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Ultra High Frequency 

VHF Very High Frequency 

WiFi 

ZnO 

 

Wireless Fidelity 

Zinc Oxide 
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LIST OF SYMBOLS 

Δi 

� 

θ 

γ 

ØBL 

ØBR 

A* 

Å 

C 

Cjo 

Cp 

ℇ0 

ℇg 

ℇr 

E 

eV 

f 

fmax 

ft 

f(N) 

GHz 

H 

Hz 

Is 

J 

K 

k 

kHz 

L 

MHz 

MUN 

N 

nm 

Identical to the first bracket term on the right-hand side 

Electrostatic potential 

Angle 

Curvature coeficient 

Potential barrier height for the carrier to move from left 

potential barrier height for the carrier to move from right 

Effective Richardson constant for electron 

Amstrong 

Capacitance 

Junction capacitance at zero bias 

Parasitic capacitance 

Permittivity of free space 

Bandgap 

Dielectric permittivity 

Electric field 

Electron volt 

Frequency 

Frequency maximum 

Cuttoff frequency 

Nth order derivative of  �(�) 

Gigahertz 

Potential energy inside the channel 

Hertz 

Total current density 

Reverse saturation current 

Kelvin 

Boltzman constant 

KiloHertz 

Channel length 

Megahertz 

Electron mobilities 

Carrier density 

Nanometer 
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� 

q 

RD 

Rs 

t 

μ 

μno 

τn 

τp 

T 

TL 

THz 

μm 

μA 

V 

Vbias 

VD 

Vo 

Vsat 

VTH 

ʋRF 

ω 

W 

Wt 

WV 

XC 

Local space charge density 

Magnitude of electrical charge of an electron 

Differential resistance 

Series resistance 

Timeline 

Electron mobility 

Low field electron mobility 

Electron lifetime 

Hole lifetime 

Terahertz 

Lattice tempertaure 

Absolute temperature 

Micrometer 

Micro ampere 

Voltage across the diode 

Applied bias voltage 

Applied voltage 

Applied DC bias 

Electron saturation velocity 

Threshold voltage 

Frequency signal voltage 

Angular frequency 

Channel width 

Trench width 

SOI thickness 

Capacitive reactance 
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REKABENTUK DAN PENCIRIAN STRUKTUR DIOD PENSUISAN-SENDIRI 

DAN DIOD SAWAR SATAH SEBAGAI PENERUS BERKELAJUAN TINGGI 

ABSTRAK 

Pembangunan peranti penerus berkelajuan tinggi telah menjadi salah satu bidang 
penyelidikan utama yang boleh digunakan dalam banyak aplikasi, termasuk frekuensi 
radio (RF) dan sistem pengesanan. Contoh-contoh peranti ini ialah diod Schottky dan 
diod sawar terdop-satah. Walau bagaimanapun, semua peranti yang sangat cemerlang 
ini memerlukan proses fabrikasi yang sangat mencabar disebabkan oleh struktur-
strukturnya yang kompleks dan kepekatan pengedopan yang tepat untuk setiap lapisan 
kritikal yang mana kosnya adalah agak tinggi. Prospek menggunakan peranti-peranti 
elektronik dengan struktur satah telah menjadi semakin mempunyai harapan. Peranti-
peranti planar ini memberi kelebihan tambahan bukan hanya mudah malah boleh juga 
beroperasi pada frekuensi tinggi. Oleh demikian, dalam kerja penyelidikan ini, 
kemungkinan penggunaan dua buah peranti nano satah berasaskan diod pensuisan-
sendiri (SSD) dan diod sawar satah (PBD) untuk gelombang mikro dan penerusan 
terahertz telah ditunjukkan menggunakan penyelakuan. SSD telah ditunjukkan sebagai 
penerus suhu bilik yang beroperasi pada frekuensi terahertz. Dalam kerja penyelidikan 
ini, prestasi penerus SSD dinilai menggunakan parameter yang dikenali sebagai pekali 
kelengkungan, yang diperolehi daripada ciri-ciri arus-voltan (I-V) peranti tersebut. 
Kesan mengubah struktur geometri dan dielektrik penebat nisbah kebertelusan (dari 1 - 
9.3) sesuatu SSD keatas pekali kelengkungan peranti tersebut dikaji dan dianalisa 
dengan menggunakan alat penyelakuan dua dimensi. Penyelakuan juga dilakukan di 
bawah julat suhu 250 - 500 K. Hasilnya menunjukkan bahawa frekuensi potong 
tertinggi yang dicapai dalam kerja penyelidikan ini adalah menghampiri 19 GHz, 
beroperasi pada keadaan yang tidak terpincang. Dengan melaksanakan penyelakuan 
serupa yang digunakan dalam menunjukkan SSD berasaskan silikon, satu diod-nano 
satah ekakutub baharu sebagai satu penerus telah diperkenalkan dan dibangunan dalam 
kerja penyelidikan ini. Peranti baru ini dirujuk sebagai PBD yang mempunyai satu 
saluran geometri bentuk corong yang membolehkan arus mengalir merentasi peranti. 
Pada pincang sifar, kawasan susutan yang tidak seragam, telah terjadi pada bahagian 
leher saluran bentuk corong disebabkan oleh cas permukaan pada antara muka 
semikonduktor/ penebat, diramalkan untuk mencipta sawar tenaga di sepanjang saluran 
dengan profil yang tidak simetri. Voltan luaran yang digunakan merentasi satu PBD 
dijangka akan menghasilkan ketinggian yang berbeza sawar tenaga bergantung sama 
ada voltan yang diberikan adalah positif atau negatif. Hasilnya, ciri-ciri I-V tak lelurus 
direalisasikan yang mana boleh digunakan dalam penerusan isyarat. Prinsip operasi 
PBD ini telah ditunjukkan dan disahkan dalam penyelakuan kerja penyelidikan ini. Ia 
juga telah diterangkan dengan menggunakan teori pemancaran ion haba yang boleh 
mengawal aliran arus merentas peranti. Serupa dengan SSD, prestasi penerusan PBD 
telah dicirikan dan dinilai berdasarkan pekali kelengkungan dan frekuensi potong 
peranti tersebut. Dengan mengubah rekabentuk geometri dan nisbah dielektrik penebat 
kebertelusan (dari 1-9.3) PBD, pekali kelengkungan peranti boleh dioptimumkan untuk 
meningkatkan prestasi penerus. Frekuensi potong tertinggi yang diperolehi dalam 
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penyelakuan kerja penyelidikan ini adalah menghampiri 0.8 THz. Kedua-dua peranti 
SSD dan PBD ini mempunyai senibina sawar yang seterusnya boleh direalisasikan 
dengan satu langkah litografi yang akan menjadikan keseluruhan proses fabrikasi 
peranti lebih mudah, lebih cepat dan lebih murah jika dibandingkan dengan peranti 
elektronik konvensional yang lain. 
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DESIGN AND CHARACTERIZATION OF SELF-SWITCHING DIODE AND 

