Chapter 4	207
CHA	PTER 5:	CONCLUSION AND FUTURE WORK	
5.1	Conclus	sion	211
5.2	Future V	Work	212
DEEL			010
REFI	CRENCE		213
LIST	OF AWA	ARDS	229
LIST	OF PUB	LICATIONS	230
APPE	ENDIX A		231
APPE	ENDIX B		232
APPE	ENDIX C		233
APPE	ENDIX D		234
APPE	ENDIX E		235
APPE	ENDIX F		236

LIST OF FIGURES

NO.		PAGE
2.1	Schematic diagram of metal injection molding.	18
2.2	Comparison in torque rheometers of homogenous and inhomogeneous feedstock.	36
2.3	Real/possible applications of biodegradable magnesium implants summarized by Chen et al (2014). (a) Cardiovascular stents, Germany; (b) MAGNEZIX screw, Europe; (c) microclip for laryngeal microsurgery; (d) biodegradable orthopedic implants; (e) wound closing devices.	61
3.1	Flow of the methodology.	67
3.2	The dimensions of the green molded part that need to be recorded.	86
3.3	Diagrammatic of solvent debinding.	88
3.4	Sintering profile for Mg feedstocks.	91
3.5	Set up of the sample for the sintering process.	92
4.1	The morphology of the magnesium powder.	95
4.2	The distribution of powder particle size	95
4.3	EDS image of the powder particles	96
4.4	Distribution composition chart for magnesium powder	97
4.5	DSC curve for paraffin wax.	99
4.6	DTG curve for paraffin wax.	99
4.7	DSC curve for palm stearin.	100
4.8	DSC curve for HDPE.	102
4.9	TGA curve for HDPE.	103
4.10	DTG curve for waste rubber.	104
4.11	The DSC curve for waste plastic.	105
4.12	TGA curve for waste plastic.	106

NO.		PAGE
4.13	DSC curve for stearic acid.	107
4.14	Mixing torque versus time at the various levels of oleic acid addition of Mg feedstock.	110
4.15	Torque and temperature of Mg feedstock for different oleic acid volume.	111
4.16	Torque evolution curve of Mg feedstock at different powder loading.	114
4.17	SEM observation of Mg feedstock with different formulation (a) F1, (b) F2, (c) F3, d) F4, and (e) F5.	117
4.18	Softening and beginning temperature of Mg feedstocks.	119
4.19	The viscosity versus shear rate of Mg feedstock at (a) $T = 120$ °C, (b) $T = 130$ °C, and (c) $T = 140$ °C.	122
4.20	Log viscosity versus log shear rate of Mg feedstocks at different temperature (a) T= 120 °C, (b) T= 130 °C, and (c) T= 140 °C.	124
4.21	Shear stress versus shear rate of Mg feedstocks at 140 °C.	126
4.22	MFR for Mg feedstocks as a function of temperature at different powder loading.	128
4.23	Ln viscosity versus absolute temperature of Mg feedstock with different loading at shear rate of 1000 s^{-1} .	129
4.24	Determination of powder loading region.	131
4.25	Torque evolution curves during compounding of Mg feedstocks with different wetting agent at various formulation.	135
4.26	Average on mixing torque for different wetting agent.	137
4.27	Average deviation on mixing torque for different wetting agent.	137
4.28	Log shear stress versus log shear rate of Mg feedstocks prepared with different wetting agent for 65 vol% powder loading at different temperature.	139
4.29	Log viscosity versus log shear rate of Mg feedstocks prepared with different wetting agent for 65 vol% powder loading at different temperature.	141

