

Finite Element Analysis Of Type-7 Microcrack Penetration Induced By Haversian System

by

Nurul Najwa Mansor (1444311355)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

2018

UNIVERSITI MALAYSIA PERLIS

ACKNOWLEDGMENT

Firstly, syukur Alhamdulillah to Allah because He gives a chance and strength for me to continue and finish my research with precious journey. I would like to express gratitude to my main supervisor, Assoc. Prof. Ir. Dr. Ruslizam b. Daud because he gives me opportunity, valuable knowledge, kindness and guide me until the end of this journey.

High appreciation also given to Universiti Malaysia Perlis (UniMAP) and Ministry of High Education (MOHE) for funding my Phd study. Special thanks to my lovely fracture and damage mechanics committee, Khalilah, Syafiq Farhan, Mohd Nur Hanif, Anis Ayuni, Nur Izzawati, Fatin, Ooi Eang Pang, Ahmad and Hazraf for their kindness, help, suggestion and criticism on every step throughout this study. I also wish to thank to Mr. Zuki b. Wan Azman for useful discussion during conducting this research. I also thank to all Mechatronic postgrad collageus, in Mechanical, Mechatronic and Biomedical engineering who allow me to stay at the postgrad lab duirng study. Support from all my friends at Mechatronic school are unforgettable until the end.

Finally, I would like to thanks to my beloved husband for sacrifice over years and his responsibility and patience to take care of our son during my study. To my son thank you for gives me spirit to finish up my study. For my parents and family members who always support me at the back and keep pray for me, I wish many thanks.

ii

TABLE OF CONTENTS

DECI	LARATION OF THESIS	i
ACK	NOWLEDGMENT	ii
TABI	LE OF CONTENTS	iii
LIST	OF TABLES	ix
LIST	OF FIGURES	xiv
LIST	OF ABBREVIATIONS	xxi
LIST	OF SYMBOLS	xxii
ABST	'RAK	xxiv
ABST	RACT	XXV
CHAI	PTER 1 INTRODUCTION	1
1.1	Research background	1
	1.1.1 Bone fracture healing process	1
	1.1.2 Implant fixation failure	4
	1.1.3 Insufficient stress shielding effect	6
1.2	Problem statements	12
1.3	Research objectives	13
1.4	Scope	14
1.5	Thesis organization	14
CHAI	PTER 2 LITERATURE REVIEW	17
2.1	Chapter overview	17
2.2	Implant fixation failure	17

2.3	Types	of orthopaedic implant surgery	25
	2.3.1	Internal fixators	26
	2.3.2	External fixators	28
2.4	Effect	s microcrack formation in remodelling process	30
2.5	Influe	nce microcrack with micro level structure of cortical bone	32
2.6	Prima	ry and secondary osteon bone remodeling	36
	2.6.1	Haversian system interaction based on Kachanov theory	39
	2.6.2	Microcrack direction induced by Haversian canal shielding	42
2.7	Osteor	nal cracking solution	44
	2.7.1	Osteonal elastic and plastic yielding of microcracks	44
2.8	Fractu	re mechanics in bone and implant	45
	2.8.1	Fracture mechanism in bone	46
	2.8.2	Fracture mechanism in implant	50
2.9	Fractu	re parameter in cortical bone	51
	2.9.1	Stress intensity factor (SIF) analysis of fracture	52
	2.9.2	Strain energy release rate (SERR) analysis approach	55
	2.9.3	Crack tip open displacement (CTOD) and mouth displacement	
	٠	(CMOD)	55
2.10	Exper	imental and numerical solution for osteonal cracking	56
O	2.10.1	Finite element analysis for SIFs and SERR evaluation	61
	2.10.2	Collapse 8-node quadrilateral element	65
	2.10.3	Statistical analysis	66
2.11	Preser	t research issue: Type 7 Crack-osteon penetration	66
CHAF	PTER 3	METHODOLOGY	71
3.1	Resea	rch overview	71
3.2	Resea	rch design and methodology	71

