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Sifat dan Pencirian Geopolimer Relau Letupan Sanga Tanah Pada Pendedehan 

Suhu Tinggi 

ABSTRAK 

Proses pengeopolimeran menggunakan geopolimer relau letupan sanga tanah (GGBFS) 

sebagai sumber aluminosilikat telah dijalankan. GGBFS adalah bahan alternatif yang 

boleh diperbaharui bagi menggantikan Portland biasa. Ia berkembang mengikut 

kesedaran global isu-isu alam sekitar yang sohor kini. Kajian terhadap GGBFS sebagai 

pengikat dalam penghasilan geopolimer adalah terlalu kurang di serata dunia. Oleh 

yang demikian, kajian ini sangat penting bagi menilai pencirian fizikal dan mekanikal 

GGBFS yang berpotensi digunakan dalam bidang pembinaan. Pes geopolimer 

dihasilkan daripada pencampuran serbuk GGBFS, larutan natrium hidroksida dan 

natrium silikat. Pes buburan dipadatkan dalam plastik akrilik dan diawetkan pada suhu 

bilik selama 28 hari. Masa pengerasan yang lebih singkat akan menyebabkan 

kereaktifan GGBFS lebih tinggi dan ia merupakan kekangan utama kajian ini. Tujuan 

kajian ini adalah untuk mengkaji kesan kepekatan natrium hidroksida, nisbah pepejal 

kepada cecair dan nisbah natrium silikat kepada natrium hidroksida terhadap kekuatan 

mampatan geopolimer GGBFS. Hasil keputusan menunjukkan bahawa kepekatan 

natrium hidroksida sebanyak 10M, nisbah pepejal kepada cecair sebanyak 3.0, dan 

natrium silikat kepada natrium hidroksida sebanyak 2.5 pada suhu bilik dan diawetkan 

sehingga 28 hari adalah pencampuran yang optimum untuk sintesis geopolimer 

GGBFS. Kekuatan mampatan tertinggi geopolimer GGBFS dicapai pada 168.71 MPa. 

Kalsit (CaCO3) dan Kalsit Silikat Hidrat (C-S-H) muncul dalam geopolimer GGBFS 

selepas tindak balas pengeopolimeran seperti yang ditentukan oleh analisis fasa. 

Pengenalpastian kumpulan berfungsi menunjukkan pembetukkan lebih banyak ikatan 

geopolimer dalam geopolimer GGBFS pada reka bentuk pencampuran optimum 

tersebut. Bagi menentukan perkaitan parameter pemprosesan dalam pembetukan 

geopolimer GGBFS, statistik reka bentuk eksperimen telah dijalankan. Analisis varians 

(ANOVA) menunjukkan pembolehubah nisbah pepejal kepada cecair adalah factor 

yang paling tinggi pemprosesan geopolimer GGBFS dengan bacaan 0.00 berbanding 

variabel kepekatan natrium hidroksida dan variabel nisbah natrium silikat kepada 

natrium hidroksida. Pes geopolumer GGBFS didedahkan pada suhu tinggi sehingga 

1000 ºC. Sampel geopolimer GGBFS yang terdedah menunjukkan kemerosotan 

kekuatan mampatan sebanyak 8.9 MPa. Sebaliknya sampel geopolumer GGBFS 

mengalami peningkatan kekuatan mampatan sehingga 19.8 MPa selepas terdedah pada 

1000 ºC iaitu pada pembentukkan fasa pengkristalan. Selain peningkatan kekuatan 

mampatan, sampel geopolimer GGBFS mengekalkan bentuk kiubnya tanpa berlakunya 

kerapuhan struktur apabila terdedah pada suhu tinggi. Tambahan pula, pembetukkan 

fasa gehlenit, mayenit, dan larnit mempamerkan permukaan geopolimer yang kasar dan 

kemunculan gua. Tuntasnya, kajian ini memberikan pemahaman yang lebih baik 

mengenai sifat-sifat dan ciri-ciri geopolimer GGBFS. Bagi penyelidikan masa depan, 

adalah dicadangkan untuk mengunakan bahan GGBFS mortar, konkrit ringan dan 

geopolimer busa untuk analisis prestasi pada persekitaran suhu yang tinggi. 
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Properties and Characterization of Ground Granulated Blast Furnace Slag 