PLANAR BARRIER DIODE AS HIGH-FREQUENCY RECTIFIERS 

ABSTRACT 

The development of high-speed rectifying devices has become one of major research 
areas which can be utilized in many applications, including radio-frequency (RF) and 
detection systems. Examples of these devices are Schottky diode and planar-doped 
barrier diode. However, all these excellent devices require a very challenging in 
fabrication process due to their complex structures and a precise doping concentration 
for each critical layers which are relatively high cost. The prospects of using electronic 
devices with planar structure are therefore become increasingly promising. These planar 
devices provide additional advantages of being not only simple but also able to operate 
at high frequencies. As such, in this research work, the feasibility of utilizing two 
silicon-based planar nanodevices of self-switching diode (SSD) and planar barrier diode 
(PBD) for microwave and terahertz rectification has been demonstrated using 
simulations. SSD has recently been demonstrated as room-temperature rectifiers 
operating at terahertz frequencies. In this research work, the rectifying performance of 
SSD is evaluated using a parameter known as the curvature coefficient, derived from 
the current-voltage (I-V) characteristic of the device. The effects of varying the 
geometrical structure and the insulator dielectric relative permittivity (from 1 – 9.3) of 
SSD on the curvature coefficient of the device are studied and analyzed by means of a 
two-dimensional device simulator. The simulations are also performed under 
temperature range of 250 – 500 K. The results show that the highest cut-off frequency 
attained in this research work is approximately 19 GHz, operating at unbiased 
condition. By implementing similar simulation settings used in demonstrating silicon-
based SSDs, a new unipolar planar nanodiode as a rectifier is introduced and developed 
in this research work. This new device is referred as PBD which has a funnel-shaped 
geometrical channel that allows current to flow across the device. At zero bias, the 
nonuniform depletion region, developed at the neck of the funnel-shape channel due to 
surface charges at semiconductor/insulator interface, is predicted to create an energy 
barrier along the channel with asymmetrical profile. An external voltage applied across 
a PBD is expected to produce different height of the energy barrier depending either the 
voltage given is positive or negative. As a result, a nonlinear I-V characteristic is 
realized which can be utilized in signal rectification. This operating principle of PBD 
has been demonstrated and validated in the simulations of this research work. It has also 
been described using thermionic emission theory which may govern the flow of current 
across the device. Similar to SSD, the rectification performance of PBD is characterized 
and evaluated based on the curvature coefficient and cut-off frequency of the device. By 
varying the geometrical design and insulator dielectric relative permittivity (from 1-9.3) 
of PBD, curvature coefficient of the device can be optimized in order to improve the 
rectification performance. The highest cut-off frequency obtained in the simulation of 
this work is approximately 0.8 THz. Both SSD and PBD have a planar architecture that 
can therefore be realized in a single lithography step which makes the whole fabrication 
process of the devices simpler, faster and at lower cost when compared with other 
conventional electronic devices.  
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