3.3	Two d	imensional FE primary bone Type-7 fracture model	75
	3.3.1	Two-dimensional model generation of fractured primary bone	75
	3.3.2	Material properties of interstitial matrix	76
	3.3.3	Finite element assembly of primary bone	78
	3.3.4	Fracture parameter based on DEM and J-integral	81
	3.3.5	Sensitivity analysis and theoretical validation	89
3.4	Two d	imensional FE secondary bone Type-7 fracture model	97
	3.4.1	Two-dimensional model generation of fractured secondary bone	97
	3.4.2	Mechanical properties of interstitial matrix	99
	3.4.3	Finite element assembly of primary bone	100
	3.4.4	Fracture parameter of Type-7 secondary bone penetration	103
	3.4.5	Type-7 crack penetration modeling	104
	3.4.6	Statistical analysis	107
CHAI	PTER 4	RESULT AND DISCUSSION	109
CHAI 4.1	PTER 4 Chapte	er overview	109 109
CHAI4.14.2	PTER 4 Chapte Type -	RESULT AND DISCUSSION er overview 7 transverse crack penetration for primary bone	109 109 109
CHAI4.14.2	PTER 4 Chapte Type - 4.2.1	RESULT AND DISCUSSION er overview • 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration	109 109 109 109
CHAI4.14.2	PTER 4 Chapte Type - 4.2.1 4.2.2	RESULT AND DISCUSSION er overview 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration Mode I and Mode II Type-7 transverse crack for primary bone	109 109 109 109
CHAI4.14.2	PTER 4 Chapte Type - 4.2.1 4.2.2	RESULT AND DISCUSSION er overview • 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration Mode I and Mode II Type-7 transverse crack for primary bone crack penetration	 109 109 109 109 113
 CHAI 4.1 4.2 	PTER 4 Chapte Type - 4.2.1 4.2.2 4.2.3	 RESULT AND DISCUSSION er overview 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration Mode I and Mode II Type-7 transverse crack for primary bone crack penetration Mode I Type-7 transverse error analysis for primary bone crack 	 109 109 109 109 113
 CHAI 4.1 4.2 	PTER 4 Chapte Type - 4.2.1 4.2.2 4.2.3	 RESULT AND DISCUSSION er overview 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration Mode I and Mode II Type-7 transverse crack for primary bone crack penetration Mode I Type-7 transverse error analysis for primary bone crack penetration 	 109 109 109 109 113 116
 CHAI 4.1 4.2 	PTER 4 Chapte Type - 4.2.1 4.2.2 4.2.3 4.2.3	 RESULT AND DISCUSSION er overview 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration Mode I and Mode II Type-7 transverse crack for primary bone crack penetration Mode I Type-7 transverse error analysis for primary bone crack penetration Mode I Type-7 transverse crack shape correction function for 	 109 109 109 109 113 116
 CHAI 4.1 4.2 	PTER 4 Chapte Type - 4.2.1 4.2.2 4.2.3 4.2.3	 RESULT AND DISCUSSION er overview 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration Mode I and Mode II Type-7 transverse crack for primary bone crack penetration Mode I Type-7 transverse error analysis for primary bone crack penetration Mode I Type-7 transverse crack shape correction function for primary bone 	 109 109 109 109 113 116 118
 CHAI 4.1 4.2 	PTER 4 Chapte Type - 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4	 RESULT AND DISCUSSION er overview 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration Mode I and Mode II Type-7 transverse crack for primary bone crack penetration Mode I Type-7 transverse error analysis for primary bone crack penetration Mode I Type-7 transverse crack shape correction function for primary bone Strain energy release rate of Type-7 transverse crack for primary 	 109 109 109 109 113 116 118 121
4.1 4.2	PTER 4 Chapte Type - 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4	 RESULT AND DISCUSSION er overview 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration Mode I and Mode II Type-7 transverse crack for primary bone crack penetration Mode I Type-7 transverse error analysis for primary bone crack penetration Mode I Type-7 transverse crack shape correction function for primary bone Strain energy release rate of Type-7 transverse crack for primary bone crack penetration 7 longitudinal crack penetration for primary bone 	 109 109 109 109 113 116 118 121 130
 CHAI 4.1 4.2 C 4.3 	PTER 4 Chapte Type - 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.2.5 Type -	 RESULT AND DISCUSSION er overview 7 transverse crack penetration for primary bone Transverse stress-strain for primary bone crack penetration Mode I and Mode II Type-7 transverse crack for primary bone crack penetration Mode I Type-7 transverse error analysis for primary bone crack penetration Mode I Type-7 transverse crack shape correction function for primary bone Strain energy release rate of Type-7 transverse crack for primary bone crack penetration 7 longitudinal crack penetration for primary bone 	 109 109 109 109 109 113 116 118 121 130 121

	4.3.2	Mode I and Mode II Type-7 longitudinal crack for primary bone	
		crack penetration	134
	4.3.3	Mode I Type-7 longitudinal error analysis for primary bone crack penetration	136
	4.3.4	Mode I Type-7 longitudinal crack shape correction function for primary bone	138
	4.3.5	Strain energy release rate of Type-7 longitudinal crack for primary bone crack penetration	141
4.4	4 Type -	7 transverse microcrack penetration for secondary bone	151
	4.4.1	Stress-strain analysis for transverse secondary bone fracture	151
	4.4.2	Mode I Type-7 transverse microcrack for secondary bone penetration	154
	4.4.3	Statistical analysis of Type-7 Model for secondary microcrack penetration	161
	4.4.4	Theoretical validation of Type-7 transverse microcrack	
		penetration	162
	4.4.5	Type-7 transverse shape correction factor analysis	172
	4.4.6	Strain energy release rate for Type-7 transverse secondary	
		microcrack penetration	174
	4.4.7	Statistical analysis of strain energy release rate G_{TS}	179
4.5	5 Type-	7 longitudinal microcrack penetration for secondary bone	181
	G 4.5.1	Stress-strain analysis for longitudinal secondary bone fracture	181
	4.5.2	Mode I and Mode II Type-7 transverse microcrack for secondary	
		bone penetration	186
	4.5.3	Mode I statistical analysis for Type-7 microcrack penetration	192
	4.5.4	Theoretical validation of Type-7 longitudinal microcrack penetration	194
	4.5.5	Type-7 penetration for longitudinal shape correction factor	201