NO.		PAGE
4.30	Ln viscosity versus absolute temperature of Mg feedstocks with different wetting agent at variuos powder loading under fixed shear rate.	143
4.31	Correlation of activation energy and powder/binder content of Mg feedstocks.	146
4.32	Moldability index of Mg feedstocks containing different wetting agent in the binder system at different temperature.	148
4.33	Torque evolution curves during compounding the Mg feedstocks prepared with different additive components.	150
4.34	Average on mixing torque for Mg feedstocks prepared with different additive components.	151
4.35	Average deviation on mixing torque for Mg feedstocks prepared with different additives.	152
4.36	Log shear stress versus log shear rate of Mg feedstock prepared with different additive component for 65 vol.% powder loading at different temperature.	153
4.37	Log shear stress versus log shear rate of Mg feedstocks prepared with different additive components at temperature 140 °C.	154
4.38	Log viscosity versus log shear rate of Mg feedstocks prepared with different additive components for 65 vol.% powder loading at different temperature.	156
4.39	Log viscosity versus log shear rate of Mg feedstocks prepared with different additive components at temperature 140 °C.	157
4.40	En viscosity versus absolute temperature for Mg feedstock with different additive components at various powder loading under fixed shear rate (1000 s ⁻¹).	159
4.41	Moldability index of Mg feedstocks containing different additive components in the binder system at different temperature.	161
4.42	Torque evolution curves during compounding the Mg feedstocks prepared with different backbone polymer.	163
4.43	Average on mixing torque for Mg feedstock prepared with different backbone polymer.	164
4.44	Average deviation on mixing torque for Mg feedstock prepared with different backbone polymer.	165

xi

NO.		PAGI
4.45	Log shear stress versus log shear rate of Mg feedstocks prepared with different backbone polymer for 65vol.% powder loading at different temperature.	166
4.46	Log shear stress versus log shear rate of Mg feedstocks prepared with different backbone polymer for various powder loading at temperature 140 °C.	167
4.47	Log viscosity versus log shear rate of Mg feedstocks prepared with different backbone polymer for 65vol.% powder loading at different temperature.	168
4.48	Log shear stress versus log shear rate of Mg feedstocks prepared with different backbone polymer for various powder loading at temperature 140 °C.	168
4.49	Ln viscosity versus absolute temperature of Mg feedstocks with different backbone polymer at various powder loading under fixed shear rate (1000 s ⁻¹).	169
4.50	Moldability index of Mg feedstocks containing different backbone polymer in the binder system at different temperature.	173
4.51	Green molded part.	176
4.52	Flow mark defect.	178
4.53	Powder/binder separation defect.	178
4.54	Shrinkage on the green molded parts at different dimensions for various powder loading.	180
4.55	Graph of density of green molded parts for various powder loading.	181
4.56	Scanning electron micrograph of fracture surface and outer surface of green molded parts containing different powder loading.	184
4.57	The schematics of solvent debinding process.	188
4.58	The relation of extracted temperature and immersion time on the amount of binder extracted ($\psi = 1.01$).	190
4.59	Temperature influence on the debinding rate for molded parts with different surface area to volume ratio.	191
4.60	Defects occurs during solvent debinding at 80 °C.	192

NO.

	PAG
Total soluble binder extracted at temperature of 60 °C.	194
Schematics of the solvent pathway in the molded part during early stage of debinding process for a) $\psi = 0.95$, b) $\psi = 1.01$, and c) $\psi = 1.03$.	195
Variation of ln (1/F) with immersion time over square of shape factor at different temperature as a function of surface area to volume ratio (a) $\psi = 0.95$, (b) $\psi = 1.01$, and (c) $\psi = 1.03$.	197
The plots of Ln diffusion coefficient versus absolute temperature Mg molded parts.	199
The SEM on fracture surface of Mg molded parts as a function of extraction time (a) $t = 10$ minutes, (b) $t = 60$ minutes, (c) $t = 180$ minutes, (d) $t = 360$ minutes.	201
Fracture surface of the Mg part after sintering at 450 °C.	203
Fracture surface of the Mg part after sintering at 550 °C.	203
Fracture surface of the Mg part after sintering at 640 °C.	204
Two sphere sintering model for mass transport mechanism (a) initial point of contact, (b) surface transport mechanism, and (c) bulk transport mechanism.	206
	Total soluble binder extracted at temperature of 60 °C. Schematics of the solvent pathway in the molded part during early stage of debinding process for a) $\psi = 0.95$, b) $\psi = 1.01$, and c) $\psi = 1.03$. Variation of ln (1/F) with immersion time over square of shape factor at different temperature as a function of surface area to volume ratio (a) $\psi = 0.95$, (b) $\psi = 1.01$, and (c) $\psi = 1.03$. The plots of Ln diffusion coefficient versus absolute temperature Mg molded parts. The SEM on fracture surface of Mg molded parts as a function of extraction time (a) t = 10 minutes, (b) t = 60 minutes, (c) t = 180 minutes, (d) t = 360 minutes. Fracture surface of the Mg part after sintering at 450 °C. Fracture surface of the Mg part after sintering at 640 °C. Two sphere sintering model for mass transport mechanism (a) initial point of contact, (b) surface transport mechanism, and (c) bulk transport mechanism.

