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Kemelesetan Penilaian Emosi di Kalangan Pesakit Strok berdasarkan 

Pengiktirafan Corak dengan menggunakan Analisa Kekerapan-Masa 

 

ABSTRAK 

 

Persepsi emosi pada pesakit strok terjejas kerana terdapat kelainan pada otak. Di sini, 

tesis ini memberi tumpuan kepada kesan kerosakan otak kiri dan kerosakan otak kanan 

ke arah pengiktirafan emosi. Disebabkan pengiktirafan emosi terjejas, adalah satu cabaran 

untuk pesakit strok untuk menyatakan diri mereka dalam komunikasi harian. Oleh itu, ia 

adalah inspirasi untuk melihat kemungkinan untuk meramalkan keadaan emosi pesakit 

untuk mengelakkan strok berulang. Dalam kerja ini, electroencephalograph (EEG) 

daripada 19 pesakit kerosakan otak kiri (LBD), 19 pesakit kerosakan otak kanan (RBD) 

dan 19 kawalan biasa (NC) dikumpulkan sebagai pangkalan data. Semasa pengumpulan 

data, enam emosi (sedih, jijik, ketakutan, kemarahan, gembira dan mengejutkan) 

diinduksi dengan menggunakan rangsangan visual audio. Selepas menormalkan, isyarat 

EEG ditapis dengan menggunakan penapis band-pass pesanan Butterworth ke-6 pada 

frekuensi cut-off 0.5 Hz dan 49 Hz. Kemudian, teknik paket wavelet transform (WPT) 

dilaksanakan untuk melokalkan lima jalur frekuensi: alpha (8 Hz-13 Hz), beta (13 Hz-30 

Hz), gamma (30 Hz-49 Hz), alpha-to-gamma 8 Hz-49 Hz), beta-to-gamma (13 Hz-49 Hz). 

Sebaliknya, transformasi wavelet Q-factor yang ditala (TQWT) juga digunakan pada lima 

jalur frekuensi untuk mendapatkan 6 sub-band. Dalam WPT, empat keluarga wavelet 

dipilih: daubechies 4 (db4), daubechies 6 (db6), coiflet 5 (coif5) dan symmlet 8 (sym8). 

Eksponen Hurst (HE), analisis turun naik yang menjejaskan (DFA), analisis kuantifikasi 

ulangan (RQA) digunakan untuk mengekstrak eksponen korelasi, eksponen korelasi DFA, 

dan 11 langkah yang berbeza daripada plot berulang dari setiap kumpulan dan keluarga 

wavelet dan dikelaskan dengan menggunakan K jiran terdekat (KNN), rangkaian neural 

kebarangkalian (PNN) dan hutan rawak (RF). Peringkat pengkelasan dilakukan 

berdasarkan perbandingan antara tiga kumpulan dan juga antara enam emosi. 290 

kombinasi ciri-ciri yang dilakukan tetapi ciri yang paling penting dalam pengiktirafan 

emosi dan pengiktirafan kumpulan adalah masing-masing panjang garis pepenjuru (<L>) 

dan Peratusan Kemirunan Kemungkinan Entropi (RPDE). Langkah-langkah RQA 

didapati paling menyumbang dalam memberikan ketepatan klasifikasi yang tinggi. 

Sementara itu, eksponen korelasi seperti Hurst dan DFA didapati tidak cekap dalam 

klasifikasi emosi. Ketepatan pengiktirafan emosi meningkat dengan baik selepas ciri-ciri 

berubah menjadi skor dengan menggunakan algoritma Analisis Komponen Prinsip (PCA). 

Ketepatan klasifikasi emosi maksimum didapati dalam LBD (85.29%). Dalam klasifikasi 

kumpulan, RPDE telah memberikan ketepatan tertinggi (99.41%) melalui pengelas RF. 

Kumpulan LBD didapati mempunyai ketepatan purata yang lebih tinggi berbanding 

dengan kumpulan RBD yang menyokong 'hipotesis hemisfera kanan'. Hasil menunjukkan 

bahawa sistem pengiktirafan emosi yang dicadangkan boleh dipercayai dengan ketepatan 

klasifikasi yang boleh diterima yang membantu pemantauan emosi di kalangan pesakit 

strok serta orang yang sihat. Sementara itu, pengiktirafan kumpulan (LBD, RBD dan NC) 

boleh digunakan untuk mengenal pasti kehadiran strok LBD atau RBD. 
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Pattern Recognition Based Emotional Deficits Assessment in Stroke Patients using 

Time Frequency Analysis 

 

ABSTRACT 

 

Emotion perception in stroke patients is affected since there is abnormality in the brain. 