	4.5.6	Strain energy release rate for Type-7 longitudinal microcrack	
		penetration	204
	4.5.7	Statistical analysis of strain energy release rate	208
4.6	Type-7	7 primary and secondary fracture comparison based on homogeneity	and
	hetero	geneity of bone material.	210
	4.6.1	Comparison of stress-strain distribution between transverse and	
		longitudinal crack direction	210
	4.6.2	Comparison of fracture parameter between Type-7 transverse and	
		longitudinal primary bone	213
	4.6.3	Comparison of fracture parameter between Type-7 transverse and	
		longitudinal secondary bone	214
4.7	Resear	rch outcomes	218
	4.7.1	Type-7 FE algorithm for primary and secondary cortical bone	
		fracture	219
	4.7.2	Robustness of DEM and J-integral analysis for for primary and	
		secondary cortical bone fracture	220
	4.7.3	Type-7 Mode I secondary bone penetration induced by	
		Haversian system interaction for transverse and longitudinal	
		fracture	222
	4.7.4	Analytical validation of Type-7 secondary bone penetration	
	, is	induced by stress traction of Haversian canal-microcrack	
Ô		interaction for transverse and longitudinal fracture	224
	4.7.5	Stress interaction of Haversian system to drive Type-7	
		penetration	226
	4.7.6	Strain energy release rate in Type-7 penetration	226
CHAI	PTER 5	CONCLUSIONS	228
5.1	Resear	rch conclusion	228
5.2	Resear	rch contributions	231
	5.2.1	Theoretical contribution based on numerical assessment	231

5.2.2	Fracture behavioural assessment of Haversian system Type-7	
	microcrack penetration	232
5.2.3	Knowledge contribution to clinical practice implant fixation	232
5.3 Reco	ommendation for future works	233
REFEREN	CES	234
APPENDIX	X A	246
APPENDIX	K B	250
APPENDIX		253
APPENDIX	D QY	256
APPENDIX	E C	262
LIST OF P	UBLICATIONS	267
othis	item is protected by other	

LIST OF TABLES

Table 1.1:	LEFM and EPFM approches in crack mechanism of cortical	
	bone	10
Table 2.1:	Type of fixation and percentage implant failure (Kumar et al.,	
	2016)	19
Table 2.2:	Examples of implant failure (Kumar et al., 2016)	20
Table 2.3:	Summary of implant failure sources	22
Table 2.4:	Types of surgical orthopaedic treatments by internal fixators	
	(Trostle & Market, 1996)	27
Table 2.5:	Types of surgical orthopedic treatments by external fixators	
	(Moss & Tejwani, 2007).	29
Table 2.6:	Crack formation factors and its effect on remodeling process	31
Table 2.7:	Type of microcrack direction in osteonal structure system	43
Table 2.8:	Studies using LEFM and EPFM theory in cortical bone and	
	implant devices	49
Table 2.9:	LEFM and EPFM theory used for human and bovine cortical	
۰.	bone tissue	52
Table 2.10:	Summary studies due to fracture mechanism in cortical bone;	
Yu.	(a) numerical modeling; (b) experimental	58
Table 3.1:	Mechanical properties of homogenous material for transverse	
	and longitudinal crack orientation (Abdel-Wahab et al., 2011),	
	(.Abdel-Wahab, Maligno, & Silberschmidt, 2012)	77
Table 3.2:	Mechanical properties and dimension used in convergence	
	analysis in DEM and CINT method	89
Table 3.3:	Comparison SIFs between two methods; CINT and DEM	
	method in Mode I	91

Comparison SIFs between two methods; CINT and DEM	
method in Mode I between Brown and Srawley, Gross and	
Brown and Tada	91
Normalized Mode II SIFs $K_{II}/Ko = F_{II(FE/Theory)}$ using CINT	
method	95
Mechanical properties in secondary bone's material for	
transverse and longitudinal crack orientation (Abdel-Wahab et	
al., 2012; Abdel-Wahab et al., 2011)	100
Mechanical properties in four cortex of cortical bone (Abdel-	
Wahab et al., 2012)	100
Stage of Type-7 penetration	103
Penetration condition in transverse crack orientation in four	
cortices	107
Penetration condition in longitudinal crack orientation in four	
cortices	107
SIFs for Mode I for four cortices in transverse crack	114
SIFs for Mode II for 4 cortices in transverse crack	114
Comparison SIFs between FE analysis and 3 empirical	
formulations for Mode I for 4-cortices	117
Percentage error between FE analysis and empirical	
formulation	117
Non-dimensional shape correction between FE analysis and	
empirical formulation	119
Strain energy release rate, G for four cortices in Mode I	121
Comparison of SERR between FE analysis and conversion G	123
Comparison of Mode I SERR $G_{I_{TP}}$ and Brown and Srawley	
$G_{I_{BS}}$ for 4-cortices	124
Percentage error between $G_{I_{TP}}$ and Brown and Srawley $G_{I_{BS}}$	124
	Comparison SIFs between two methods; CINT and DEM method in Mode I between Brown and Srawley, Gross and Brown and Tada Normalized Mode II SIFs $K_{II}/Ko=F_{II(FETheory)}$ using CINT method Mechanical properties in secondary bone's material for transverse and longitudinal crack orientation (Abdel-Wahab et al., 2012; Abdel-Wahab et al., 2011) Mechanical properties in four cortex of cortical bone (Abdel- Wahab et al., 2012) Stage of Type-7 penetration Penetration condition in transverse crack orientation in four cortices SIFs for Mode I for four cortices in transverse crack SIFs for Mode I for four cortices in transverse crack Comparison SIFs between FE analysis and 3 empirical formulations for Mode I for 4-cortices Percentage error between FE analysis and empirical formulation Strain energy release rate, G for four cortices in Mode I Comparison of SERR between FE analysis and conversion G Comparison of SERR between FE analysis and conversion G Comparison of Mode I SERR $G_{I_{TP}}$ and Brown and Srawley $G_{I_{RS}}$