LIST OF TABLES

NO.		PAGE
2.1	Properties of pure magnesium.	10
2.2	The physical and mechanical differences between bone and metals.	12
2.3	Defects frequently found in molding.	46
2.4	Defects frequently found in debinding process.	47
2.5	Comparison of MIM attributes with other fabrication techniques.	49
2.6	The potential components in automotive sector.	59
3.1	Mathematical model developed by several researchers.	73
3.2	Compounding conditions of the feedstocks based on different wetting agent in the binder system.	76
3.3	Compounding condition of the feedstock with different additives in the binder system.	77
3.4	Compounding condition of the feedstocks prepared with different backbone polymer.	78
3.5	Injection molding parameter.	84
4.1	Characteristics of magnesium powder.	96
4.2	Characteristics of the binders.	98
4.3	Torque recorded at each addition of oleic acid.	110
4	The relative viscosity of the Mg feedstocks.	113
4.5	Torque rheology parameter of Mg MIM feedstock.	116
4.6	The flow behavior index (<i>n</i>) of the Mg feedstocks at temperature of 140 $^{\circ}$ C.	125
4.7	Yield stress of Mg feedstocks at 140 °C.	127
4.8	Values of no, Ea, and R2 of Mg feedstocks with different powder loading at shear rate of 1000 s-1.	130

NO.		PAGE
4.9	Moldability index value for Mg feedstocks at reference shear rate of $1000s^{-1}$.	132
4.10	The weight of the components in the Mg feedstocks.	133
4.11	The values of <i>n</i> and K of Mg feedstocks prepared with different wetting agent.	142
4.12	The value of η_0 , E_a and R_2 for PWPESA and PSPESA Mg feedstocks.	144
4.13	The weight of the components in the Mg feedstocks.	149
4.14	The values of n and K for Mg feedstocks with different additive components.	158
4.15	The values of η_0 , E_a , and R_2 for PWPESA and PWPEZN Mg feedstocks.	160
4.16	The weight of the component in the Mg feedstocks.	162
4.17	The values of n and K of Mg feedstocks containing HDPE. HDPE/WP, and HDPE/WR as a backbone polymer.	169
4.18	The values of η_o , E_a , and R_2 for feedstocks with HDPE, HDPE/WP and HDPE/WR as a backbone polymer.	171
4.19	The summary of flow behavior index, activation energy, and moldability index of Mg feedstocks at various formulation.	174
4.20	The dimensions of the green molded parts for various powder loading.	179
4.21	The density, porosity and density reduction for the green molded parts.	181
4.22	The 3 point bending test results of molded parts with various powder loading.	182
4.23	The density, volume, and surface area to volume ratio of the molded parts for different powder loading.	186
4.24	Efficient diffusivity of the soluble binder at different temperature.	198
4.25	The activation energy of the Mg molded part at dissolution and diffusion stage.	199

LIST OF ABBREVIATIONS

- 2C-PIM Two Color Powder Injection Molding
- AAHDPE Acrylic Acid Grafted High Density Polyethylene
- **CBVC** Critical Binder Volume Concentration
- CPVC Critical Powder Volume Concentration by original copyrigh
- DSC Differential Scanning Calorimetric
- ECAP Equal Channel Angular Pressing
- HDPE High Density Polyethylene
- HIP Hot Isotactic Pressing
- MFR Melt Flow Rate
- Magnesium Mg
- Mg-Ca Magnesium Calcium Alloy
- MIM Metal Injection Molding
- Metal Injection Molding-Space Holder MIM-SH
- PEG Polyethylene Glycol
- PF Powder Forging
- Polyglycolic Acid PGA
- PIM Powder Injection Molding
- PLA Polylactide Acid
- PM Powder Metallurgy
- PS Palm Stearin
- PVT Pressure-Volume-Temparature
- PW Paraffin Wax