Here, this thesis focused on the impact of left brain damage and right brain damage 

towards emotion recognition. Due to the impaired emotion recognition, it is a challenge 

for stroke patients to express themselves in daily communication. Hence, it is inspiring to 

see the possibility to predict patient’s emotional state so as to prevent recurrent stroke. In 

this work, electroencephalograph (EEG) of 19 left brain damage patients (LBD), 19 right 

brain damage patients (RBD) and 19 normal control (NC) are collected as database. 

During data collection, six emotions (sad, disgust, fear, anger, happy and surprise) are 

induced by using audio visual stimuli. After normalization, EEG signals are filtered by 

using Butterworth 6th order band-pass filter at the cut-off frequencies of 0.5 Hz and 49 

Hz. Then, wavelet packet transform (WPT) technique is implemented to localize five 

frequency bands: alpha (8 Hz–13 Hz), beta (13 Hz–30 Hz), gamma (30 Hz–49 Hz), alpha-

to-gamma (8 Hz–49 Hz), beta-to-gamma (13 Hz–49 Hz). On the other hand, tuned Q-

factor wavelet transform (TQWT) is also applied on five frequency bands to obtain 6 sub-

bands. In WPT, four wavelet families are chosen: daubechies 4 (db4), daubechies 6 (db6), 

coiflet 5 (coif5) and symmlet 8 (sym8). Hurst exponents (HE), detrended fluctuation 

analysis (DFA), recurrence quantification analysis (RQA) are used to extract hurst 

correlation exponent, DFA correlation exponent, and 11 different measures out of 

recurrence plot from each band and wavelet family and are classified by using K-nearest 

Neighbour (KNN), Probabilistic Neural Network (PNN) and random forest (RF). 

Classification stage is done on comparison between three groups and also between six 

emotions. 290 combinations of feature are done but the most significant feature in 

emotion recognition and group recognition is mean of diagonal line length (<L>) and 

Recurrence Probability Density Entropy (RPDE) respectively. RQA measures are found 

to be most contributing in giving high classification accuracy. Meanwhile, correlation 

exponents such as Hurst and DFA are found inefficient in emotion classification. Emotion 

recognition accuracy is improved tremendously after the features are transformed into 

score by using Principle Component Analysis (PCA) algorithm. The maximum emotion 

classification accuracy is found in LBD (85.29 %). In group classification, RPDE has 

given the highest accuracy (99.41 %) through RF classifier. LBD group is found to have 

the higher average accuracy compared to RBD group which supports the ‘right 

hemisphere hypothesis’. The result shows that the proposed emotional recognition system 

is reliable with an acceptable classification accuracy which is helpful in emotion 

monitoring among stroke patients as well as healthy person. Meanwhile, group 

recognition (LBD, RBD and NC) can be used to identify the presence of LBD or RBD 

stroke.  
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CHAPTER 1 

 

INTRODUCTION 

 

  

1.1 Stroke and Its Impact on Emotion Recognition 

Previously, stroke is known medically as a cerebrovascular accident (CVA). It is 

a medical emergency where the blood supply to our brain is interrupted which causes 

sudden death of brain cell. These brain damages will cause slurring speech, memory loss 

and as well as paralysis depending on the area of damage. When the damage happened to 

be facial paralysis, emotion expression is almost impossible. This disability often become 

a challenge in daily communication with friends and family. According to the latest WHO 

data published in May 2014, stroke deaths in Malaysia reached 15, 497 or 12.19 % of 

total deaths. The age adjusted death rate is 80.59 per 100, 000 of population ranks 

Malaysia number 97 in the world (W.H.O., 2014). In a study, a total of 7668 stroke 

patients were recruited for analysis. On average, patients were aged 62.7 years (standard 

deviation of 12.5). Ischemic stroke accounts for 79.4% of the cohort with a slightly higher 

proportion of male patients (55%). Ischemic stroke incidence is estimated to increase 

annually by 29.5% and hemorrhagic stroke by 18.7% (Aziz, Lee, Ngah, Sidek, et al., 

2015).  