Table 4.10:	Comparison of $G_{I_{TP}}$ and Gross and Brown $G_{I_{GB}}$ formulation	
	for Mode I for 4-cortices	126
Table 4.11:	Percentage error between $G_{I_{TP}}$ and Gross and Brown $G_{I_{GB}}$ for	
	each cortices	126
Table 4.12:	Comparison of $G_{I_{TP}}$ and Tada (1973) G_{I_T} for Mode I for 4-	
	cortices	128
Table 4.13:	Percentage error between $G_{I_{TP}}$ and Tada (1973) G_{I_T} for each	
	cortex	128
Table 4.15:	SIFs for Mode I for 4 cortices in longitudinal crack	134
Table 4.16:	SIFs for Mode II for 4 cortices in longitudinal crack	135
Table 4.17:	Comparison SIFs between FE analysis and 3 empirical	
	formulations for Mode I for 4-cortices	137
Table 4.18:	Percentage error between FE analysis and empirical formulation	137
Table 4.19:	Non-dimensional shape correction between FE analysis and	
	empirical formulation	139
Table 4.20:	Strain energy release rate, $G_{I_{I,P}}$ for four cortices in Mode I	141
Table 4.21:	Comparison SERR between FE analysis and conversion G	143
Table 4.22:	Comparison G between FE analysis and Brown and Srawley	
*	(BS) formulation	145
Table 4.23:	Percentage error between FE analysis and Brown and Srawley	
	(BS) each cortices	145
Table 4.24:	Comparison G between FE analysis and Gross and Brown (GB)	
	formulation for Mode I for 4-cortices	147
Table 4.25:	Percentage error between FE analysis and Gross and Brown	1 47
	(GB) each cortices	147
Table 4.26:	Comparison G between FE analysis and Tada (T) formulation	140
T 11 4 27	Tor Mode 1 for 4-contres	149
Table 4.27:	Percentage error between FE analysis and Tada (T) each	149
		177

Table 4.28:	Specific osteon-Haversian system region for crack penetration of SIFs	154
Table 4.29:	Young's modulus and SIFs of human femur cortical bone for various directions and anatomical positions	159
Table 4.30:	Significant findings from previous studies within the crack penetration in primary and secondary bone	160
Table 4.31:	Numerical SIF of $K_{I_{TS(A,M,P,L)}}$ and reference SIF $K_{I_{BS}}$ Brown & Srawley (1966)	163
Table 4.32:	Numerical SIF of $K_{I_{TS(A,M,P,L)}}$ and reference SIF Tada (1973)	163
Table 4.33:	Numerical SIF of $K_{I_{TS(A,M,P,L)}}$ and reference SIF Gross and	
	Brown (1964)	164
Table 4.34:	Stress traction between $K_{I_{TS(A,M,PL)}}$ and Brown and Srawley	
	(1966)	166
Table 4.35:	Stress traction between $K_{T_{TS}(A,M,P,L)}$ and Gross & Brown (1966)	166
Table 4.36:	Stress traction between $K_{I_{TS(A,M,P,L)}}$ and Tada (1973)	167
Table 4.37:	Shape correction factor of $Y_{I_{TS(A,M,P,L)}}$ and reference empirical formulations	173
Table 4.38:	Specific Haversian system region for transverse crack penetration of SERR	175
Table 4.39:	Young's modulus E_n and SERR of human femur cortical bone	
G	for various directions and anatomical positions	178
Table 4.40:	SIFs parameter for microcrack longitudinal crack orientation for different anatomical position for mean Young's modulus	186
Table 4.41:	Young's modulus and SIFs of human femur cortical bone for various directions and anatomical positions	188
Table 4.42:	Significant findings from previous studies within the crack	
	penetration in primary bone	191

Table 4.43:	Secondary bone comparison of SIFs $K_{I_{LS(A,M,P,L)}}$ and Brown	
	and Srawley (1966)	195
Table 4.44:	Secondary bone comparison of SIFs $K_{I_{LS(A,M,P,L)}}$ and Tada	
	(1973)	195
Table 4.45:	Secondary bone comparison of SIFs $K_{I_{LS(A,M,P,L)}}$ and Gross and	
	Brown (1964)	196
Table 4.46:	Stress traction between $K_{I_{LS(A,M,P,L)}}$ and Brown and Srawley	
	(1966)	197
Table 4.47:	Stress traction between $K_{I_{LS(A,M,P,L)}}$ and Tada (1973)	197
Table 4.48:	Stress traction between $K_{I_{LS(A,M,P,L)}}$ and Gross and Brown	
	(1964)	198
Table 4.49:	Results of $Y_{I_{LS(A,M,P,L)}}$ in comparison with the analytical	
	formulations	202
Table 4.50:	Specific Haversian system region for longitudinal crack	
	penetration of SERR	205
Table 4.51:	Young's modulus and SERR of human femur cortical bone for	
	various directions and anatomical positions	207
	and the second sec	
•.6		
(h)		
\bigcirc		