Geopolymer at High Temperature Exposure 

ABSTRACT 

Geopolymerization process using ground granulated blast furnace slag (GGBFS) as 

aluminosilicate sources was performed. The utilization of GGBFS as an alternative and 

renewable material for Portland cement is growing due to global awareness towards 

environmental issues. Research on ground granulated blast furnace slag as a sole binder 

in geopolymer production is limited throughout the world. Hence, this study is essential 

to evaluate the physical and mechanical characterizations of GGBFS for the potential 

use in construction fields. The geopolymers paste was produced from the mixing of 

GGBFS powder, sodium hydroxide and sodium silicate solution. The slurry pastes were 

compacted in acrylic plastic and cure at room temperature for 28 days. Shortened 

setting times leads to higher reactivity of GGBFS, thus becomes the major limitation in 

this study. The aim of this study is to investigate the effect of NaOH concentration, 

solid-to-liquid ratio and Na2SiO3/NaOH ratio on GGBFS geopolymer compressive 

strength. The results exhibited that 10 M of NaOH concentration, solid-to-liquid ratio of 

3.0, and sodium silicate-to-sodium hydroxide ratio of 2.5 at room temperature and 

cured until 28 days were the optimum mixing conditions for GGBFS geopolymers 

synthesis.The highest compressive strength of GGBFS geopolymer was achieved at 

168.71 MPa. Calcite (CaCO3) and calcium silicate hydrate (C-S-H) appeared in GGBFS 

geopolymers after the geopolymerization reaction as determined by phase analysis. 

Functional group indentification shows the formation of more geopolymer bonding in 

GGBFS geopolymer at optimal mixing designs.  In order to determine the correlation of 

the processing parameters in the formation of GGBFS geopolymer, a statistical design 

of experiment (DOE) was approach. The analysis of the experiment results through 

ANOVA revealed that solid-to-liquid ratios was the highest influenced with the result 

of 0.00 compared to NaOH concentration and sodium silicate-to-sodium hdyroxide 

ratios. The GGBFS geopolymer paste was exposed to elevated temperatures up to 1000 

°C. The exposed GGBFS geopolymers samples indicated a compressive strength 

degradation of 8.9 MPa. In contrast, the GGBFS geopolymers samples had an 

increasing of compressive strength up to 19.8 MPa after being exposed at 1000 °C with 

the formation of crystallization phases. Despite strength increment, GGBFS 

geopolymer samples remained in cubic shape with no spalling occurred when exposed 

at high temperature. Furthermore, the formation of gehlenite, mayenite, and larnite 

phases exhibited rugged geopolymer surface with cavern appearance. As a conclusion, 

this study provides a better understanding of the properties and characteristic of GGBFS 

geopolymers. Hence, for future research, it is suggested to apply the GGBFS material in 

mortar, lightweight concrete and geopolymer foam in order to analyze the performance 

at high temperature environments.  
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CHAPTER 1:  INTRODUCTION 

1.1 Research Background 

Steel is the vital raw material used in the engineering and machinery industries, 

automotive equipment, manufacturing sectors, and as major component for 

infrastructure works. Steel production has a huge boost effect in the economy through 

increased activities in other related fields. The level per capita of steel consumption is 

considered as one of the most valuable indicators of socio-economic development and 

living standards of the consumer. In 2017, Malaysia became the world’s eighteenth-

largest steel importer. Malaysia imported 7.6 million metric tons of steel in 2017, a 15 

% lower than 8.9 million metric tons in 2016 (Iron & Federation, 2017). Otherwise, 

based on the Malaysia Iron and Steel Industry Federation, Malaysia has over 100 steel 

manufacturing and processing companies which are the total steel-making capacity of 

10.7 million metric tons produced in 2016. The structure of Malaysia’s iron and steel 

industries leads to 2.9% of Gross Domestic Product (GDP) in 2016 and has the 

promising potential to develop up to 6.5% of GDP growth in 2020. However, the 

production of iron and steel generated a huge solid waste during the processing steps in 

steel plants. The solid wastes caused a crucial environmental pollution that must be 

discarded.  

Over the last decade, the slag and sludge produced by integrated steel plants 

were known as “waste” but in present are classified as a “by-product” due to the 

intensive re-utilization and managing of the solid wastes (Pappu, Saxena, & Asolekar, 

2007). The “4 Rs” (reduce, reuse, recycle and restore) was proposed as the viable 

solution for solid waste management in the steel industry. Recycling and reusing the by-
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product management during the steel making process were applied in targeting a green, 

clean and zero waste technology pertaining to the sustainable development of the steel 

industry (Sarkar & Mazumder, 2015). Sources of solid wastes generated in steel 

industries are such as coke oven by product plants, refractory materials, basic oxygen 

furnace, rolling mill and blast furnace. An enormous amount of solid wastes in the steel 

industry were namely coal dust, mill scrap, refractory waste and blast furnace slag (Das, 

Prakash, Reddy et al., 2007). 