SA Stearic Acid

- Scanning Electron Micrograph SEM
- Thermal Gravimetric Analysis TGA
- **Totalized Torque** TTQ
- UPM Ultrasonic Powder Machine
- UTM Ultimate Tensile Machine
- Vol.% Volume Percent
- WP Waste Plastic
- WR Waste Rubber
- Wt.% Weight Percent
- X-Ray Diffraction XRD
- ZS Zinc Stearate

Κ

worioinal copyright othisitemisprotection Constant indicating the viscosity of the melt flow

LIST OF SYMBOLS

E_a	Flow Activation Energy
T_b	Beginning Temperature
ρ	Density
Q	Flow Rate
Q_b	Activation energy for Diffusion/Dissolution
Р	Force
E _{frict}	Friction Energy
R	Gas Constant
Н	Homogeneity
H_{o}	Initial Mixture Homogeneity
R^2	Linear Correlation Coefficient
т	Mass
М	Mean
α	Moldability Index
η_o	Reference Viscosity
η_r	Relative Viscosity
γ	Shear Rate
n	Shear Sensitivity/ Flow Index/ Power Law Index
τ	Shear Stress
T_a	Softening Temperature
E_{sp}	Specific Energy

${\cal C}_{feed}$	Specific Heat
S	Speed
Ψ	Surface Area per Volume Ratio
T_{oh}	Temperature Overheat
η	Viscosity
V	Volume
W	Weight
E_t	Work Energy
σ	Yield Strength
	orotected by origi
othisit	anist

Siasatan Terhadap Sifat-Sifat Fizikal Bahan Mentah Magnesium untuk Suntikan Logam Beracuan

ABSTRAK

Magnesium dan aloinya didapati amat bioserasi dan mempunyia sifat-sifat yang serupa dengan tulang semulajadi. Ini menjadikan mereka sebagai bahan yang menarik untuk bahagian-bahagian yang terbiodegredasi seperti implan bioperubatan. Memandangkan implan-implan bioperubatan adalah kecil dan berbentuk rumit, teknik pengacuanan suntikan logam (MIM) dilihat sebagai amat sesuai untuk bahagian-bahagian yang mempunyai bentuk hampir dengan produk akhir. Kajian ini mengkaji tentang sifat-sifat fizikal bahan mentah magnesium untuk proses penyuntikan acuan logam. Kajian terperinci bagi kelakuan bahan mentah yang telah dijalankan adalah termasuk penentuan muatan kritikal, kinetik pencampuran, pembelajaran reologi, sifat-sifat magnesium teracuan, penyahikatan larutan, dan pensinteran. Pengikat yang digunakan dalam kajian ini adalah lilin parafin (PW), sterin sawit (PS), asid sterik (SA), stearate zink (ZS), polietilena berketumpatan tinggi (HDPE), sisa getah (WR), dan sisa plastik (WP). Kepekatan kritikal isipadu serbuk (CPVC) ditentukan melalui ujian serapan minyak pada suhu bilik. Dalam kajian ini, sifat-sifat dan kelakuan reologi bagi bahan mentah magnesium untuk penyuntikan acuan disiasat dengan menggunakan reometer kapilari. Selepas suntikan pengacuanan, ketumpatan, kekuatan hijau dan morfologi bahagian yang diacuankan telah dinilai menggunakan konsep ketumpatan Archimedes, ujian pembengkokak 3 titik, dan mikrograf pengimbasan elektron (SEM). Kesan masa dan suhu larut lesap terhadap proses penyahikatan larutan bagi bahagian yang telah diacuan disiasat. Dalam proses ini, molekul-molekul bagi lilin parafin dan asid sterik disingkirkan daripada magnesium teracuan dengan kaedah merendam ke dalam larutan heptana. Kemudian, kadar penyahikatan larutan disiasat di bawah keadaan yang berbeza seperti masa, suhu, dan nisbah luas permukaan terhadap isipadu. Peratusan kadar kehilangan jisim bagi lilin parafin dan asid sterik dikira dan struktur pori-pori dianalisa menggunakan SEM. Proses pensinteran telah dijalankan dalam 2 kitaran iaitu kitaran penyahikatan dan kitaran pensinteran. Untuk kitaran penyahikatan, suhu yang digunakan adalah 450 °C dengan kadar pemanasan 1K/min dan masa rendaman adalah 1 jam. Manakala bagi kitaran pensinteran suhu yang ditetapkan adalah 640 °C dengan kadar pemanasan 5K/min selama 8 jam. Keputusan CPVC yang diperolehi adalah 69 vol.% dan muatan serbuk optimum adalah 65 vol.%. Keputusan reologi menunjukkan bahawa bahan mentah magnesium berkelakuan pseudoplastik dan mencadangkan bahawa bahan mentah yang mengandungi PWPEWPSA dalam sistem pengikatnya sebagai bahan mentah yang terbaik. Suhu yang optimum adalah 60 °C dengan masa rendaman 360 minit. Kemeresapan efektif adalah tinggi bagi peringkat pembubaran berbanding peringkat penyebaran. Tenaga pengaktifan pembubaran adalah sekitar 3-5 kali lebih tinggi berbanding tenaga pengaktifan penyebaran. Ketumpatan bahagian tersinter yang diperolehi adalah 1.134 g/cm³.