xiii

LIST OF FIGURES

Figure 1.1:	(a) Example of radiograph of fracture in a sheep model with	
	compression plate; (b) The bone segment fracture after 24	
	weeks surgery, gap produce between plate and fracture	
	segment(left-hand site); (c) Osteon crossing the osteotomy line	
	(top) and woven bone filling the gap and osteons begin to	
	bridge the osteotomy (bottom) (Claes et al., 2012)	2
Figure 1.2: Se	econdary healing of humerus bone at diaphyseal segment fracture	
	(Ghiasi et al., 2017)	3
Figure 1.3	Implant failure due to screw loosening and screw tightening for	
	(a) pedicle screw breakage (Heini, 2010) and (b) monoaxial	
	pedicle screw thread damage (Voleti et al., 2014)	6
Figure 1.4:	Radiograph image of femoral screw fixation loosening at knee	
	(Helito et al., 2014)	7
Figure 2.1: Fa	ailure progression; (a) microcrack growth for longitudinal pullout;	
	(b) microcrack growth for transverse pullout (Feerick &	
	McGarry, 2012)	18
Figure 2.2:	Screw breakage in locking and central screw (Chen et al., 2014)	
	and . (Schneider et al., 2015)	21
Figure 2.3:	Screw migration in bone leg (Heini, 2010)	21
Figure 2.4:	SEM micrographs of fracture interacting with osteons in	
	transverse sections (plane perpendicular to long axes of	
	osteons): (a) crack was deflected by the cement line and went	
	around the osteon (arrow); (b) crack was deflected by bone	
	lamellae inside the osteon, resulting in a circular crack path	
	(arrowhead); (c) crack went through the Haversian canal with	
	minimum deflection (chevron arrow); (d) initiation crack was	
	deflected along the cement line (double arrows) as observed	
	from longitudinal section for 0° specimen (Tang et al., 2015)	34

Figure 2.5:	Remodeling process in cortical bone (Clarke, 2008)	37
Figure 2.6:	Cross section of secondary osteon structure in long bone (Bonucci, 1999)	38
Figure 2.7:	Microlevel bone structure (Gupta & Zioupos, 2008) and ; (Bonucci, 1999)	39
Figure 2.8:	Types of microdamage in secondary osteon structure (Chan, & Nicolella, 2009; Yeni, 1998)	43
Figure 2.9:	Quantitative analysis of the microcracks created under shear (Tang et al., 2015)	44
Figure 2.10:	Standard mechanism of bone fracture (Doblaré et al., 2004)	46
Figure 2.11:	Definition of coordinate axis ahead of the crack tip of stress	
	components usin polar coordinates (Anderson, 2005)	53
Figure 2.12:	Variation stress components in Mode I loading (Jensen, 2015)	54
Figure 2.13:	Stress contours showing the different stages of crack	
	propagation for 45 deg crack that is deflected by the cement line	
	(Mischinki & Ural, 2013)	60
Figure 2.14:	Simple meshing of crack-osteon deflection (Mischinski & Ural, 2013)	62
Figure 2.15:	Crack tip singularity modeling (Lim & Lee, 1995)	63
Figure 2.16:	(a) Parent element and (b) distorted nine element nodes (Banks- Sills & Einav, 1987)	63
Figure 2.17:	Local wedges formation 8- node quadrilateral elements (Tracey, 1971).	64
Figure 2.18:	Local wedges formation of 6-nodes triangular elements (Seweryn, 2002).	64
Figure 2.19:	Eight-node quadrilateral isoparametric element with mid-side nodes shifting ¹ / ₄ to the quarter points (Anderson, 2005)	65
Figure 2.20:	Present fracture behavior in vivo microcracks, Type-7 crack penetration involving primary and secondary cortical bone	68

Figure 3.1:	Fracture design of Type 7 crack penetration	72
Figure 3.2:	Framework on getting the findings specifically on Type-7 crack penetration in vivo fracture mechanism	
Figure 3.3:	Single edge crack of primary bone properties in transverse and longitudinal crack orientation under tensile loading	75
Figure 3.4:	(a) Global and local meshing element in Mode I loadingcondition (b) Quarter- point triangular element around the cracktip, (c) Six node triangular element	78
Figure 3.5:	Wedges formation in PLANE 183	80
Figure 3.6:	GUI for the operation for local concentration keypoint	81
Figure 3.7:	DEM method to compute SIFs using crack path	83
Figure 3.8:	DEM method output of SIF for transverse microcracking K_{I_T} ,	
	K_{II_T} , and longitudinal microcracking K_{II_T} , K_{II_T}	84
Figure 3.9:	CINT algorithm to calculate SIFs using path independent	89
Figure 3.10:	Crack tip meshing	90
Figure 3.11:	Effect SIFs of first crack tip radius of first row element (DELR)	92
Figure 3.12:	Effect SIFs of number of crack tip element for three empirical formulations	92
Figure 3.13:	Effect SIFs of number of crack tip element (NTHET) for Brown	
is	and Srawley	93
Figure 3.14:	Effect SIFs of number of crack tip element (NTHET) for Gross and Brown	94
Figure 3.15:	Effect SIFs of number of crack tip element (NTHET) for Tada	94
Figure 3.16:	Variation of normalized Mode II SIFs $K_{II}/K_o = F_{II_{(FE/Theory)}}$ using CINT method	96
Figure 3.17:	Single edge crack of secondary bone properties for transverse crack orientation in Type-7 under tensile loading (Demirtas et	~~
	al., 2016))	97