One of the solid wastes in the steel industry, blast furnace slag was applied for 

the manufacturing of road base, lightweight concrete blocks, high performance 

concretes, admixtures and the manufacturing of Portland cement (Chaurand, Rose, 

Briois et al., 2007). Hence, there is an expanding interest on the beneficial use of 

alternative materials with pozzolanic activity for comparable properties to Portland 

cement in order to produce valuable products from economical and technical point of 

view for the profitability of the recycling process (Angulo-Ramírez, de Gutiérrez, & 

Puertas, 2017). The utilizing of alternative materials and renewable materials for 

Portland cement is growing due to global awareness towards the environmental issues 

(da Luz Garcia & Sousa-Coutinho, 2013). 

Geopolymer have attracted spotlight over from various researches with its 

performance (chemical, and fire resistance, fast setting, and long term durability) and 

potentially build up market demands comparable with Portland cement (Davidovits, 

2002). Theoretically, geopolymer technology can be applied in numerous fields such as 

aerospace, automobile, foundry, and metallurgy, plastic industries and construction. 

Geopolymer chemistry consists of aluminosilicate sources material, mostly are naturally 

 
 

 
 

 
 

 
 

 
©This

 ite
m

 is
 p

ro
te

cte
d 

by
 o

rig
ina

l c
op

yr
igh

t 



20 

existing, industrial wastes or by-product of those that require relatively less energy to 

manufacture (Sabir, Wild, & Bai, 2001). Geopolymer are well-known as having great 

volume stability, high mechanical properties, and good thermal characteristics. The 

production of geopolymer releases no greenhouse gases and with low energy 

consumption and production cost (Davidovits, 1994a). 

In current studies, various research works have been performed on the 

performance of environmental friendly construction materials at elevated temperature 

exposure. Instead of utilizing conventional cement as binding component, geopolymer 

technology was proposed as an alternative to cement binder due to the excellent thermal 

behaviour. Kong et al. (2007) found that fly ash geopolymer developed 6% of strength 

after being exposed at 800 °C attributed by highly dispersed pores in the geopolymer 

matrix. Otherwise, the blended geopolymer (50/50 of slag/metakaolin) obtained 86% 

strength degradation when exposed above 1000 °C. This was caused by some partial 

melting of the geopolymer binders that suffered the structural changes at high 

temperature exposure (Sarker, Kelly, & Yao, 2014).  

As Portland cement, most of the calcium oxide (CaO) obtained in GGBFS was 

tied up as calcium aluminate, calcium silicate, and calcium aluminosilicate (Rabbani, 

Daghigh, Atrechian et al., 2012). Research on geopolymer using ground granulated 

blast furnace as main aluminosilicate sources was very limited. Moreover, most of the 

studies focused on thermal performance of fly ash, metakaolin and/or slag incorporated 

geopolymers (Bernal, Rodríguez, De Gutiérrez et al., 2011; Guerrieri & Sanjayan, 2010; 

Rashad, Bai, Basheer et al., 2012). Hence, this research is focused on investigating the 
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physical and mechanical properties of ground granulated blast furnace slag geopolymer 

at high temperature exposure.   

1.2 Problem Statement 

There has been an increasing trend on recycling waste materials worldwide. The 

incorporation of ground granulated blast furnace slag in the manufacturing of 

geopolymer concrete has been applied since the last century (Deb, Nath, & Sarker, 

2014; Kim, Jun, Lee et al., 2013; Kumar, Kumar, & Mehrotra, 2010). However, the use 

of ground granulated blast furnace slag as the sole binder in the production of 

geopolymer is not common throughout the world. Ground granulated blast furnace slag 

attracts less attention among researches due to the shortened setting times during the 

curing period (Lachemi, Şahmaran, Hossain et al., 2010; Mounanga, Khokhar, El 

Hachem et al., 2011; Xu, Gong, Syltebo et al., 2014). This shortened setting times 

contributes to the higher reactivity of ground granulated blast furnace slag and becomes 

the major limitation in the study. 