There are studies explaining about the emotional changes of post-stroke patients 

which cause psychological illnesses in certain cases (Visser & Annemarie, 2004). Due to 

the region of brain damage, patients are not able to perceive either positive or negative 

 
 

 
 

 
 

 
 

 
©This

 ite
m

 is
 p

ro
te

cte
d 

by
 o

rig
ina

l c
op

yr
igh

t 



2 
 

emotions (Reilly, Stiles, Larsen, & Trauner, 1995). Right brain damaged patients are 

likely to be good at perceiving positive emotions (Joan et al., 1990). Whereas, some stated 

that right brain is responsible in recognizing emotions, thus left brain damage does not 

cause impairment in emotion perception (Ehlers & Dalby, 1987; Heilman, Scholes, & 

Watson, 1975). In summary, although impairment for emotion perception was more 

frequently observed in individuals with RBD than with LBD, there were a very fair 

number of studies that found no differences between the two patients group 

(Rajamanickam, Murugappan, Norlinah, & Sundaraj et al., 2013). 

Stroke study concerning emotions and psychological aspect has been done 

clinically since decades ago. Recently, people are interested in emotion investigation and 

the effect of brain hemisphere region in emotion perception. Different methods and 

database has been carried out and collected in order to test their hypotheses 

(Rajamanickam et al., 2013). However, none has focused on using physiological data 

such as EEG and machine learning techniques to recognize emotions and investigate 

emotion deficits in stroke patients. For instance, in one paper (Karow, Marquardt, & 

Marshall, 2001), early detection of brain ischemia using EEG is done. However, emotion 

processing was not covered in this study. Meanwhile, in another paper (Foreman & 

Claassen, 2012), even though affective processing ability in left and right hemisphere 

brain-damaged patients was measured in isolated identification tasks, it was done without 

using EEG signal. 

Moreover, development of an intelligent emotional assessment system is very 

advantageous in Human-Computer Interaction (HCI) applications. HCI enables the 

human to interact with computer especially through human responses and behavior. Being 

inspired by the possibilities of human emotion recognition using physiological signals as 

the input, an emotional asssessment system for stroke patients using physiological signals 
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is the main purpose of this research. This system would be remarkably useful for a wide 

range of application especially in the area of psychology and socio-psychology. 

Communities like the workers in industries, students, as well as the patients in hospitals 

can make use of this application to predict their emotional states and also to maintain 

mental health from time to time. This is important to sustain the quality of human life in 

the society well-being.  

1.2 Research Problem Statement 

There are several challenges occurred in previous works regarding emotional 

stress assessment. Several modalities (visual, audio, audio-visual, recall paradigm and 

dyadic modalities) have been used to induce the desired emotional response in human but 

the limitation is that there are ethics in doing experiment on human being. Researchers 

are not allowed to put any participant into any hazardous situation or experiment that 

would give negative impact towards their health condition (Research Ethics Committee, 

2012). In this research case, the audio-visual stimuli used should not be too extreme in 

order to avoid emotional breakdown. There is no international standard database exists 

on this work and hence the efficient database for this work is highly inevitable for 

developing intelligent emotional stress assessment system. However, researchers believe 

that the physiological signals which response involuntarily in human body could be the 

most suitable measure to categorize the emotional states (Ekman & Friesen, 1987). This 

research work is aim to address the problems in the development of an intelligent 

emotional assessment system in stroke patients: 

i. Emotional EEG database is very important in signal processing. There is no vivid 

ground truth or any standard is proposed yet to determine the emotional stress 

state of an individual through different modalities. This forced the researchers to 

design their own emotion elicitation methods and data acquisition protocol. Most 
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of the researchers have considered and applied the universal emotional circumflex 

model for affective state assessment in psychological study (Russell, 1980). It is 

difficult to induce emotion among human and expect the same outcome from 

them. Indeed, human emotion is subjective; every human being would response 

differently for different emotional situations.  

ii. EEG feature extraction plays a major part in attributes selection. In signal 

processing, previously, most researchers have done their analysis by using 

statistical time domain methods. Later, frequency domain techniques such as fast-

fourier transform and spectral analysis has become very popular. However, these 

techniques are not sufficient enough to extract good quality attributes from EEG 

signal which has characteristics of non-stationary and non-linearity. It is also 

important to exclude unnecessary features because they cannot contribute to good 

accuracy in classification stage later.  

iii. According to literature, ‘right hemisphere hypothesis’ proposes that right brain is 

playing the major role in emotional processing regardless of valence. This 

statement suggests that there will be difference in emotion perception between 

LBD and RBD patients. However, it is difficult to classify these two groups and 

find out whether there is significant difference between them.  

iv. For emotion recognition among normal healthy human, according to the literature, 

emotional recognition rate is mostly between 40 % - 70 %. Only a few researchers 

can produce six-class emotion classification accuracy at 90 % and above.  
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