Figure 3.18:	Single edge crack of secondary bone properties for	
	longitudinal crack orientation in Type-7 under tensile loading	98
Figure 3.19:	Global and local meshing for secondary bone model	101
Figure 3.20:	Example of P4: Haversian canal penetration	102
Figure 3.21: Example of Type-7 penetration in osteon and Haversian cana		
	(Tang et al., 2015)	103
Figure 4.1:	Stress contour before deform; (a) $a=0$ mm and the non specific	
	different extension crack for transverse crack direction	
	penetrating into interstitial matrix in anterior cortex; (b) a=0.225mm (c) $a=0.375$ mm (d) $a=0.525$ mm	111
Figure 1 2.	Relationship between ultimate stress parameter in four cortices	
11guie 4.2.	versus pressure	112
Figure 4 3.	Relationship between ultimate strain parameter in four cortices	
1 iguie 1.5.	versus pressure	112
Figure 4.4:	Variation of Mode I and Mode II SIFs for transverse crack for	
8	all cortices	115
Figure 4.5:	Mode I differences for all cortices transverse crack for FE and	
	empirical formulation	118
Figure 4.6:	Comparison of $Y_{I_{TP(A,M,P,L)}}$ for primary Type-7 fracture	120
Figure 4.7:	Non-dimensional $Y_{I_{TP(A,M,P,L)}}$ based on analytical formulation	120
Figure 4.8:	Strain energy release rate for transverse crack in all cortices	122
Figure 4.9:	Variation of SERR, $G_{I_{TP}}$ and conversion	123
Figure 4.10:	The Mode I SERR $G_{I_{TP}}$ and Brown and Srawley $G_{I_{BS}}$ for	
	various a/W	125
Figure 4.11:	Variation of $G_{I_{TP}}$ and Gross and Brown $G_{I_{GB}}$ for transverse	
	crack	127
Figure 4.12:	Variation of $G_{I_{TP}}$ and Tada (1973) G_{I_T} for transverse crack	129

Figure 4.13:	Stress contour before deform; (a) $a=0$ mm and the non specific	
	different extension crack for longitudinal crack direction	
	penetrating into interstitial matrix in anterior cortex; (b)	101
	a=0.225 mm, (c) $a=0.375$ mm, (d) $a=0.525$ mm	131
Figure 4.14:	Relationship between ultimate stress parameter in four cortices	
	versus pressure	132
Figure 4.15:	Relationship strain parameter between four cortices with	
	pressure applied (MPa)	133
Figure 4.16:	Mode I and Mode II SIFs for longitudnial crack for all cortices	135
Figure 4.17:	Mode I SIFs for all cortices longitudinal crack for FE and	
	empirical	138
Figure 4.18:	Comparison of $Y_{IL(A, M,P,L)}$ for primary Type-7 fracture	140
Figure 4.19:	Non-dimensional $Y_{IL(A, M,,P,L)}$ based on analytical formulation	140
Figure 4.20:	Strain energy release rate for longitudinal crack in all cortices	142
Figure 4.21:	Variation of SERR, $G_{I,p}$ and its conversion	144
Figure 4.22:	Mode I SERR $G_{I_{BP}}$ and Brown and Srawley $G_{I_{BS}}$ variation for	
	various <i>a/W</i>	146
Figure 4.23:	Variation of SERR between FE analysis and Gross and Brown	
	(GB) for longitudinal crack	148
Figure 4.24:	Variation of $G_{I_{LP}}$ between FE analysis and Tada (T) for	
(h)	longitudinal crack	150
Figure 4.25:	Stress contour before deform; (a) $a=0$ mm and the non specific	
	different extension crack for transverse crack direction	
	penetrating into interstitial matrix in anterior cortex; (b)	
	<i>a</i> =0.375mm, (c) <i>a</i> =0.4275mm, (d) <i>a</i> =0.43mm; (e) <i>a</i> =0.4475mm	
	and (f) <i>a</i> =0.5475mm	152
Figure 4.26:	Variation of von Mises stress vs. pressure (MPa)	153
Figure 4.27:	Variation of strain parameter in four cortices and pressure	153
Figure 4.28:	SIFs due to crack penetration in different cortices	156

Figure 4.29:	Variation of $\langle p_{HC} \rangle$ againts a/W for anterior cortex of secondary bone	169
Figure 4.30:	Variation of $\langle p_{HC} \rangle$ againts a/W for medial cortex of	170
Figure 4.31:	Variation of $< p_{HC} >$ againts a/W for posterior cortex of	170
	secondary bone	170
Figure 4.32:	Variation of $\langle p_{HC} \rangle$ againts a/W for lateral cortex of secondary bone	171
Figure 4.33:	Variation of $K_{I_{TS(A,M,P,L)}}$ and three empirical formulas $K_{I_{BS}}$,	
	$K_{I_{GB}}$ and K_{I_T}	172
Figure 4.34:	Variation of $K_{I_{TS(A,M,P,L)}}/K_I^o > 1$ and $K_{I_{TS(A,M,P,L)}}/K_I^o < 1$ in	
	comparison with empirical formulas $Y_{I_{BS}}$, $Y_{I_{GB}}$ and Y_{I_T}	174
Figure 4.35:	Variation of SERR, G_{TS} for transverse cortical bone fracture	176
Figure 4.36:	(a) Stress contour before deform; (a) $a=0$ mm and the non	
	specific different extension crack for transverse crack direction	
	penetrating into interstitial matrix in anterior cortex; (b)	
	<i>a</i> =0.375mm, (c) <i>a</i> =0.4275mm, (d) <i>a</i> =0.43mm; (e) <i>a</i> =0.4475mm	
	and (f) <i>a</i> =0.5475mm	183
Figure 4.37:	Variation of maximum von Mises stress vs. pressure (MPa)	185
Figure 4.38:	Variation of strain parameter in four cortices and pressure	185
Figure 4.39:	SIFs due to crack penetration in different cortices	187
Figure 4.40:	Variation of $\langle p_{HC} \rangle$ againts a/W for anterior cortex of	
	longitudinal secondary bone fracture	199
Figure 4.41:	Variation of $\langle p_{HC} \rangle$ againts a/W for posterior cortex of	
	longitudinal secondary bone fracture	199
Figure 4.42:	Variation of $\langle p_{HC} \rangle$ againts a/W for medial cortex of	
	longitudinal secondary bone fracture	200