Investigation on the Physical Properties of Magnesium Feedstocks for Metal Injection Moulding

ABSTRACT

Magnesium and its alloy are found to be extremely biocompatible and have similar properties to natural bone. This makes them an attractive material for the manufacture of biodegradable parts such as biomedical implant. As biomedical implants are rather small and complex in shape, the metal injection moulding (MIM) technique seems to be well suited for the near net shape mass production of such parts. This research investigated the physical properties of the magnesium feedstocks for metal injection moulding process. The detail study on the feedstocks behavior was conducted including critical loading determination, mixing kinetics, rheology study, green molded properties, solvent debinding process, and sintering. The binder used in this study were paraffin wax (PW), palm stearin (PS), stearic acid (SA), zinc stearate (ZS), high density polyethylene (HDPE), waste rubber (WR), and waste plastic (WP). The critical powder volume concentration (CPVC) of Mg powder was conducted using oil absorption test at room temperature. In this study, the rheological properties and behaviors of magnesium metal injection moulding feedstock was investigated using capillary rheometry. After injection moulding, the density, strength, and morphology of the green molded part was investigated using Archimedes density concept, 3 point bending test, and scanning electron micrograph, respectively. The effect of the leaching time and temperature on the solvent debinding process of Mg metal injection moulding (MIM) green part has been investigated. In this study, both soluble binder, paraffin wax and stearic acid molecules were removed from the Mg green part by immersing compact parts in heptane solution. Then, the solvent debinding rate has been investigated under the conditions of different leaching time, temperature, and surface area to volume ratio. The weight loss percentages of paraffin wax and stearic acid were calculated and the pores structure was analyzed by scanning electron micrograph. The effective diffusivity and activation energy of the soluble binder have also been studied. Sintering process has been carried out in 2 cycles which are debinding cycle and sintering cycle. For debinding cycle, the temperature was 450 °C with heating rate 1K/min and soaked for 1 hour. While the sintering cycle was set at 640 °C with heating rate of 5K/min and sintered for 8 hours. The result obtained for CPVC was 69 vol.% and the optimum powder loading was at 65 vol.%. The rheological results exhibited the pseudoplatic behavior and suggested feedstocks containing PWPEWPSA in the binder system as the best feedstocks. The optimum temperature was 60 °C with immersion time of 360 minutes. Effective diffusivity was higher at dissolution stage as compared to diffusion stage. The dissolution activation energy (Q) was about 3-5 times higher than diffusion activation energy. The density of obtained sintered part was 1.134 g/cm^3 .