The possibility of ground granulated blast furnace slag is used as cement 

replacement material contributing several advantages such as reducing the natural 

resources exploration, decreasing environment burdens of waste accumulation and 

recycle for profitable materials (Dos Anjos, Sales, & Andrade, 2017). Ground 

granulated blast furnace slag has the potential to attain satisfactory mechanical 

performance by replacing the Portland cement in order to develop new economic and 

green environmental low cost materials. Accordingly, it is necessary to characterize the 

physical and mechanical properties of ground granulated blast furnace slag for its 

potential use in the construction fields.  
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In earlier studies, the incorporation of slag in geopolymers exhibited strength 

deterioration towards to elevated temperature exposure. The increasing of large pores 

and decomposition induced to the strength loss due to cracking after exposed up to 1000 

ºC (Ye, Zhang, & Shi, 2014).  The performance of alkali activated slag concrete 

(AASC) in the range of 400 C to 800 C similar to ordinary Portland cement (OPC) 

contributes to the strength deterioration at elevated temperatures. The remaining 

strength of AASC was 10 % after exposed up to 800 ºC and was believed due to the 

absence of Ca(OH)2 (Guerrieri, Sanjayan, & Collins, 2009). Nevertheless, the use of 

solely GGBFS in geopolymer as aluminosilicate source at high temperature exposure 

has not been studied. It is substantial to study on the fundamental material to address the 

GGBFS applied alone in the production of geopolymers.  

As less literature has been reported on the mechanical and material 

characterization of ground granulated blast furnace slag based geopolymer, it is 

necessary to improve the fundamental theory in the geopolymer field. The chemical 

composition, such as sodium concentration, solid-to-liquid ratio, and alkali activator 

ratio was also investigated in order to achieve the possibility to enhance the 

manufacturing of ground granulated blast furnace slag towards geopolymerization 

reaction. Hence, this research is being escalated to produce economic ground granulated 

blast furnace slag geopolymer with possibly greater engineering application bases. 

1.3 Objective of Study 

This research proposed to study the utilization of ground granulated blast 

furnace slag in geopolymer synthesis. The properties and characteristic of ground 
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granulated blast furnace slag at various mixing compositions were developed. The 

objectives of study are: 

1) To formulate the optimum mixing composition based on compressive 

strength and analyze the correlation of the processing parameter in the 

formation of ground granulated blast furnace slag geopolymers. 

2) To validate the physical and characterization of ground granulated blast 

furnace slag geopolymers. 

3) To evaluate the performance of ground granulated blast furnace slag 

geopolymers towards high temperature exposure. 

1.4 Research Scope 

Scope of this research is to consolidate on the study of the characterization, 

mechanical properties, and the performance of ground granulated blast furnace slag 

determined through the compressive strength, density, and the durability at high 

temperature environment. Additionally, materials characteristic will be evaluated based 

to the mass ratio of NaOH concentration, solid-to-liquid ratios, and sodium silicate-to-

sodium hydroxide ratios by morphology and mineralogical analysis at laboratory 

UniMAP.  

A number of specimens were prepared in the laboratory to determine the 

optimum mixing ratio according to mixing variations of parameters and mechanical 
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properties of ground granulated blast furnace slag geopolymer. There are three main 

series of GGBFS geopolymer mix designs that were casted. Each series was designed 

based on the parameters (NaOH concentration, solid-to-liquid ratios, and sodium 

silicate-to-sodium hydroxide ratio) affected on the compressive strength of GGBFS 

geopolymers. The ratios of NaOH concentration was 6 M, 8 M, 10 M, 12 M, and 14 M. 

The solid-to-liquid ratios and sodium silicate-to-sodium hydroxide ratios were 1.0 to 3.0 

and 1.5 to 2.5, respectively. 

The hardened paste was taken out from the mould after 24 hours of casting and 

cured at ambient temperature with the fixed curing period of 28 days for all samples. 

The weight measurement and compressive strength test were conducted after 28 days of 

curing period followed by materials characterizations. Compressive strength of Ground 

granulated blast furnace slag geopolymer was tested using Instron machine to assess the 

success of the geopolymerization reaction. X-ray powder diffraction (XRD) and fourier 

transform infrared (FTIR) spectroscopy were used to determine the phase identification 

and functional group of Ground granulated blast furnace slag geopolymer. Moreover, 

scanning electron microscope (SEM) was performed to evaluate the microstructural 

changes and to observe the different degrees of the geopolymerization reaction. The 

data collection for the proper investigation into strength characteristics of GGBFS 

geopolymer is obtained and discussed in the following chapter. Meanwhile, high 

temperature exposure will be studied and discussed after the tests are completed by 

obtaining the optimum mixing ratios. 
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