Figure 4.43:	Variation of $\langle p_{HC} \rangle$ againts a/W for lateral cortex of	
	longitudinal secondary bone fracture	200
Figure 4.44:	Variation of $K_{I_{LS(A,M,P,L)}}$ and three empirical formulas $K_{I_{BS}}$,	
	$K_{I_{GB}}$ and K_{I_T}	201
Figure 4.45:	Variation of $K_{I_{TS(A,M,P,L)}}/K_I^o > 1$ and $K_{I_{TS(A,M,P,L)}}/K_I^o < 1$ in	
	comparison with empirical formulas $Y_{I_{BS}}$, $Y_{I_{GB}}$ and Y_{I_T}	203
Figure 4.46:	Variation of SERR, G_{LS} and analytical formulation for	
	longitudinal crack penetration	205
Figure 4.47:	Ultimate 1 st principal stress for transverse and longitudinal	
	crack direction both for four cortices	211
Figure 4.48:	Ultimate von Mises stress for transverse and longitudinal crack	
	direction both for four cortices	211
Figure 4.49:	Ultimate von Mises strain for transverse and longitudinal crack	
	direction both for four cortices	212
Figure 4.50:	Ultimate 1 st principal strain for transverse and longitudinal	
	crack direction both for four cortices	212
Figure 4.51:	Combination K_{I} , K_{II} and $K_{effective}$ for (a) transverse and (b)	
	longitudinal crack in primary bone	213
Figure 4.52:	Combination K_I , K_{II} and $K_{effective}$ for transverse and longitudinal	
•	crack in secondary bone in anterior cortex	215
Figure 4.53:	Combination K_{I} , K_{II} and $K_{effective}$ for transverse and longitudinal	
©	crack in secondary bone in posterior cortex	215
Figure 4.54:	Combination K_I , K_{II} and $K_{effective}$ for transverse and longitudinal	
	crack in secondary bone in medial cortex	216
Figure 4.55:	Combination K_I , K_{II} and $K_{effective}$ for transverse and longitudinal	
	crack in secondary bone in lateral cortex	216
Figure 4.56:	Variation of Type-7 secondary shape correction factor for (a)	
	transverse $Y_{I_{TS(A,M,P,L)}} = K_{I_{TS(A,M,P,L)}} / K_I^o$ and (b) longitudinal	
	$Y_{I_{LS(A,M,P,L)}} = K_{I_{LS(A,M,P,L)}} / K_I^o$	217

LIST OF ABBREVIATIONS

ANOVA	Analysis of Variance
APDL	Ansys Parametric Design Language
BMD	Bone Mineral Density
CINT	Constrained Integration Numerical Technique
CMOD	Crack Mouth Opening Displacement
CTOD	Crack Tip Opening Displacement
DEM	Displacement Extrapolation Method
DELR	Radius of First Row Element about Keypoint
EPFM	Elastic Plastic Fracture Mechanics
FE	Finite Element
HC	Haversian canal
LCP	Locking Compression Plate
LSF	Lateral Screw Fixation
LEFM	Linear Elastic Fracture Mechanics
NTHET	Number of Elements in Circumferential Direction
SA	Stress Amplification
SERR	Strain Energy Release Rate
SETP	Strain Energy Transfer Parameter
SIF	Stress Intensity Factor
SS	Stress Shielding
SST	Stress Shileding Transfe
XFEM	Extended Finite Element Method
©``	

LIST OF SYMBOLS

a	Crack length
a/W	Crack-to-width ratio
Ε	Young's modulus
G_{LP}	Strain energy release rate for longitudinal primary
$G_{LP_A,P,M,L}$	Strain energy release rate for longitudinal primary anterior, posterior, medial, lateral
G_{LS}	Strain energy release rate for longitudinal secondary
$G_{LS_A,P,M,L}$ G_{TP}	posterior, medial, lateral Strain energy release rate for transverse primary
G _{TP_A,P,M,L}	Strain energy release rate for transverse primary anterior, posterior, medial, lateral
G_{TS}	Strain energy release rate for transverse secondary
$G_{TS_A,P,M,L}$	Strain energy release rate for transverse secondary anterior, posterior, medial, lateral
K _{IBS}	Stress intensity factor Mode I Brown and Srawley
K_{IGB}	Stress intensity factor Mode I Gross and Brown
K_{IT}	Stress intensity factor Mode I Tada
K_{ILP}	Stress intensity factor Mode I longitudinal primary
$K_{ILP_A,P,M,L}$	Stress intensity factor Mode I longitudinal primary anterior, posterior, medial, lateral
K _{II LP}	Stress intensity factor Mode II longitudinal primary
K _{II LP_A, P, M, L}	Stress intensity factor Mode II longitudinal primary anterior, posterior, medial, lateral
K _{ILS_A,P,M,L}	Stress intensity factor Mode I longitudinal secondary anterior, posterior, medial lateral
Kuls_A, P, M, L	Stress intensity factor Mode II longitudinal primary anterior, posterior, medial, lateral
K_{ITP}	Stress intensity factor Mode I transverse primary
$K_{ITP_A,P,M,L}$	Stress intensity factor Mode I transverse primary anterior, posterior, medial, lateral
$K_{II TP}$	Stress intensity factor Mode II transverse primary
K _{IITP_} A, P, M, L	Stress intensity factor Mode II transverse primary anterior, posterior, medial, lateral
$K_{ITS_A,P,M,L}$	Stress intensity factor Mode I transverse secondary anterior, posterior, medial, lateral
K _{IITS_} A, P, M, L	Stress intensity factor Mode II transverse secondary anterior, posterior, medial, lateral