CHAPTER 1

INTRODUCTION

1.1 Metal injection moulding

Metal injection moulding (MIM) is a process by which powder is shaped into complex components using tooling and injection moulding machines that are very similar to those used in plastic injection moulding. MIM combines the versatility and high productivity of the injection moulding with the powder metallurgy technique of sintering (German and Bose, 1997). Then, since the sintering of a compacted powder is alike for a part obtained by injection or press moulding, the key points in MIM turned out to be how to make the metal flow into the mold and how to retain the shape of the molded part until it begins the sintering. The problem is commonly solved by dispersing the powdered metal into a binder to form a paste that flows at high temperature and becomes room temperatures. Consequently, the molded part retains its shape after injection moulding and may be handled and processed safely.

In MIM process, the metallic powders are injected into a mold. Plasticity and fluidity of the powder is essential for this to take place and this is achieved by the use of binder material. All binder systems are based on two important major groups of ingredients, polymers and waxes with minor additions of lubricants, surfactants or coupling agents. After injection moulding, the binders are then removed in a process known as debinding and the remaining "brown" part is then sintered at elevated temperatures to achieve a densified parts (Sidambe et al., 2012). Homogeneous feedstock is produced from an appropriate mixture of metal powder and an ideal binder system. Up to now, there are various binder systems have been developed for use in practice of the MIM such as wax (Weich, 1983) thermoplastic (Lin et al., 1990), thermosetting-based binder (Strivens, 1960), solid polymer solution (SPS), and water based system (Anwar et al., 1995; German and Bose, 1997). Development of a new binder system is not an easy task, therefore, a good understanding of binder attributes and the associated powder characteristics are very critical. Since MIM is still new in Malaysia, the opportunity to further develop this method is very promising (Subuki, 2010).

This process begins by mixing selected powders and binders. The mixture is then granulated and injection molded into the desired shape. The polymer imparts viscous flow characteristics to the mixture to aid forming, die filling and uniformity of packing. After moulding, the binder is removed and the remaining powder structure was sintered. The product may then be further densified, heat treated, or machined to complete the fabrication process. The sintered products has the desirable complex shape and high precision as plastic injection moulding but is made of materials capable of performance levels unattainable with pure or filled polymers.

1.2 Magnesium development

Magnesium has high potential as a biomedical part. The critical advantage of Mg is its biodegradability. After a patient's injuries have healed, additional surgery for the removal of an implant could be avoided. Thus, both inconvenience and risk for the patient, as well as costs, can be reduced significantly. Standard implant materials such as titanium or stainless steel still suffer from stress shielding problems, causing bone desorption and

implant loosening. On the other hand, degradable polymers, such as polyglycolic acid (PGA) or polylactide acid (PLA), are less suitable for load bearing applications due to their inferior mechanical properties. In contrast, novel Mg-Ca alloys show material properties matching those of cortical bone and are able to degrade fully into nontoxic elements essential for the human body (Wolff et al., 2012). Nevertheless, biomedical magnesium alloy require appropriate mechanical properties, suitable degradation rate in physiological environment, and what is most important, biosafety to human body (Li & Zheng, 2013). Metal Injection Moulding (MIM) possesses a high potential for the establishment of both nearly dense as well as porous structures, helpful for tissue ingrowth into the degrading implant (Osseo integration).

Interestingly, the density of Mg is slightly less than natural bone which ranges from 1.8 to 2.1 g/cm³, while the elastic modulus of pure magnesium is 45 GPa and human bone varies between 40 and 57 GPa (Razavi et al., 2010; Feng & Han, 2010; Li et al., 2004). However, the conventional processing of magnesium is limited by multi manufacturing steps and their complexity contributes to significantly higher cost of the final product. The economy factor represents the downside of many non-conventional manufacturing techniques such as powder metallurgy. Thus, there is a continuous quest for a technology that would allow reducing cost and at the same time improving the properties application (Czerwinski, 2008).

1.3 Problem statement

In recent day, magnesium and its alloy are found to be extremely biocompatible and have similar properties to natural bone. This makes them an attractive material for