р	Significance difference	
$<\!p>$	Stress traction	
<i><phc></phc></i>	Stress traction Haversian canal	
Y	Shape Correction factor	
Y_{BS}	Shape correction factor Brown and Srawley	
Y_{GB}	Shape correction factor Gross and Brown	
Y_T	Shape correction factor Gross and Brown	
З	Elastic strain	
σ_{max}	Maximum von Misess	, , ,

orthis tern is protected by original copyright

Analisis Tidak Terhingga Jenis-7 Penembusan Retakan Mikro Dicetus Oleh Interaksi Sistem Haversian

ABSTRAK

Kestabilan penetapan mutlak dan relatif menentukan pemulihan tulang sekunder utama dan tidak melalui pembentukan semula tulang dan osseointegrasi. Klinikalnya, dibawah bebanan mampatan, keadaan ricih dan kilasan, kestabilan penetapan implan terjejas oleh ketidakcukupan, kelebihan dan ketidaktetapan pemindahan perisai tekanan (SST) yang tidak konsisten antara permukaan implan-tulang. Lebih buruk, mekanisma pemindahan perisai tekanan (SST) boleh mencetuskan kegagalan penahan implan, pin implan atau kelonggaran skru dan patah tulang anatomi yang berpunca dari kerosakan tulang oleh pra-gerudi retakan mikro antara muka. Interaksi elastik mikromekanik penembusan retakan mikro ke dalam sistem Haversian yang berpunca oleh retakan mikro pada masa ini kurang dinbincangkan berdasarkan prinsip mekanik patah. Oleh itu, penyelidikan ini bertujuan untuk menyelidik Jenis-7 penembusan retakan mikro tunggal terhadap pembentukan sistem Haversian bagi tulang primer dan sekunder spesifikasinya kepada patah tulang kortikal diafisis melintang dan menegak. Mekanisme patah elastik lurus (LEFM), mekanisme patah elastik plastik (EPFM) dan teori Kachanov terhadap lubang ellips dan interaksi retakan mikro digunakan untuk mencipta model patah tulang primer dan sekunder dengan menggunakan analisis unsur terhingga (FE) dalam ANSYS APDL bagi model penembusan retak Mod I dan Mod II Jenis-7 model penembusan untuk semua korteks melintang dan menegak dengan menggabungkan pendekatan singulariti tekanan retak dengan menggunakan kaedah ekstrapolasi anjakan (DEM) dan kadar keluaran tenaga tekanan (SERR) menggunakan kaedah J- integrasi. Kedua- dua pendekatan K_{ITP}, K_{ILP} dianalisis secara numerik dan disahkan dengan persetujuan teori yang baik oleh Brown & Srawley (0.2%), Gross & Srawley (0.4%) dan Tada (1.6%) formulasi analisis untuk retakan kelebihan tunggal dalam badan terhingga. Sensitiviti dan analisis statistik juga menunjukkan korelasi ketara (p < 0.05) antara parameter yang diukur untuk semua korteks. Model penembusan Jenis-7 dipertingkatkan untuk penilaian tulang primer. Kedua-dua kaedah DEM dan J - integrasi mempunyai ketepatan untuk menentukan Mod I K_{ITS(A,P,M,L)} dan Mod II K_{ITS(A,P,M,L}, tetapi SIFs kelihatan hanya J-intergrasi yang boleh menilai pengaruh Young's modulus terhadap retakan tulang primer. Oleh itu, untuk tulang sekunder, hanya analisis J-intergrasi diteruskan untuk menilai ketidaksamaan interaksi sistem Haversian kepada retak mikro melintang dan menegak Jenis-7 penembusan melalui matriks interstisial, garis simen dan osteon yang disebabkan oleh daya tarikan tekanan terusan Haversian. Kuantifikasi penguatan tekanan σ_{SA} , pelindung tres σ_{SS} dan daya tarikan tegangan $\langle p_{HC} \rangle$ dinilai dan disahkan oleh formulasi analisis dan teori Kachanov mengenai retakan elips dan interaksi retakan mikro. Keputusan menunjukkan pada melintang $(K_{ITS}/K_0>1)$ dan menegak $(K_{ILS}/K_0>1)$ σ_{SA} didominasi oleh tekanan interaksi pada kawasan matriks interstisial. Pemindahan

 σ_{SA} berlaku ketika penembusan barisan simen dan di dalam osteon selanjutnya kepada penembusan terusan Haversian, penembusan tersebut didorong oleh σ_{SS} pada $(K_{ITS}/K_0 < 1)$ dan $(K_{ILS}/K_0 < 1)$ Walaubagaimanapun, kedua-dua arah melintang dan menegak Jenis-7 mengalami intensiti dan kadar pelepasan tenaga berlainan σ_{SA} ke σ_{SS} apabila penembusan garis simen terhadap nisbah retak ke lebar.*a/W* Kesimpulannya, model interaksi sistem Haversian telah berjaya menunjukkan Jenis -7 penembusan retakan mikro bagi pembentukan tulang primer dan sekunder.